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Quark models for hadronic reactions. Nucleon-nucleon scattering
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A model for the development of scattered quarks into final-state hadrons is extended for application to hadronic
reactions, focusing on nucleon-nucleon scattering in particular. Numerical calculations show that the model
reproduces the main features of experimental data on secondary-hadron production in low-transverse-momentum
nucleon-nucleon scattering at c.m. energies above about 3 GeV, including the variation of o.„/0 ... with energy, the

average charged-hadron multiplicity, the moments of the charged-hadron multiplicity distribution, and the
longitudinal-momentum distribution of final-state hadrons. In anticipation of the future availability of higher-energy
nucleon colliding-beam machines, charged-hadron multiplicities are estimated for c.m. energies up to 2000 GeV.

INTRODUCTION

Based on regularities in the properties of hadron
families and the results of deep-inelastic lepton-
hadron and large-momentum-transf er hadron-
hadron scattering, many physicists believe that
hadrons are made up of elementary fermions
called quarks, even though these quarks have
never been observed in isolation.

If hadrons are composed of quarks, the genera-
tion of secondary hadrons in hadronic scattering
reactions must be a two-stage process. The first
stage involves the scattering of the quarks con-
tained within the colliding hadrons. A detailed
model of the force between quarks is needed to
calculate the cross section and angular distri-
bution of the scattered quarks. A candidate non-
Abelian gauge field theory, quantum chrornody-
namics (QCD), has been suggested to describe
the interaction of quarks through the exchange
of massless vector bosons called gluons. Because
this field theory is asymptotically free, pertur-
bation calculations can beperformed for elemen-
tary processes at short distances (large momen-
tum transfers). It is hoped that QCD will lead to
estimates of the quark cross sections and angular
distributions, at least at high energies. Then
some form of additivity shouM lead to estimates for
the hadronic total cross sections.

The second stage in a, secondary-hadron produc-
tion process involves the development of the
scattered quarks into final-state hadrons (hadron-
ization). This process is poorly understood at
present. QCD calculations of hadronization are
likely to be extremely difficult, involving soft
processes in a, region where the coupling con-
stant is too large to allow a convergent pertur-
bation expansion.

Consequently, it seems appropriate to find out
if a conceptually simple approach for directly
calculating the properties of the hadronization
process can reproduce the main features of the

experimental data on secondary-hadron produc-
tion, namely jet structure, the multiplicity dis-
tribution of final-state hadrons, the distribution
of final-state hadron momenta along the jet direc-
tion, and the fraction of inelastic scattering events
in hadron-hadron scattering.

If a relatively simple picture of hadronization
reproduces the main features of the experimental
data, one can conclude optimistically that QCD
will give results in agreement with experiment
if it can be shown globally that the decay of ex-
cited quark matter into hadrons has certain sim-
ple overall features in agreement with the post-
ulated picture. Detailed field-theoretical calcula-
tions of the decay amplitudes would then be un-
necessary. Alternatively, one could conclude that
experimental data on the evolution of scattered
quarks into hadrons will not provide a particularly
stringent test of QCD.

For this reason, I have been working on a sim-
ple calculable model for the evolution of excited
quark-antiquark (QQ) pairs into final-state had-
rons. This model postulates that an excited QQ
pair (fireball) decays isotropically in its own rest
frame into final-state hadrons with the decay
multiplicity given by a (truncated) Poisson dis-
tribution. The average number of secondary
hadrons produced by fireball decay is found by
dividing the fireball invariant mass by a. fixed
quantity, the average energy of a secondary had-
ron in the fireball rest frame. Therefore, al-
though fireballs can decay into varying numbers
of final-state hadrons with correspondingly vary-
ing momenta transverse to the momentum of the
fireball c.m. , the average value of the transverse
momentum of the secondary hadrons with respect
to the fireball c.m. momentum remains constant.
Furthermore, the average number of secondary
hadrons increases linearly with the invariant mass
of the fireball.

This description of hadronization has already
been successfully applied to hadron production in
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e 'e annihilation" and in lepton-hadron scatter-
ing (as will be reported in a subsequent paper)
where a straightforward approach to the conver-
sion of the scattered quark into an excited QQ pair
is applicable. If such a description of hadroniza-
tion has any general utility, it must also be suc-
cessful in describing the main features of secon-
dary-hadron production in hadronic- scattering
reactions.

Since the great majority of final-state hadrons
in a hadronic-scattering event have low momentum
transverse to the beam direction and a successful
description of the angular distribution of final-
state hadrons is likely to require a detailed model
of the force between colliding quarks, I shall
specialize to the case of hadrons scattering at
low transverse momentum.

To calculate the multiplicity and rapidity dis-
tribution of final-state hadrons produced in a
hadronic scattering reaction, the fireball-de-
cay model must be extended by incorporating
a model which describes when and how fire-
balls are created in hadron-hadron scattering
and determines the longitudinal momentum and
invariant mass of the fireball. This fireball-
generation model will be based on a constituent-
quark picture of hadrons similar to that used by
Altarelli, Cabibo, Maiani, and Petronzio.

In a previous paper, ' I developed a method for
calculating multiplicity distributions in proton-
proton scattering based on the simple picture of
isotropic fireball decay which was reasonably
successful in reproducing the main features of
low-transverse-momentum experimental data,
However, two criticisms could be leveled at this
approach.

(1) The distribution of quark momenta within the
coll. iding hadrons was not taken into account. In-
stead, it was assumed that each constituent quark
carried 3 of the proton's momentum. This leads
to a vanishing density of secondary hadrons at
fixed rapidity for asymptotic values of the c.m.
energy, which seems to be at variance with the
present trend of experimental data.

(2) Two different types of hadronic fireballs
were postulated to prevent the leading nucleon
from appearing with only certain discrete frac-
tions of the incident hadron's momentum. This
complication is related to the inadequate treatment
of the distribution of quark momentum within the
colliding hadrons.

In this paper, I combine the fireball-decay
model with a fireball-generation model to develop
a readily calculable model for the multiplicity and
rapidity distributions of low-transverse-momen-
tum secondary hadrons generated in high-energy
nucleon-nucleon scattering. This composite

model takes account of the distribution of quark
momenta within the colliding nucleons and in-
volves the generation and decay of only one type
of fireball. The inputs to the model are directly
related to experimentally measured quantities.
Although no attempt was made to search for op-
timum input values, the model is successful in
reproducing the main features of the experimental
data on low-transverse-momentum hadron pro-
duction in nucleon-nucleon scattering using rea-
sonable values of the input parameters. This
success indicates that many aspects of the experi-
mental data on secondary-hadron production may
simply reflect the quark content of hadrons, en-
ergy-momentum conservation, and a simple de-
cay process for secondary-hadron fireballs. It-
also suggests that the necessary bridge between
QCD and the experimental data on hadron-jet pro-
duction can be built by showing that an excited QQ
pair (fireball) in QCD tends to decay isotropically
in its own rest frame into final-state hadrons
with a Poisson distribution in multiplicity and an
average decay multiplicity related to the fireball
invariant mass by a fixed value of the average
energy of a secondary hadron in the fireball rest
frame.

Because the total nucleon-nucleon cross section
can be readily parametrized, this model may
have direct practical utility for ealeulating cos-
mic-ray cascades and the multiplicity and rapidity
distributions anticipated at energies presently in-
accessible in the laboratory. The resulting infor-
mation should be useful in designing cosmic-ray
experiments and experiments at future high-
energy accelerators. Furthermore, large
deviations of the experimental data from the cal-
culated values could provide an indication of new
effects which are not present at currently acces-
sible energies. 'The fact that the charged multi-
plicity in this model grows as E'~' (where E is
the incident laboratory nucleon-beam energy),
as suggested by the cosmic-ray data, favors its
use for estimating multiplicity and rapidity dis-
tributions at energies beyond those accessible by

. present accelerators.
I have .performed ealeulations with several

approximate versions of the model to show that
the desirable features of the model are not des-
troyed by approximations which might be used
to speed calculations in complex applications.
I have also included some brief remarks regarding
the extension of my model for hadronization to
particle production in large-transverse-momen-
tum jets.

ASSUMPTIONS

Consider two inf inite-momentum hadrons col-
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liding in the c.m. frame' and assume that inelastic
collisions involve only longitudinal momentum
transfer. ' The fireball generation model i.s then
based on the following assumptions.

(1) Each colliding hadron is composed. of con-
stituent quarks, and hadronic reactions are domin-
ated by events in which one quark in the beam had-
ron (the beam quark) scatters off one quark in the
target hadron (the target quark). This is the
standard assumption of the additive quark model
for high-energy hadronic scattering. ' The remain-
ing constituent quarks act as spectators, retaining
their initial fraction of the incident hadron's mo-
mentum.

The probability that a constituent quark carries
a fraction x of the momentum of the colliding
hadron is (in the infinite-momentum frame) de-
termined by a function f '(x) which satisfies

1
f'(x) dx= 1,

where p.~ is the average number of virtual gluons
accompanying a valence quark in a hadron k mov-
ing at infinite momentum.

The probability that the valence quark within a
constituent quark containing k gluons carries a
fraction y of the constituent quark's momentum
is determined (in the infinite-momentum frame)
by functions g„(y) which satisfy

r &a(y)dy = 1,
0

1

yg„(y)dy =1/(2k+ 1) .
0

(3a)

(Sb)

Condition (3b) implies that, as suggested by the
equilibrium gluon —quark-antiquark (QQ) pair,
a gluon carries on the average twice as much mo-
mentum as a bare quark. 9

(3) The force between two colliding quarks can
be modeled by an implusive force in the c.m.
frame at very high energies. " If the (longitudinal)
impulse is denoted 4, the four-momentum trans-

J1

xr'(x)dx = I/nq,
0

where pg& is the number of constituent quarks in
the colliding hadron.

(2) Each constituent quarks consists of a valence
quark plus an accompanying (virtual) color gluon
cloud. ' The probability of a constituent quark (in
a hadron moving at infinite momentum) containing
a valence quark plus k gluons is given by a, Pois-
son distribution8

fer is the minimum compatible with the longitud-
inal momentum transfer (impulse) 4. Conse-
quently, in inelastic collisions, where some of the
kinetic energy of the colliding hadrons goes to
produce secondary hadrons, the total c.m. mo-
mentum p' of the system of final-state hadrons
arising from the beam (or target) hadron is given
by

p =p —6 (4)

where p is the c.m. momentum of the incident
hadrons. In elastic collisions, of course, the
direction of th(E,' incident hadron's c.m. momentum
is changed, but the magnitude is unaltered.

(4) The incident beam (or target) constituent
q~a~k may consist, with probability Po(0), of
a valence quark unaccompanied by virtual gluons.
If this is the case, and the scattered quark does
not emit gluons as it recoils from the collision,
no secondary hadrons are produced in associa-
tion with the scattered quark. The probability
of an incident constituent quark consisting of an
unaccompanied valence quark emitting zero gluons
in a scattering event (i.e., the probability of such
a scattered quark appearing as an unaccompanied
valence quark after the scattering event) equals
Po(0), the probability that the incident constituent
qua, rk is an una. ccompanied valence quark.

If secondary quarks are produced by neither
the beam nor the target quark (because both of
the incident constituent quarks are unaccompanied
valence quarks and neither of these una, ccompanied
valence quarks emit gluons while recoiling from
the scattering) the event is an elastic scattering.

The incident beam (or target) constituent quark
may consist, with probability Po(k), of a valence
quark plus k virtual gluons. In this case, the
collision breaks up the constituent quark and con-
verts the gluons into quark-antiquark (QQ) pairs.
The spectator quarks pick up a bare quark with
the appropriate color charge out of the fragments
of the fragments of the scattered constituent
quark to form a leading" hadron. The probabil-
ity that the bare quark picked up by the specta-
tors to form the leading hadron carries a fraction
y of the momentum of the scattered constituent
quark is determined by the functions g~(y) satis-
fying Eq. (3). The remaining k QQ pairs which
are fragments of the scattered constituent quark
are the precursors of a fireball of secondary
had rons.

On the other hand, if the incident beam (or
target) constituent quark consists of an unaccom-
panied valence quark, the valence quark may,
when recoiling from the collision, emit k gluons
which are then instantly converted into QQ pairs.
The probability of a colliding constituent quark which
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$(mP')= [mP'/@ '+m, ')"']-1
and (p„'+m, ')'~'is the average energy needed to
produce a pion in the fireball c.m. frame. The
average energy required to produce a pion, (P»'
+ m, ')'~', is determined by the pion mass m,
and

~ p„~ which is the average magnitude of the
momentum of a produced hadron in the fireball
c.m. frame. " The normalization constant n is
given by

IBEX

n-'= m e'-~' ~' n1,

(6)

where g is the largest integer less than or
equal to (mP/m, ) -1.

These assumptions allow the development of
a composite model. for secondary-hadron pro-
duction in infinite-momentum hadronic scattering.
The following additional, and somewhat arbitrary,

consists of an unaccompanied valence quark
emitting k gluons in a scattering event (i.e., the
probability of a colliding unaccompanied valence
quark generating a quark plus 0 QQ pairs after
the collision} equals Po(k), the probability of an
incident constituent quark containing a valence
quark plus k virtual gluons. The spectator quarks
again form a leading hadron by picking up a bare
quark with the appropriate color charge out of the
quarks and antiquarks created from the scattering
of the initially unaccompanied valence quark.
Once again, the probability that the bare quark
picked up by the spectators to form the leading
hadron carries a fraction y of the momentum of.

the scattered quark is determined by the functions

g„(y) satisfying Eq. (8), and the remaining &QQ'

pairs generated by the scattered quark are the
precursors of a fireball of secondary hadrons.

Although elaborations are obviously possible,
the two production mechanisms outlined above
are treated similarly in this model and there is
no difference in the subsequent evolution of the
fireballs into secondary hadrons.

The fireball-decay model assumes that the sec-
ondary-hadron fireballs emit hadrons isotropically
in the fireball c.m. frame, just as i.n my model
for e'e annihilation into hadrons. ' Each fireball
creates at least one hadron, and the number n of
additional hadrons produced follows a truncated
Poisson distribution"

m
&~(n;mP)=&[&(mg)]'e" F'/nl, n~

~S
(5a)

P,(n;mg)-=0, n&
mr

All secondary hadrons are assumed to be pions,
the average number $(mp) of additional pions pro-
duced by a fireball with invariant mass mp is

assumption is made to carry out calculations at
finite momenta. 1'f the c.m. three momenta x@
and x~p of both of the colliding constituent quarks
is less than 4, the three-momentum transferred
in the collision is equal to the largest of xg and

XgP Q

MODEL INPUTS FOR NUCLEON-NUCLEON
SCATTERING

In this model, the probability of elastic scat-
tering is the probability Po'(0) that neither the
beam nor the target constituent quarks produce
secondary hadrons. At high energies, the ratio
o„/c;„has a constant value of about 0.175 in
nucleon-nucleon scattering. If aI1 constituent
quarks in the nucleons are treated the same,

Po'(0) = e~ "~= 0.175. (7)

Therefore, the average number p.„of gluons in a
constituent quark within a nucleon moving with in-
finite momentum is p.„=0.436.

The average transverse momentum of secondary
pions in this model is

r(a+ 1)= aI'(a),
it is clear that conditions (1) require (no —l)a = b.
Because p, „=0.436, the probability of a con-
stituent quark consisting of an unaccompanied
valence quark is Po(0) =0.647. Since the deep-
inelastic-scattering data indicate" that E,'
behaves approximately as (1-x}'when x
I chose b=4 for the function f'(x). Then, since
~& ——3 for a nucleon, a=2 and the normalization
condition (1a) requires that

f '(x) = 20x(1 —x)' .
Following Altarelli et aL, ~ the functions g~(y)

were chosen as

(8)

If ~p„~ is taken as 440 MeV/c, the average trans-
verse momentum of secondary pions is 360 MeV/c,
as suggested by experimental data.

The work of Malone and Lo" indicates that the
average longitudinal three-momentum transfer
;4 in nucleon-nucleon collisions at a c.m. energy
of 45 GeV is 1.8 GeV/c, and this value was used
in al1. calculations.

The form of the function f'(x) is chosen as -x' '
(I -x)~'. Using the relations

~(a}~(b}'=
r(a+b)
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(1-y) '-'
(10)

This form for g„(y) will introduce the I/Mx be-
havior" of the nucleon structure functions at
small x when a prescription similar to that de-
veloped by Altarelli et a/. ' is used to generate the
nucleon structure functions from the function
f'(x) and g, (y).

MODEL DEVELOPMENT

Consider the colliding constituent quark in one
of the incident hadrons. The probability, in the
infinite-momentum frame, of this constituent
quark consisting of a valence quark plus k virtual
gluons is given by the Poisson distribution (2),
which satisfies I=K,~Pq(k). If this equation is
rewritten as.

1=Pq(0)+ Q Pq(k)
k=1

ao

1=Pq'(0)+ [1+Pq(0)]QPq(k), (13)

where the two terms give the probability that a
colliding constituent quark does or does not, gen-

Pq(0)+ [1——Pq(0)]

the first term Pq(0) = e "a gives the probability
that the incident constituent quark is an unaccom-
panied valence quark, while the second term gives
the probability that the incident constituent quark
contains gluons and will consequently break up
during the collision to create a secondary-hadron
f ireball.

Since the probability of an unaccompanied val-
ence quark emitting k gluons during a collision
was assumed to equal Pq(k), Eq. (11) can again be
rewritten as

1=Pq(0)+q(0)+ [1 —Pq(0)])+ [1—Pq(0)]

=P,'(O)+P, (O)[1 —P,(O)]+ [1 P,(O)], (12)

where the first term gives the probability Pq'(0)
= e '"I that no secondary hadrons are created from
the colliding quark. The second term in (12) is
the probability of producing secondary hadrons
from gluons emitted during the collision by a
colliding constituent quark which was initially an
unaccompanied valence quark. 'The third term in
(12) is the probability that a secondary-hadron
fireball is produced by the breakup of a colliding
constituent quark which initially contains one or
more virtual gluons. Equation (12) can also be
written as

crate a fireball of secondary hadrons.
Since one constituent quark in each colliding

hadron participates in a high-energy hadronic
reaction, the probability of different types of
hadronic scattering events is determined by the
product of expressions such as Eq. (13) for the
beam (8) and target (T) quarks:

1=Pq '(0)Pq '(0)+Pq '(0)[1+Pq (0)]+Pq (k)
%=I

+ Pqr'(0) [1+Pqs(0)] Q Pqs(k)
I

+ 1+Pg~ 0 Pq~ k'
A'~i

x 1+P~~ 0 P~~ 0
k=1

(14)

2 el i-n

x [P~(2i, mg)+ P„(2i—1,mP)] . (15)

In Eq. (15), P~(z, mP) is obtained from Eq. (5),
and I have explicitly indicated the dependence of
the fireball mass m~~ on the number k of gluons
which are precursors of the hadronic fireba11. ,

The first term in Eq. (14) is the probability of
elastic scattering. The next two terms in Eq.
(14) are the probability of one-fireball events,
where the fireballs are generated by the target.
and beam quarks, respectively. The last term
in Eq. (14) is the probability of two-fireball
events.

From Eq. (5), the probability of producing
z+ 1 secondary hadrons (pions) is determined by
the pion mass m „the average pion momentum
in the fireball rest frame, and the invariant mass
of the fireball mF*. The fireball mass is in turn
determined, through kinematics, by the fraction
x of the incident hadron's momentum carried by
the co1.liding constituent quark and the fraction
y of the momentum of the scattered constituent
quark system which is carried by the bare quark
picked up to form the leading hadron.

Experiment general. 1y measures charged-par-
ticle production, and since charge conservation
requires that charged particles are produced in
pairs, it is convenient to develop the model in
terms of the number of charged-hadron pairs
produced in addition to the two initial colliding
hadrons (protons). Denote the probability of the
fireball in a single-fireball event producing yg

charged-hadron pairs by P, [n, mg(k, x~, x~, y~)].
Then, since the probability of a pion pair being
charged is —'„ the probability of producing n
charged-hadron (pion) pairs from the fireball is

P, [n, my(k, x„x„,y, )]
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the fraction x ~ and x~ of the momentum of the
colliding hadrons carried by the dormant (D) and

producing (P) constituent quarks and the fraction
y ~ of the momentum of the producing constituent
quark system after scattering which is carried
by the bare quark picked up by the spectators to
form the leading hadron in the hadronic system
associated with the fireball.

In a similar fashion, the probability of one of
the fireballs in a two-fireball event producing
z secondary charged-hadron pairs is denoted by
P~ [n, mP(k, xs, ys, xr, yr)], where the subscripts
B and T indicate the beam and target, respec-
tively, and is calculated inthe same way as in-
dicated in Eq. (15). Then, using Eqs. (1a), (Sa),
and (15), Eq. (14) can be put in the form

1 = Pqs'(0)Pqr'(0)
1 1

00
1

nmax~/2

+Pqs'(0)[1+Pq„(0)] dx~d» f'(»s)f~(» )Q Pqr(k) J dyrg~(yz) Q P, [n, mp(k, xs, xr, yr)]

f 1 1 mm~'

+ Pqr'(0) [1+Pq~(0)] J~ dxs dxrf '(xs)f '(xr)QPqs(k) dy~„(ys) g P, [n, mP(k, xr, x~, y~)]
n=0

+ [1+Pqa(0)][1+Pqr(0)] dxsdxrf'(Xs)f'(»r)
0 p

nmax] 2
1 1

x+QPqs(k)P]qr(l) dy~]dyr g]((ys)g&(yr) Q P [n, ms~(k, »s, ys, »r, yr)]
»= 1 &=1]

mg ~'

x g P [m, mg„(i, x„y„x„,y,)] . (16)
m-0

Equation (16), which sums the probabilities of different final states of a hadronic scattering event, forms
the basis for my model. Denote the probability of producing 5 secondary charged hadron pairs in addition
to the charges carried on the colliding hadrons by P,'h(b). Then

Nf X",,((I]=1,

where N = (E —2m~)/2m~ is the upper limit on the number of secondary hadron pairs which can be
produced if E„ is the total c.m. energy of the nucleon-nucleon collision and m„ is the nucleon mass.
Then, rearranging Eq. (16) and convoluting the probabilties for producing charged final state hadron
pairs from two-fireball events yields

1 . 1

P',„(b)=6 +q 2(0)Pq '(0)+ d» dx f'(x )f'(x )
0 0

1
0 1+I'(, 0 Pq~ k dy~» ~ I', b, m 0, g~, x~, y~

»cL 0
aq 1

+ Pqr'(0) [1+Pqs(0)] QPqs(k) dying, (ys)P, [f],mg(k, xr, xs, ys)]

f 1
+ [~+Pq.(0)][1+Pq,(0)]gg Pq. (k)P„(f) J „dy,dy~, (y.)„(y,)

»=l. E=l p 0

x Q P, [f] —a, m)~(k, xs, ys, »rx,yr)]

XP.[ , XI(X(, X,gX, XX,J ]]I (18)

Since charge is conserved and the colliding had-
rons in a pp collision are both charged, the pro-
bability P„(n) of finding n charged hadrons in the
final state of a pp scattering event is P,h(n)

=P,„(2b+ 2) =P,„(b) and it is this multiplicity dis-
tribution which serves as the basis for experi-
mental comparisons. Many experiments involve
the properties of the multiplicity distribution of



2560 T. R. MONGAN

the charged hadrons produced in inelastic col-
lisions. The average number of charged hadrons
produced in the inelastic scattering of two posi-
tively (or negatively) charged hadrons is given by

(19)

and the higher moments of the distribution are
determined by

Q')= gn'P, „(n) -2'&., /(I-a. ,),
nM

(20)

p~=(1-X)(~p-~), (21)

while the momentum of the leading hadron is

Pz, = (1 —&)f1+X(&P —&) ~ (22)

In the case where final-state hadrons are as-
sumed to be either nucleons or pions, the in-
variant mass of the secondary-hadron fireballs
created in inelastic-scattering events can now

be calculated from kinematics. In events where
only one secondary-hadron fireball is created in
nucleon-nucleon scattering, the invariant fireball
mass m~ is determined from

where P„ is the probability of elastic scattering.
It is now necessary to discuss the determination

of the fireball mass m„*. The colliding quark in
one of the incident hadrons has probability f'(x)
of carrying a, fraction x of that hadron's c.m.
momentum p and the initial momentum of that
colliding constituent quark is therefore gp. After
the collision, the total momentum of the system
of particles associated with the colliding con-
stituent quark is xp —4, where b is the impulse.
In calculations at finite momentum, 4 is not
allowed to exceed the largest of the c.m. momenta
of the two colliding constituent quarks. .If the
colliding constituent quark generates a secondary-
hadron fireball, the spectator quarks pick up a
bare quark from the system of quarks generated
from the colliding constituent quark to create a
leading outgoing hadron. The probability that the
bare quark picked up to form the leading hadron
carries a fraction y of the momentum of the
system of quarks generated from the colliding consti-
tuent quark was assumed tobe given byg2(y), where
k is the number of gluons which accompanied the
valence quark prior to the collision Ox the number
of gluons emitted by an unaccompanied valence
quark during the collision. Consequently, the
total momentum of the secondary-hadron fireball
generated by the colliding constituent quark con-
sidered above is

Ig g)2+I 2]1//2 ~ @ 2+ ~ 2)l /2

+ (p 2+ ~ 2c2)1/2 (23)

where Z is the c.m. energy, m~ is the nucleon
mass, and p~ and pz are given by Eqs. (21) and

(22). In finite-momentum calculations, if 112+*&m„

for a particular combination of k, x~, y~, x» and

yr in Eq. (18), secondary-hadron production is
not energetically possible and the associated prob-
ability is added as a contribution to the elastic-
scattering probability.

In the case where two secondary-hadron fireballs
are created, the mass of each fireball is obtained
from

(p2 +I 2)l/2 (t
2 ~I 2)l/2+ (t 2+ g2)1/2 (24)

where p~ and p~ for the beam (target) systems
determine the mass m~~ of the hadron fireball as-
sociated with the beam (target) system.

Equation (24) assumes that the four-momentum
transfer between the scattering systems is the
minimum compatible with three-momentum trans-
fer & (or the largest of the c.m. momenta of the
colliding constituent quarks, if this is less than
4) and involves no energy transfer. If mP for one
of the fireballs is less than m„ the mass of that
fireball is set equal to m, and the mass of the re-
maining fireball is calculated from energy con-
servation. If, for given values of k, t, x~, y~, x~,
yr in Eq. (18), both fireballs have an invariant
mass less than m„secondary-hadron production
is not possible and the associated probability is
added as a contribution to the elastic-scattering
probability.

GENERAL RESULTS

Three results are built into the model,
(i) The average transverse momentum of se-

condary hadrons [transverse to the jet (beam)
direction] is constant. Note that the average
transverse momentum is different for fireballs
of different multiplicity, just as in my earlier
model for e'e annihilation. ' It is only the trans-
verse momentum averaged over all fireball mul-
tiplicities which is constant. The value chosen
for the average transverse momentum of se-
condary hadrons is 360 MeV/c.

(ii) The longitudinal momentum transfer is
negligible in high-energy hadronic-scattering
reactions. In this model, the force between two
coBiding hadrons is an impulsive force in the
c.m. system, so the c.m. momentum p' of the
beam and target hadronic systems after an in-
elastic collision is related to the initial c.m. mo-
mentum by P' =P -&. Since & was chosen as
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1.8 GeV/c, p™pat high energies, and the model
approximately satisfies the minimal rule of
Benecke, Chou, Yang, and Yen" which states
that only infinitesimal longitudinal momentum
transfer is allowed at asymptotic energies.

(iii) The ratio of elastic to total cross section
cr„/c„, becomes constant at high energies. In

proton-proton scattering, the experimental ratio
o„/a „,is approximately 0.175 for all incident
laboratory proton momenta above about 100 GeV/c.
This ratio is constant at high energy in my model
since p, „ in Eq. (2) was chosen as 0.436.

The following general results are also obtained
from the model.

(a) Since the three-momentum transfer & is
constant, the average charged multiplicity growp
as E' ' at asymptotic energies, where E is the
incident laboratory nucleon beam energy. The
constant value of the three-momentum transfer
& in the c.m. frame for high-energy hadronic
scattering implies [through Eqs. (23) and (24)]
that the average invariant mass of the secondary-
hadronic fireballs produced in inelastic collisions
rises as E' ~. Then the assumption, implicit
in Eg. (6), that the average number of secondary
hadrons is a linear function of the invariant mass
of the fireball leads to an average charged-hadron
multiplicity growing as E' ' at asymptotic ener-

gies. In fact, there are indications" from cosmic-
ray experiments that the average charged multi-
plicity grows faster above about 5 TeV in the lab
(approximately 100 GeV in the c.m. ) than would
be indicated by the a +b lns form commonly used"
at lower energies.

(b) The fraction of scattering events of different
types is constant at high energies. Since p „ is
chosen as 0.436 to obtain o„/c„,=0.175 at high
energies, Eq. (11) states that in Pq(0) =64.7% of
events, the colliding constituent quark in one of
the incident nucleons consists of a valence quark
unaccompanied by virtual gluons, while in the
remaining 1 Pq(0)-=35.3/0 of events, the col-
liding constituent quark contains virtual gluons
which are the precursors of a hadronic fireball.
Similarly, Eq. (13) says that the probability of a
colliding constituent quark producing no secondary
hadronic fireball is Pq'(0) =41.8%, while the pro-
bability that the quark creates a fireball from
gluons emitted during the collision or accom-
panying it prior to the collision is

[1+Pq(0)]g Pq(k) =58.2%.
k=1

Finally, when the colliding quarks in each in-
cident hadron are considered as in Eq. (14) the
breakdown of events is as follows:

Elastic events Pq& (0)Pq~ (0) =17.5%,

Target-fireball events Pqs~(0) [1 +Pqr(0)] g Pqr(k) =24.3/0,
k=1

Beam-fireball events P q'(r)[01 +Pqa(0)] g Pqs(k) =24.3%,
k=&

Two-fireball events 1+&+~ 0 I'~ k 1+I'g 0 I'~ k =33.9 o.
k=1 k-"&

(c}Based on the assumption that a gluon carries
(on the average) twice as much momentum as a
quark, the fraction of a proton's momentum car-
ried by the electrically neutral gluons is, on the
average, 2p„/(1+2' „)=46.6%. Correspondingly,
the average percentage of the proton's momentum
carried by charged matter (the guarks) is 53.4%,
in agreement with the result extracted from ex-

perimentt.

"
NUMERICAL CALCULATIONS OF MULTIPLICITY

DISTRIBUTIONS

To carry out explicit numerical calculations
with Eq. (18), two numerical approximations are
necessary. (1) The infinite sums over the num-
ber of gluons dressing a quark must be truncated.
This is done by truncating the sums over Pqs(i)
and Pq&(i) at some integer A and setting Pq(A)
= 1-Q~:OPq(k) to preserve the proper normali-

I

zation (conserve probability). (2) The integrals
over the constituent- and valence-quark momen-
tum distributions must be approximated by finite
sums.

The numerical integration

1

f '(x)dx =20 x(1 -x)'dx

=20 $0. x] x] 1 -x] +Rp
j=1

uses Formula 25.4.33 of Abramowitz and Ste-
gun, "with the abscissas x, and the weights so&

provided in Table 25.8 -of that reference. The
remainder A» is proportional to f '""'($) for
0& (&1. The fifth derivative of f'(x) is zero,
so the remainder term is zero for numerical
integration of order ¹ 3.
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The numerical integration

r
1 1 (l y)

0-1

o o vy

can be transformed by the variable change

y =1-t into

r 1 t k-1

g, (y)dy =,
(1 t)ie dt.

The numerical integration then uses Formula
25.4.36 of Ref. 20 so

~

~

1
-. g, (y)dy ii,f =w, (i) i, +ii „' '

The abscissas t, =1 .—$, ', where $, is the ith posi-
tive zero of P»(x) (the Legendre polynomial of
order 2N) and the weights w, (i) =2'', ", where
ze',."are the Gaussian weights of order 2N, are
provided in Table 25.4 of Ref. 20. The remainder
A~ is proportional to the 2Mth derivative of $~ '
with 0& )&1. Since the kth derivative of $' ' is
zero, the remainder term R ~ is zero for numeri-
cal integration of g„(y) when k& 2M. Therefore,

r 1

g(i')rry ,=ii, g M, (i)(i —i,.')'-'+ii „.
When these numerical approximations are ap-
plied to Eq. (18), the equation which results is

P' (t) =5 P„'(O)P„'(O)

+400 zv,- x, 1 -x,. 'sv' x,. x, 1 -x,.
f B=l )T=l

A kf

x PqB 0 1+PgT 0 PgT k A re~ jT 1 — ) 'P, b, mp k, x, , x,.
A=1 JT=

A

+J'„'(0)I&+ i ,(0)jg i'„(a) L x,~,(i,)(i -
&, ')' ' i' fb ~, s.t. .», , &,. ')]

B
A A

+ [1+P (0)][1+P (0)]Q A,A, P (k)P (l)
0=1 1=

X ~j 1 — ' ~ jT 1—
B T

B T

X Pc b Q~~BF ~~
a=a

This is the explicit form used as the basis for all
numerical calculations of multiplicity distributions
in this paper. The remaining inputs needed are
the following.

(a) The Poisson distributions Pos(k) and Por(k)
given by Eq. (2) with pq =,0.486.

(b) A, =1'(k+2)/[f'(-,')1'(k)] from Eq. (10).
(c) The distribution function P, (b, m ) given by

Eq. (15). For large values of n, the truncated
Poisson distribution Pz(n) given in Eq. (5) which
is used to calculate P, (b, m~) can be approximated

' as

(2vn)" n

n

using Stirling's approximation.
First, a calculation of the charged-hadron mul-

tiplicity distribution in proton-proton scattering
at a c.m. energy of 27.6 GeV was undertaken with
the number of gluons considered truncated at k =3.
From Eq. (2), the probability that a quark is

dressed by less than four gluons (when p, =0.488)n
is ~g=o Pq(k) =0.9989. Furthermore, the pro-
babi1. ity that a constituent quark containing gluons
contains only one, two, or three gluons is
Z,',Po(k)/[1 —Po(0)] = 0.9970. The results of this
calculation (denoted calculation 0) were withina
few percent of those obtained from the consi-
derably faster version of the model to be dis-
cussed next. Because the initial calculation used
too much computer time, it was necessary to
consider a series of physical approximations
which also lead to numerical simplifications.
These approximations show that the desirable
features of the numerical results are not easily
destroyed by simplifying approximations. There-
fore, to explore the characteristics of the model
with the limited financial resources available,
all subsequent calculations were based on the
simpler versions of the model discussed below.

Calculation l. In this calculation, a valence
quark is assumed to be dressed by either zero



QUARK MODELS FOR HADRONIC REACTIONS. NUCLKON-. .. 2563

gluons or one gluon and conservation of proba-
bility is ensured by taking P(l) =1 -P(0). This
approximation is pretty good because the proba-
bility (when P„=0.436) that a constituent quark
consists of a valence quark dressed by zero gluons
or one gluon is Po(0) +Po(1) = 0.9825 and the pro-
bability that a constituent quark containing gluons
contains only one gluon is Po(1)//[1 -P(0)]
=O.VQV8. This model is obtained from Eq. (25)
by setting k =l =1, removing the sums over those
indices and setting P(1) =1 -P(0).

Calculation Z. This calculation consider s only
the distribution of constituent quark momenta
within the colliding nucleons. It is assumed that,
in any event where secondary hadrons are pro-
duced, the quark picked up by the spectators to
form the leading hadron always carries exactly
3 of the momentum of the scattered constituent
quark. That is, in addition to assuming that the
valence quarks are dressed by zero gluons or one
gluon, as in calculation 1, it is assumed that the
fragments of a scattered constituent quark always
share the momentum of that quark equally. This
model is obtained from Eq. (18) by first setting
k =l =1, removing the sums over those indices
and setting P(1) =1-Po(0). Next, g, (y) is de-
fined as g, (y) =6»6(y ——,') so the numerical in-

tegration over the y variable disappears.
Calculation 3. This is the simplest version of

the model, similar in concept to the model I out-
lined previously in Ref. 4. In this, calculation, the
distribution of constituent quark momenta within
the colliding hadrons and the distribution of va-
lence quark momenta within the constituent quarks
are both neglected. Thus. , it is assumed that (i)
valence quarks are dressed by either zero or one
gluon, (ii) when a constituent quark breaks up to
form secondary hadrons, the quark picked up by
the spectators to form the leading hadron always
carries exactly 3 of the momentum of the scat-
tered constituent quark, and (iii) the incident
constituent quark always carries exactly 3 of the
momentum of the colliding hadron. The last as-
sumption is the one which differentiates this cal-
culation from calculation 2.

This version of the model is obtained from Eq.
(18) by (a) setting k =l =1, removing the sums
over these indices and setting P(1) =1 -Po(0),
(b) defining g, (y) =6»6(y —3) so the numerical
integrations over the y variables drop out, and
(c) defining f'(x) =6(x ——,) so the numerical in-
tegrations over the x variables drop out. In the
notation of Eq. (18), the resulting equation used
in calculation 3 can be written

P',„(f))=6 P (0)P (0)+(P (0)[1 -P '(0)]+P r'(0)[1 -P '(0)]}P,[b, P(1, l, l, -'. )]

+[1 -Po~ (0)][1-Por (0)]g P, [b -a, mz(1, 3 3) 303)]P,[a,mz(1, 3 3 0 3)]. (26)

This version possesses the same general characteristics as the more complex versions and repro-
duces the general features of the charged-hadron multiplicity distributions. However, it will ob-
viously lead to an unrealistic description of the longitudinal-momentum distribution of final-state hadrons
because the leading hadron associated with a secondary-hadronic fireball in this version of the model
always carries exactly —, of the momentum of the scattered system.

In addition to the above calculations, two numerical estimates of the average charged-hadron multi-
plicity in proton-proton scattering were obtained. In these calculations, the estimated charged-hadron
multiplicity was determined without calculating the multiplicity distributions. These calculations were
based on the following numerical approximation for the average charged-hadron multiplicity in proton-
proton scattering:

(x )=2 4+0'0g x'(x, )x, (1 —xg ) x (xg )xg, ,(1 xg )=i] ~l B 8 B T '1' T
B

X PQB 0 1+PQT0 PQTk Alma jr 1-
~
'''3

2 214
gT =l

+Pq '(0)[1 +Pqx(0)I Pqx((g) f a,m, (/, )((-(g ')''(*)
~B

+ [1 +Pq (0)[[1+Pqx(0)) gg Pqx0g)Pqq(()

x A~Aggg~ jB 1-
~

"'~ j 1—
j =l J =1B

g T T

x[—,m /(0 +m )'4'+.;m0 /(0 +m')'')I.
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The first term in this equation arises from charge
conservation, since there are two charged ha-
drons (protons) in the initial state. The remaining
three terms, which give an approximation to the
weighted average number of secondary hadrons
(pions) produced by the fireballs were obtained
from the analogous terms of Eq. (25) as follows:
(1) Replace the distribution P, in the first two
terms in the bracket in Eq. (25) by

—'m~/(P '+m ')' '
(2) Replace the convolution in the last term in the
bracket in Eq. (25) by

(Il *, /(P, *+,')'"]+[i f /(P '+,')'"]k.
This assumes that the distribution I', can be ap-
proximated by a Poisson distribution, the trun-
cation of the I', distribution can be neglected, and
the mean of the distribution I', can be approxi-
mated by

—',mP/(P „'+m, ')'~

since all of the secondary hadrons have been as-
sumed to be pions and the mean number of
secondary hadrons in a fireball is mP/(P„' +m ')'~'.
The fact that the mean of a convolution of Poisson
distributions is the sum of the means of the con-
voluted distributions has also been used in de-
veloping Eq. (2V).

Two calculations were carried out based on Eq.
(2V).

Calculation &. This calculation is analogous
to calculation 0 discussed previously. In this cal-
culation, constitutent quarks are assumed to con-
tain zero, one, two, or three gluons (i.e., &=3).

Calculation B. This calculation is analogous to
the previously discussed calculation 1. Valence
quarks are assumed to be dressed by either zero
gluons or one gluon and conservation of probability

is ensured by setting Po(1) = 1 -Po(0) (i.e., & = 1).
Five-point integration formulas (M =N= 5) were

used for all numerical integrations over internal
momentum distributions. Three-point integr ation
formulas are somewhat faster, and give results
within a few percent of the five-point formulas
at c.m. energies above about 10 GeV. However, at
low energies, the mass of the secondary hadronic
fireball can be less than m, for some values of the
fraction x of the hadron momentum carried by the
scattered constituent quark and the fraction y of
the momentum of the scattered constituent quark
which is carried by the constituent-quark-frag-
ment picked up by the spectators to form the
leading hadron. In this model, the probability
of energetically inaccessible production events
(i.e., the probability of events with fireball mass
less than m, ) is added into the probability of
elastic scattering. Because the five-point numeri-
cal integration samples more points on the inter-
nal-momentum distribution spectra, it provides
a smoother representation of the variation of the
percentage of elastic scattering at low energy.

Table I compares the results of calculations 0,
1, 2, and 3 for proton-proton scattering at a c.m.
energy of 27.6 GeV with the experimental values
taken from Dado et al." The results of calcula-
tions 0 and 1 lie within 1/o of each other except for
the parameter f,. The calculation was also per-
formed with three- and six-point numerical inte-
grations, and the results were within a few per-
cent of the results tabulated in Table I, except for
the parameter f, which varied as much as 20/o.

Table II presents information on the average
charged-hadron multiplicity (n) in inelastic pro-
ton-proton scattering and the percentage of elas-
tic-scattering events for c.m. energies from 3 to
300 GeV. The experimental values for (n) at c.m.
energies from 13.8 to 62.8 GeV were taken from

TABLE I. Experimental and calculated values of charged-hadron multiplicity distribution
parameters for proton-proton scattering at a c.m. energy of 27.6 GeU. Experimental data
from Dado et aE. {Ref.21), except D3 and D4, which are obtained from the fits to experiment-
al data provided by Thome et al. (Ref. 22). All calculations give the percentage of elastic
scattering as 17.5%, and use five-point numerical integrations for the internal-momentum
distributions.

Parameter Experimental Calculation Calculation Calculation Calculation
value 0 1 2 3

(n}
D =)&( —

& &)'&i' '
D,= [& &n —&n»'&j'~'
D4= ( (&& —&&»')l'
f2= (s(n-1)) —(n)

&I'&j&n&'

(n3)/ (n)'
&~'&/ &~&'

8.83
4.59
4.09
6.20

12.2
1.25
1.84
3.05

9.25
3.82
3.12
5.16
5.37
1.17
1.55
2.28

9.16
3.78
3.10
5.11
5.16
1.17
1.55
2.28

9.26
3.67
2.86
4.91
4.20
1.16
1.50
2.14

9.62
3.23
2.25
4.28
0.82
1.11
1.35
1.77
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TABLE II. Average charged-hadron multiplicities and percentage of elastic. scattering. The first two rows show
the experimental value of the average charged-hadron multiplicity and the source of the charged-hadron multiplicity
data: Dado et al. Pef. 21) or Thome et al. (Bef. 22). The third row shows the value of the charged-hadron multi-
plicity predicted by the Albini et at. perametrization (Ref. 18) (n)A~b~; —-2.5+0.28 In (E 2m')—+0.53 Pn (E —2m')J . The
subsequent rows 'show the average charged-hadron multiplicities in inelastic-scattering events and the percentage
of elastic scattering for the calculations discussed in the text.

c.m. energy (GeV)
i

(n) (experiment)
Data source (Bef. No. )

(n) (Albini et at. '8)

3.0 5.0 10.0 13.8 19.7 23.6 27.6 30.8 45.2 53.2 62.8 150.0 300.0

639 767 812 883 954 1101 1177 1270
21 21 22 21 22 22 22 22

2.54 3.51 5.41 6.45 7.70 8.38 9.00 9.44 11.08 11.82 12.60 17.14 21.30

Calculation 1
(n)

% elastic
2.26 3.56 5.81 6.85 8.01 8.60 9.16 9.57 11.22 12.02 12.89

23.3 18.6 17.5 17.5 17.5 17.5 17.5 17.5 17.5 17.5 17.5
18.87 25.90
17.5 17.5

Calculation 2

(n)
% elastic

Calculation 3
(n)
% elastic

Calculation A

(n)
% elastic

Calculation B
(n)
% elastic

2.25 3.54 5.85 6.89 8.06 8.67 9.26 9.70 11.40 12.23 13.14 19.39 26.72
21.5 17,8 17.5 17.5 17.5 17.5 17.5' 17,5 17.5 17.5 17.5 17.5 17.5

215 343 614 727 8.38 9 02 9 62 10 06 11 82 12 68 13 63 2014 27 79
17.5 17.5 17.5 17.5 17.5 17.5 17.5 17.5 17.5 17.5 17.5 17.5 17.5

256 370 586 691 809 871 928 972 1143 1225 1316 1932 2655
23.8 18.7 17.5 17.5 17.5 17.5 17.5 17.5 17.5 17.5 17.5

2.47 - 3.71 5.86 6.90 8.05 8.64 9.19 9.61 11.27 12.07 12.94 18.92 25.95
23.3 18.6 17.5 17.5 17.5 17.5 17.5 17.5 17.5 17.5 17.5 17.5 17.5

Dado et al.l' and Thome et al. '~ The experimen-
tal values of the charged-hadron multiplicity are
compared to the calculated values and to the
Albini et al. parametrization" (n)»„„,=2.5
+0.28 ln(E - 2m„)+0.53[in(E - 2m„)]' which can be
used to represent the experimental data on aver-.
age charged multiplicities inPP collisions at
c.m. energies below 150 GeV.

Calculation 1 gives multiplicities between 1%
and 7% higher than the experimental values over
the energy range 13.8 to 62.8 GeV, while the
Albini et el. parametrization gives multiplicities
which vary from 1% below to 4% above the experi-
mental multiplicities in the same range.

Calculation 1 gives a multiplicity which is 11%
lower than the Albini et al. value at 3 GeV. The
multiplicities from calculation 1 are higher than
the Albini et al. values at all other tabulated
energies, but they lie within 10% of the Albini
values at energies up to 150 GeV.

Since the average charged multiplicity in this
model grows as E'~, all calculate. ops predict sub-
stantially higher charged multiplicities above 150
GeV than would be predicted by the Albini et al.
parametrization if it is extended above 150'GeV,
outside its range of applicability. This is in
agreement with the trend observed in cosmic-ray
data. "

Calculation 2 gives multiplicities varying between
1% below those predicted by calculation 1 at low
energies to 4% above the calculation 1 values at
the highest energies tabulated.

The multiplicites obtained from calculation 3
vary from 5% below the calculation 1 values at
low energies to 8% above the calculation 1 value
at the highest energy tabulated. Calculation 3,
which is the simplest form of the model, predicts
multiplicities between 6% and 14% higher than
the experimental values over the energy range
13.8 to 62.8 GeV.

Turning to the approximate calculations of the
average charged multiplicity based on Etl. (27),
it is seen that the charged multiplicities obtained
from calculation A lie within 8% of the values ob-
tained from calculation 8 over the entire energy
range 3 to 300 GeV. Calculation 8 is analogous to
calculation 1 in that they both involve the approxi-
mation that valence quarks are dressed by either
zero or one gluon. The- value of the average
charged multiplicity obtained from calculation B
is 9% higher than the multiplicity obtained from
calculation 1 at 3 GeV. This is to be anticipated,
because the approximations used in developing
Eq. (27) neglect the truncation of the fireball-de-
cay multiplicity di'stribution required by energy
conservation. At higher energies, the effects of
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neglecting the truncation become less significant,
and the results of calculation B approach those of
calculation 1 until they differ by less than 1% at
300 GeV.

Table III provides information on the moments
of the multiplicity distribution D, = [((n -(n))') j'~'.
The experimental values of D, are taken from the
same sources as the average- charged-multiplicity
data in Table II. The rows labeled &,"' are calcu-
lated from the following fits to experimental data
presented by Thome ep al.":

D, = 0.576((n) —0.969),

Da = 0.522((n) —0.995),

D4=0.799((n) —1.067) .
The calculated values of &, show the same qualita-
tive behavior between 13.8 and 62.8 GeV in the
c.m. as the experimental results, rising as an
approximately linear function of (n). However,
the calculated values of D, are progressively
smaller at any given energy as one proceeds from
calculation 1 to calculation 3. This indicates that
the calculated multiplicity distributions are nar-
rower than the experimentally observed distribu-
tions. It also shows that more realistic treatment
of the internal-momentum distributions within the
colliding hadrons tends to broaden the multiplicity
distributions, as expected. The calculated values
of D, rise more slowly as a function of energy than
the experimental values, and the values obtained
from calculation 3 rise the slowest of all.

The calculated values of the correlation func-
tion f,= (n(n —1))—(n)' and the first three re

duced moments (n')/(n)' of the charged-hadron
multiplicity distribution in proton-proton scat-
tering are compared to experimental data in
Table IV. The experimental values are taken
from the same sources as in Table II. The cal-
culated values of the correlation function f, show
the same general behavior as the experimental
values, but they rise slower with increasing c.m.
energy. Above about 5 GeV in the c.m. the cal-
culated values of the reduced moments fall very
slowly as the energy increases, instead of rising
slowly as suggested by the experimental data
accumulated between 13.8 and 62.8 GeV.

At very high energies, where the number of
secondary hadrons which can be produced be-
comes very large, the numerical formulation of
this model should be modified to facilitate calcula-
tions. This might be done, for example, by ap-
proximating the tx'uncated Poisson dlstrlbutlons by
normal distributions and replacing the discrete
sums over secondary-hadron multiplicities with
integrals. In the absence of experimental data
with which to make detailed comparisons, this is
not a particularly pressing task. However, in
anticipation of future generations of particle ac-
celerators, ' it is interesting to attempt a predic-
tion of the charged-hadron multiplicities at very
high energies. The easiest way to do this is to
employ the (approximate) calculations A and 8,
which have been shown to give results in close
agreement to those provided by the more detailed
calculations at c.m. energies above about 10 GeV.
Consequently, calculations A and B were per-
formed at c.m. energies of 500, 800, and 2000

TABLE III. The moments of the charged-hadron multiplicity distribution, D = [((n —(n))')] ~'. Data sources for
D2 (experiment) are the same as in Table D for the corresponding c.m. energy. D~ {Thome et al. fit) are the fits to
experimental data presented by Thome et al. (Bef. 22): D2=0.576((n) —0.968), D~= 0.522((n) —0.995), and D4
= 0.799( (g) —1.067).

c.m. energy (GeV) 3.0 5.0 10.0 13.8 19.7 23.6 27.6 30.8 45.2 53.2 62.8 150.0 300.0

Experiment
Thome et al. fit (Ref. 22)
Calculation 1
Calculation 2
Calculation 3

3.21 3.82
3.12 3.86

0.71 1.75 2.66 2.94 3.33
0.70 1.72 2.62 2.90 3.26
0,53 1.43 2.32 2.62 2.91

4.05 4.59
4.12 4.53
3.56 3.78
3.48 3.67
3.08 3.23

4.83 5.90 6.39 6.92
4.94 5.78 6.22 6.76
3 95 4 62 4 95 5 31
3.81 4.39 4.67 4.98
3.34 3.78 3.99 4.21

7.83 10.76
7.05 9.42
5.66 7.22

Dg= [((n —(n)) )]
Thome et a/. fit (Ref. 22)
Calculation 1
Calculation 2
Calculation 3

0.98 1.79
0.97 1.76
0.79 1.27

2.82 3.48
2.27 2.39 2.68
2.24 2.34 2.56
1.72 1.87 2.04

3.72 4.09 4.46 5.23 5.62 6.11
2 90 310 325 3 82 4 08 436
2.72 2.86 2.97 3.38 3.58 3.78
2,14 2.25 2.33 2.64 2.79 2.95

6.06
5.01
3.98

7.75
6.20
5.09

D4= [ ( [n —(n)) )]'
Thome et a/. fit (Ref. 22)
Calculation 1
Calculation 2
Calculation 3

1.25 2.47
1.23 2.44
0.99 1.89

3.58
3.54
3.08

4.25 5.28
3.95 4.49
3.89 4.37
3.47 3.86

7.94
6.22
5.86
5.02

5.64 6.20 6.77 8.55 9.29
4.81 5.11 5.34 6.65 7.13 10.33 14.03
4.66 4.91 5.10 6.23 6.63 9.31 12.36
4.08 4.28 4.44 5.30 5.59 7.47 9.45
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TABLE IV. Correlation function and reduced moments for charged-hadron multiplicity di.stributions. The data
sources for the correlation function f2 ——(n(s —1))—(a) and the reduced moments (sQ/(n)~ are the same as for the
corresponding c.m. energies in Table II.

c.m. energy (GeV) 3.0 5.0 10.0 13.8 19.7 23.6 27.6 30.8 45.2 53.2 62.8 150.0 300.00

f2 (n (n ———1))—(a)
Experiment
Calculation 4
Calculation 2
Calculation 3

3.9 6.9
-1.76 -0.51 1.26 1.81 ' 3.09
-1.76 -0.59 1.03 1.52 2.59
-1.87 -1.39 -0.74 -0.40 0.09

8.3 12.2 13.76 23.78 29.10 35.20
4.09 5.16 6.04 10.09 12.44 15.33
3.44 4.20 4.85 7.89 9.60 11.65
045 082 112 248 323 413

42.50 89.81
30.34 61.99
11.85 24.32

(n ')/ (n)'
Experiment
Calculation 1
Calculation 2
Calculation 3

1.25
1.10 1.24 1.21 1.18
1.10 1.24 1.20 1.18
1.06 1.17 1.14 1.13

1.25
1.17
1.16
1.12

1.25 1.25 1.26 1.29
1.17 1.17 1.17 1.17
1.16 1.16 l 1.15 1.15
1.12 1.11 1.11 1.10

1.30 1.30
1.17 1.17
1.15 1.14
1.10 1.10

1.17 1.17
1.13 1.12
1.08 1.07

Experiment
Calculation 1
Calculation 2
Calculation 3

&.4&/ &.&'

Experiment
Calculation 1
Calculation 2
Calculation 3

1.84 1.84 1.84 1.84 1.86 1.99 2.01 2.02
1.38 1.85 1,69 1.60 1.56 1.55 1.55 1.55 1.55 1.55 1.55
1.37 1.83 1.66 1.57 1.52 1.51 1.50 1.49 1.47 1.46 1.45
1.23 1.57 1.45 1.41 1.38 1.36 1.35 1.34 1.32 1.31 1.30

3.53 3.58
2.27 2.27
2.,07 2.04
1.69 1.67

3.05 3.05 3.05 3.05 3.12 3.60
2.01 3.19 2.64 2.39 2,29 2.28 2.28 2.28 2.27
1.99 3.13 2.57 2.32 2.20 2.17 2.14 2.12 2.02
1 61 233 2 01 190 1 83 179 1 77 175 1.64

1.55 1.54
1.41 1.39
1.24 1.21

2.26 2.23
1.92 1.84
1.52 1.44

GeV, and the resulting estimates of the average
charged-hadron multiplicities are shown in Table
V. These energies were chosen because they lie
near the tops of the operating ranges of the fol-
lowing proposed accelerators which were listed
in Ref. 23: the SPSPP machine at CERN with a
maximum c.m. energy of 540 GeV, the ISABELLE
pp machine at Brookhaven with a maximum c.m.
energy of 800 GeV, and the Fermilab pp machine
with a maximum c.m. energy of 2000 GeV. The
applicability of the 500 and 2000 GeV estimates in
Table V depend, of course, on the assumptions
that annihilation events are a decreasing propor-
tion of PP scattering events at very high energies
and that pp and (nonannihilation) pp scattering
events are essentially identical at very high ener-
gies.

CALCULATION OF LONGITUDINAL RAPIDITY
DISTRIBUTIONS

The longitudinal rapidity distribution of charged
final-state hadrons is often measured in scatter-

ing experiments. The longitudinal rapidity dis-
tribution of charged pions generated by the model
described above can be calculated using an ap-
proach similar to that employed in my paper on
e+e annihilation. '

In this model for hadronic scattering, secondary
hadrons are produced by isotropic decay (in the
fireball rest frame) of fireballs with invariant
mass m~. The decay multiplicity of the fireballs
is given by the truncated Poisson distribution (5).
The:fireball momentum Pz is given by Eq. (21)
and depends on the fraction x of the incident
hadron's momentum carried by the colliding con-
stituent quark and the fraction y of the momentum
of the scattered constituent quark which is carried
by the bare quark picked up to form the leading
hadron after the collision. The invariant mass
mg of the fireball is obtained from Eg. (23) or
(24) depending on whether one or two fireballs is
created in the scattering event. Therefore, in the
overall c.m. frame for the hadronic scattering
event, the fireball has

TABLE V. Estimates of average charged-hadron multiplicities in very-high-energy in-
elastic-scattering events.

c. m. energy (GeV) 500 800 2000

Average charged-hadron multiplicity
Calculation A
Calculation B

33.74
32.95

42.21
41.20

65.74
64.10
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and

Pa -&s(-Pa+-Pz &a)

(29)

It can also be shown that the probability of find-
ing a pion from a fireball with decay multiplicity k
at any value of the c.m. longitudinal momentum
between p~, and P~ is constant. Consequently, the
occupation probability of a momentum interval 4P
lying between p„and P~ for secondary pions from
a fireball decaying with multiplicity k is kbP/2y, P,'.

p =p /(P '+m*')' 'and y =(P '+m*')' '/m*

For fireball decays with multiplicity A, the
energy' of the decay products in the fireball rest
frame is E,'=mg/k and the fireball decay spec-
trum in the firebaD-rest-frame momentum space
forms a spherical shell with radius ~p,'~ = (E,"
-m, ')'~', assuming that all decay products are
pions.

%hen this spherical decay spectrum in the fire-
ball-rest-frame momentum space is transformed
into the overall-c. m. momentum space for the
nucleon-nucleon scattering process, an analysis
like that explained by Hagedorn'4 shows that the
secondary pions from an event with fireball-de-
cay multiplicity k lie on an ellipsoidal shell in the
overall-c. m. momentum space with longitudinal
c.m. momentum lying between

P„.=~, (P,'+P, E,')

The longitudinal rapidity of a secondary hadron
with longitudinal momentum p, and energy E, in the
overall-c. m. system is defined as

The rapidity of secondary pions produced in a
hadronic collision at c.m. energy E must lie be-
tween s—,'Y', where Y=in(E/m, ). The longitudinal
rapidity distribution of final-state hadrons then
gives the average number of final-state hadrons
observed at any given value of y.

The longitudinal rapidity distributi'on of charged
final-state hadrons in my model for nucleon-nu-
cleon scattering was then calculated as follows.
The rapidity interval (+—,'1', =, Y) in the overall
hadronic c.m. frame was divided into 40 bins for
the computation, and only the final-state hadrons
from inelastic-scattering events were considered.
The longitudinal rapidity distribution of the final-
state hadrons in inelastic-scattering events was
calculated using a modification to Eq. (25) that is
similar in nature to calculation 1 in the preceding
section. It was assumed that a constituent quark
is dressed by zero or one gluon, so the sums over
k and l disappear and Po(1) is taken equal to
[1-Po(0)]. Furthermore, the P, distributions in
the last term are not convoluted. The resulting
equation is

1. =P„'(0)P„'(o)
g

+ 4OO g P ~ (x,. )x, (1 -x, )'~ (x„)x„(1-x,. )'
~B T

N nmax»

P~B' 0 1-P~~' 0 A.,, j~ P, & m„* 1,x, , x,-~,
jp =l n=o

Af nmaxj' 2

+P,'(0)[1-P,'(0)] Q Ago, (j ) P P,[n, mP(l, , ,xx&; )]
jB-1 n= 0

M

+[1—P '(0)][1—P '(0)] Q QA, 'ge, (j )ge, (j )
yB=l gT =1

nmaxl 2

&& P,[n, m~(1, x, t,. ', x, , (, ')]
n=

nmax»

n'= 0

(29)

The longitudinal rapidity distribution of final-state hadrons in inelastic-scattering events receives con-
tributions from each of the three bracketed terms of Eq. (29), since the first term corresponds to elastic
scattering. Each of the terms inthe curlybracketin Eq. (29) corresponds toadifferent possible outcome of an
inelastic-scattering event with different values of the fireball momenta, the leading-hadron momenta, and
the fireball multiplicity for decay into charged hadrons. Taking the first term in the bracket as an exam-
ple, the probability

P.(x„,x„,t»') = 4OO (x„)x„(1-x„)'~ (x,,)x,, (1 -x,,)'P„'(0)[1-P„'(O)]A,~,(j,)
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of the occurrence of a one-fireball event with
specific values of x, , x. , and y . = (&

o is deter-
8 ~T

mined. Then, the value of the fireball momentum
is determined, as are p~, y~, and the fireball
mass mz. Calculating the rapidity distribution
of the charged pions is slightly complicated by
the fact that fireball decays into final states with
n charged-pion pairs receive contributions from
fireballs with total decay multiplicity between
2n and mg/m„ the maximum decay multiplicity
energetically allowed for the fireball. Conse-
quently, Eq. (15) is used to relate the probability
of 2n charged pions resulting from a fireball de-
cay to the fireball-decay probabilities for a total
pion multiplicity of 2i or 2i —1 pions. Thus, the
probability of finding 2n charged pions among the
decay products of a fireball decaying into a total
of 2i pions is given by

final-state pions in each c.m. rapidity bin, as-
suming that all fireball-decay products are pions.

The number density of charged pions per unit
of rapidity is then calculated at the center point
of each bin. In this model, one half of the total
charged-pion number density gives the number
density of positive or negative pions per unit of
rapidity. In Fig. 1, the calculated number densi-
ties of positive or negative pions per unit of
rapidity (the two curves are identical) at a c.m.
energy of 19.42 GeV (laboratory momentum 200
GeV/c) in nucleon-nucleon scattering are shown

as connected by a solid line, drawn by eye through
the calculated data points. Because the c.m.

1.0

yl

0.0

with a similar expression for Pz(2s, 2i -1).
For each value k of the fireball multiplicity P,.

and P» are calculated from Eq. (28) as are the
corresponding overall c.m. energies E~=yz(E»
+PzP»). The longitudinal rapidities corresponding
to the fastest and slowest fireball-decay products
in the overall c.m. frame resulting from decay
multiplicity k are then calculated from

o.e

~ =-'in( '- P'-
[ttp -P~)

Next, the longitudinal momenta corresponding to
the bin boundaries y (i) between y», and y~ are
calculated from

p, (k, i) = (Egyz) tanh[y (i)]/(1 —p tanh[y (t')]] .
Assuming that charged secondaries are distribu-

ted isotropically in the fireball c.m. frame, the
contribution of a 2n charged-pion decay of a fire-
ball with total decay multiplicity k ~ 2n to the
occupation probability of the longitudinal rapidity
distribution bin y (t'+ 1) y(t') lyin—g between y»,
and y» is then given by [taking the first bracketed
term of Eq. (29), which corresponds to a one-
fireball event with the fireball associated with the
target nucleon, as an example]

~(t) =J.(x,.„x„,g~')~,(2, k)

x k[P, (k, j +1)-P, (k, i}]/2y~P» .
The summation of all such contributions from
each individual term in the brackets in Eq. (29}
then gives the occupation probability for charged

0.'I

2.0

FIG. 1. The solid curve shows the calculated longi-
tudinal-rapidity distribution of final-state x or m mes-
ons (the two curves are identical) in nucleon-nucleon
scattering at a c.m. energy of 19.42 GeV (incident lab-
oratory proton momentum of 200 GeV/c). The pluses
denote the experimental points for the x'&rapidity dis-
tribution-and the solid triangles denote the experimental
points for the x rapidity distribution as taken from Ref.
25.
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rapidity distribution is symmetric around y = 0
in the nucleon-nucleon c.m. frame, only the
forward half of the charged-pion rapidity distribu-
tion is shown in Fig. 1. In addition to the cal-
culated curve, Fig. 1 shows the experimental
data points for the m plus rapidity distribution
(denoted by pluses} and for the m minus rapidity
distribution (denoted by solid triangles) as taken
from Ref. 25. The agreement with experimental
data is quite reasonable.

In preparing Fig. 1, three-point Gaussian inte-
gration (N =I=3) was used for numerical inte-
gration over the internal-momentum distributions
in order to speed up the calculation. Neverthe-
less, a calculation of the rapidity distributions
requires about a minute of machine time on a
CDC 6600, so, in the light of my limited resour-
ces, I have not calculated the rapidity distribu-
tions at all energies.

REMARKS ON HADRONIZATION IN
LARGE- TRANSVERSE-MOMENTUM JETS

The model described in this paper does not in-
clude a detailed description of the force between
colliding quarks and therefore cannot shed light
on the angular distribution of scattered quarks
and secondary hadrons (or the total quark and
hadron cross sections). However, the fireball-
decay model of hadronization predicts that a hard-
scattered quark will develop into a jet of hadrons
with an average momentum transverse to the jet
axis of 360 MeV/c. Because of the seagull effect
discussed in Ref. 1, the average transverse mo-
mentum measured in large-transverse-momentum
jets will be larger than this if soft particles are
excluded. Furthermore, the following discussion
of fireball generation in large-transverse-mo-
mentum scattering suggests that the charged
multiplicity of lar ge-transverse-momentum jets
should increase as the square root of the total
jet energy E~ in the rest frame of the two large-
transverse-momentum jets resulting from a hard-
scattering event.

A. large-transverse-momentum jet is assumed
to evolve from a quark in one of the colliding
hadrons which i.s scattered through a large angle
by a collision with a quark in the other incident
hadron. The momentum of this parent quark in
the rest frame of the two large-transverse-mo-
mentum jets generated by a hard-scattering event
1s

change of momentum which arises from the action
of the color force between the hard-scattered
quark and the spectator quarks which accompanied
it in the colliding hadron from the moment of
collision until the time when an additional QQ
pair is formed out of the potential energy of inter-
action between the two systems. ~ Then, the total
momentum of the QQ system which will evolve into
the large-transverse-momentum jet is p& =p& -X
and the invariant mass m& of the jet system can be
found from

(P,. —X)'+m~~'=P, '+me'.

Therefore, rnid*'—-2'& —g'+~' and since P,. =E&
we have m~ ~E,.' '. Then, if it is assumed that the
average number of hadrons produced in a jet is
(n) =m ~~/(p„'+ m., ')'~', the average number of
charged hadrons produced in a jet is approxi-
mately (n,) = —3m)/(Pz'+m, ')' ' which is propor-
tional to E.'/ .j

Although the range of jet energies presently
accessible to experiment is not adequate to test
this prediction, I calculated the fireball decay-
multiplicity distributions for large-transverse-
momentum jets with jet energy E,. equal to 6.1,
8.0, and 10.05 GeV for comparison with the ex-
perimental results from Ref. 26. The results,
shown in Table VI, are for X = 0.65 GeV/c, which
is not too different from the corresponding value
of 0.54 GeV/c appropriate to jets in e e annihila-
tion. ' The calculation assumes that the number n
of additional hadrons produced by the initial ex-
cited QQ pair (fireball} which generates the large-
transverse-momentum jet follows a Poisson dis-
tribution truncated at n ,„=(mz/m, o) —1 wi-th

in analogy to Eqs. (5) and (6). An equation simi-
lar to Eq. (15) was then used to obtain the charged-
hadron multiplicity distribution of the jet.

CONCLUSION

This paper shows that a simple quark model,
using input values which are readily obtained from
experiment, can provide a reasonable description

TABLE VI. Comparisons of calculated values of
charged multiplicity of large-transverse-momentum
jets with g= 0.65 GeV/c and average transverse mo-
mentum of jet hadrons with respect to the jet direction
= 0.360 GeV/t..with experimental values. Experimental
data are taken from Fig. 23 of Ref. 26.

Jet energy (GeV) 6.1 8.0 10.05

immediately after the hard-scattering event. m
is the effective mass of the quark, which is taken
as one third the nucleon mass. Let X denote the

Experimental value of (n~) 4.10
Calculated value of (n, ) 4.15

4.50
4.75

5.50
5.33
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of many features of nucleon-nucleon scattering
events.

(1) The percentage of elastic scattering is con-
stant at high energies and rises at low energies.

(2) The longitudinal rapidity distribution is rea-
sonable.

(3) The model predicts a constant value of the
average component of the secondary-hadron mo-
mentum transverse to the "jet axis, "i.e., the di-
rection of momentum of the secondary-hadron
fireball. If the angular distribution of scattering
products were considered in the model, the aver-
age momentum of secondaries transverse to the
beam direction should rise slowly with energy
because of the admixture of large-transverse-
momentum hard-scattering events.

(4) The behavior of the average charged-hadron
multiplicity in nucleon-nucleon scattering is in
good agreement with experiment, and the higher
moments of the charged-hadron multiplicity dis-
tribution generally show the same qualitative be-
havior as is observed experimentally.

One shortcoming of the model in its present
form is that the charged-hadron multiplicity dis-
tributions in inelastic scattering are too narrow.
This is evidenced by the low numerical values of
the higher moments of the multiplicity distribu-
tion as compared to experiment. The following
effects, which must be included in a more realis-
tic model, will further spread out the distribution
of the values of nz~ and thus widen the charged-
hadron multiplicity distributions: (a) using dif-
ferent momentum distributions fbr the u and d
quarks, (b) .considering nonmassless exchange
between the scattering quarks, and (c) removing
the restriction to one-dimensional scattering,
which will allow kinematic variations of m~.
However, the most important factor leading to a
widening of the charged-hadron multiplicity dis-
tribution is likely to be a realistic treatment of
the variation of the longitudinal momentum trans-
fer h, as a function of the impact parameter of the
colliding constituent quarks. An adequate impact-
parameter representation of the constituent-quark
scattering could also lead to a calculation of the
quark-quark collision cross section, and there-
fore, through the additivity assumption, a cal-

culation of the nucleon-nucleon total cross sec-
tion. To indicate the potential magnitude of this
effect, calculation 1 was repeated at a c.m.
energy of 27.6 GeV with three-point numerical
integrations over the internal-momentum distribu-
tions (&=M =3). This repeat calculation arbi-
trarily assumed that

b, =0.9 GeV/c with probability &,

6=1.8 GeV/c with probability —,',
h=3.6 GeV/c with probability', -,

so that the average value of 4 remained at 1.8
GeV/c. %he results, as shown in Table VII, re-
veal that the multiplicity distributions have be-
come wider and the resulting values of the cal-
culated parameters are in reasonable agreement
with experiment, except for the correlation func-
tion f, which is roughly 25%%uo low.

In its present form, calculations with this model
can be performed relatively cheaply on a compu-
ter. I would be happy to correspond with or to
assist anyone who might be interested in de-
veloping this model further.

Simple extensions of the model, which would

slightly increase the computational complexity,
include: (i) using different momentum-distribu-
tion functions for the u and d quarks to get bet-
ter agreement with the results of lepton-nucleon
deep-inelastic-scattering data, (ii) taking account
of nonmassless exchanges between colliding con-
stituent quarks, and (iii) taking account of color and
flavor degrees of freedom to include the produc-
tion of final-state hadrons other than nucleons and
plons.

A more elaborate extension, involving some
change in the conceptual framework of the model,
would require the development of a convenient
mathematical representation for the force be-
tween two colliding quarks (perhaps inspired by
quantum chromodynamics) and some assumptions
regarding the breakup of a colliding hadron when
one of its constituent quarks undergoes a hard
scattering. Such an extension could potentially
lead to a calculation of the quark-quark and
hadron-hadron cross sections, the angular dis-
tribution of final-state hadrons and the charac-

TABLE VII. Hesults of a calculation employing a distribution of values for the longitudinal
momentum transfer as compared tg experimental proton-proton inelastic-scattering data
taken at a c. m. energy of 27.6 GeV. The experimental data are taken from the same source
as in Table I.

Parameter (n) D2 D3 D4 f2 (n )/(n) (n )/(n) (n )/(n)

Experimental value 8.83 4.59 4.09 6.20
Calculated value 8.74 4.29 4.11 6.01

12.2
9.65

1.25
1.24

1.84
1.83

3.05
3.08
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teristics of hadron production in large-transverse-
momentum jets.
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