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Structure functions of the nucleon are analyzed in the valon model in which a nucleon is assumed to be a bound
state of three valence quark clusters (valons). At high Q7 the structure of the valons is described by leading-order
results in the perturbative quantum chromodynamics. From the experimental data on deep-inelastic scattering off
protons and neutrons, the flavor-dependent valon distributions in the nucleon are determined. Predictions for the
parton distributions are then made for high Q? without guesses concerning the quark and gluon distributions at low
Q7. The sea-quark and gluon distributions are found to have a sharp peak at very small x. Convenient
parametrization is provided which interpolates between different numbers of flavors.

I. INTRODUCTION

Any determination of parton distributions in a
nucleon in the framework of quantum chromody-
namics (QCD) always involves some model-depen-
dent procedure. For example, Buras and Gae-
mers! considered only the »=2 and 3 moments to
obtain parametrizations of sea-quark and gluon
distributions in the region x<0.3. Owens and
Reya? assumed some simple and smooth functions
for the sea-quark and gluon distributions for all x
at some low @2, and obtained rather different re-
sults from Ref. 1 at high Q2. Our procedure in this
paper will likewise depend on a model. Instead of
relying on mathematical simplicity as a guide, we
shall emphasize the physical picture for nucleon
structure. That is, we require that our model for
the nucleon be compatible with the description of
the bound-state problem in terms of three consti-
tuent quarks. In order to emphasize that in the
scattering problem these constituents should be
regarded as valence quark clusters rather than
pointlike objects, they have been referred to as
valons.%* -

Recent development in the subject of parton dis-
tributions has been in the direction of including
contributions from nonleading terms in asymptot-
ic freedom or target-mass effects.’® It extends
the validity of the theory to lower values of Q2
and therefore facilitates more reasonable compar-
isons with data at low Q2. Our effort is aimed in a
different direction. We use data only at high @2
where the leading-order approximation is good.
Our improvement is in the physical content of the
model by which parton distributions are extracted
from structure functions. An equally important
objective in this paper is to determine the nucleon
wave function in terms of the valons. The mo-
mentum distribution of the valons in a nucleon
summarizes the bound-state complications due to
confinement so that once known, albeit phenome-
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nologically, certain difficult aspects in the treat-
ment of hadronic (hard or soft) processes, such as
hadronization, can be alleviated. A rough knowl-
edge of the flavor-independent valon distribution
has already been applied to the determination of
quark and gluon decay functions and low-p, in-
clusive cross sections with great success.*? In
this paper we do a more thorough analysis of the
deep-inelastic scattering data and determine the
flavor-dependent valon distributions.

The concept of using constituent quarks as an
intermediate step between hadron and current
quarks is not new.!® The procedure followed in
this paper shares a common basis with the method
used by Gliick and Reya,'® except that we empha-
size more the physical implications. Moreover,
due to the inadequacy of data their analysis was
performed for a value of Q2 (3 GeV?) at which the
leading-order approximation is invalid. In addi-
tion, the value of strong-interaction scale para-
meter A was guessed. In this paper we shall use
both muon and neutrino scattering data for @2
> 20 GeV? as phenomenological input. We shall
show that the data are compatible not only with
QCD but also with the valon model. After deter-
mining the valon distribution, we calculate unique-
ly the quark and gluon distributions. The results
are presented in terms of simple parametric
forms which are useful for theoretical and exper-
imental applications to many reactions involving
the nucleon.

II. NUCLEON STRUCTURE

Recent investigations in the subject of nucleon
structure have mainly been in two opposite direc-
tions. On the one hand, one studies the bound
state in terms of three quarks, such as in a bag
model, and obtains various static properties of the
nucleon and its spectroscopic partners. On the
other hand, one probes the nucleon with high-ener-
gy leptons in the hope of learning something
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about the three constituent quarks but finds struc-
ture functions that can only be understood in
terms of an infinite number of partons (i.e.,
quarks, antiquarks, and gluons). The two views
can be reconciled if we recognize that the consti-
tuents in the quark model for the static nucleon
are not the same objects as the quarks in the par-
ton model. Since the scales of spatial resolution
are different for the two problems, we may re-
gard the former as clusters of the latter without
contradicting either view. The clusters have
quantum numbers of the valence quarks, and have
been called valons, for short.’*

In static problems there is little difference be-
tween the usual constituent quarks and the valons,
since the pointlike nature of the constituent quarks
is not a crucial aspect of the description, and has
been assumed mainly for simplicity. But in scat-
tering problems it is important to recognize that
the valons are different from point quarks be-
cause the valons, being clusters of partons, can-
not easily undergo scattering as a whole. Stated
differently, the virtual emission and absorption
of gluons in a valon become bremsstrahlung and
pair creation processes under scattering, since
energy is available to make virtual processes
real.

The fact that the bound-state problem of the nu-
cleon can be well described by three constituent
quarks implies that the spatial extensions of the
valons do not overlap appreciably. A physical
picture of the nucleon in terms of three valons is
then quite analogous to the usual picture of a deu-
teron in terms of two nucleons. At low @2 the
resolution is low and the description of the deu-
teron as a bound state of two nucleons is adequate.
The medium-to-long-range part of the deuteron
wave function summarizes the bound-state pro-
blem. In that description it is not necessary to in-
troduce the pion as a third constituent, even though
it is the exchange of pions that effects the binding.
The short-range part of the deuteron wave func-
tion is complicated and is intimately related to
the nucleon structure. Indeed, at high Q2 we are
able to resolve the constituents of the nucleons,
the momentum distribution of which is minimally
affected by the spectator nucleon in the deuteron.
The deuteron wave function plays only the role of
smearing the nucleon structure functions to ac-
count for the Fermi motion of the nucleons in the
deuteron. These familiar statements about the
deuteron are made at length here for the purpose
of providing an insight into our description about
the nucleon in terms of the valons. Exact analogy
is attained by substituting nucleon for deuteron,
and valons for nucleons.

Let 3¥(x,Q?) be a structure function (e.g., F, or

xF,) of the nucleon, and F%(z,Q?) be the corres-
ponding function of a valon v. According to the
above description of our model of the nucleon, the
two functions are related by a smearing of the
valon momentum in the nucleon, i.e.,

FVw,Q%)=Y fldy G,/ n(9)F°(x/y,Q%, (2.1)

where G, y(y) is the probability for the valon v to
have momentum fraction y in the nucleon and the
summation is over the three valons. In analogy to
the deuteron example we ignore the gluons that
bind the valons. We shall also assume that the
three valons carry all the momentum of the nu-
cleon. The implication is that the exchange of
very soft gluons is responsible for the binding, as
is reasonable. Involved in (2.1) is also the as-
sumption that in deep-inelastic scattering at high
Q? the valons are independently probed, since the
shortness of interaction time makes it reasonable
to ignore the response of the spectator valons.
Thus through (2.1) we have broken up the hadron
structure problem into two parts. One part rep-
resented by G,,,(y) describes the wave function
of the nucleon in the valon representation. It
contains all the hadronic complication due to con-
finement. It is independent of @2 or the probe.
The other part represented by F(z,Q2) describes
the virtual QCD processes of gluon emission and
quark-pair creation. It refers to an individual
valon independent of the other valons in the nu-
cleon and consequently also independent of the
confinement problem. It depends on @2 and the
nature of the probe.

At sufficiently high @2, F%(z,Q2) can be des-
cribed accurately by the leading-order result in
QCD. Its moments can be expressed completely
in terms of the evolution parameter

InQ2/A2

s=1n—————1nQ02/A2 ,

(2.2)
where A and @, are scale parameters to be deter-
mined by experiments. We assume that A and @,
are independent of the order » of the moments.
From the theoretical standpoint this assumption
is strictly incorrect, if nonleading contributions
are to be represented by an effective A.'* How~
ever, on the one hand there are other contribu-
tions (e.g., target-mass effects) which add uncer-
tainties to the clean theoretical predictions of per-
turbative QCD, while on the other hand experi-
mental data are not of such precision as to invali-
data an n-independent A parametrization. Since
the key inputs in this work are high-@? data and
leading-order QCD, both of which are consistent
with A being independent of », we shall do pheno-
menolgoy with complete neglect of the high-order



effects.
Before the precise expressions for F%(z,Q?2) are
~exhibited, we note first that it has the property
that it becomes 6(z —1) as @2 is extrapolated to
Q% (beyond the region of validity). This mathe-
matical boundary condition signifies that the in-
ternal structure of a valon cannot be resolved at
@, in the (unrealistic) leading-order approxima-
tion. Accordingly, when this property is applied
to (2.1), the structure function of the nucleon be-
comes directly related to xG,, y(x) at @,. That is,
Q, is the effective value (defined by leading-order
extrapolation) at which the nucleon may be re-
garded as consisting only of three valons. If a
more accurate approximation scheme is used for
extrapolation, one would probably arrive at a‘dif-
ferent numerical value for @, at which the valon
representation of the nucleon wave function is de-
fined. The valon distribution G,,(x) itself should
not depend upon the extrapolation scheme if the
model is a reasonable approximation of the physi-
cal reality, since the essence of the model is to
regard the bound-state problem of the hadron as
being separable from the internal-structure pro-
blem of the constituents. Indeed, G,,(x) should
ultimately be determined theoretically by solving
the bound-state problem independent of F°(z,Q32).
In this paper we determine it phenomenologically
using deep-inelastic scattering data at high Q2.
Having stated the physical basis of our approach
we proceed to the quantitative description. Let us
first consider the structure function F,(x,Q%) for
u scattering. Let the indices U and D denote u~
and d-type valons. For the values of @2 at which
data will be analyzed, we assume that only three
flavors (f=3) are relevant. Thus we have for the
U-valon structure function F4Y(z,Q?):

F3U=%32 (G, ,y+Ggu)+ 42 (Gayu+Giu+Gyu+Gyv),
(2.3)

where in obvious notation the right-hand side in-
volves the probability functions for quarks to have
momentum fraction z in the U valon at Q2. A simi-
lar expression holds also for the D valon. Denot-
ing G,,y by G, where the subscript f stands for
favored (quark evolution) and all the other G func-
tions in (2.3) by G, (uf standing for unfavored
evolution whose universality is due to the flavor
independence of the intermediary gluons), we

have

FQ‘U(Z,QZ)?%Z [G,(Z,Q2)+ ZG“,(z,Qz)] , (2.4a)
F2(z,9%) = $2[G, (2, Q%)+ 11C,, (2,@3)].  (2.4D)

The flavor-singlet (S) and -nonsinglet (NS) com-
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ponents are defined by

Gs=it (Gailv+G&'¢/v)=Gt+ (2f_1)Gu£ ’
=1

(2.5a)
GNS=§ (G”/o—Gq-l_/v)=G,—Gu, ’ (2.5b)
so that by inverting we have
G,=%[Gs+ (2f =1)GM], (2.6a)
G .= 1 S NS
“‘_Ef(G -G"%), (2.6b)
Applying these to (2.4) for =3, we obtain
Fi¥(z,Q%)=%2(G%(2,@%)+G™(,Q%)], (2.7a)

F4P(z,Q%)=$2[2G°(2,Q%) -G™(z,@%)]. (2.7b)

For neutrino interactions via charged current
(but assuming 6, = 0) we have

F;U(z yQ2)= 2Z(Gd/l}'+ GB/U)= 4ZGM(Z ’Qz) 9(2v83~)
FU(z,Q%)=22(G,,y+Gj,v)
=22[G,(2,Q%)+ G4 (2,Q)], (2.8Db)

while it is the other way around for vD and VD
scattering. Using (2.6) again yields

FY¥(z,Q%)=F%P(z,Q?)

=22[G%(2,9?) -G™(2,Q%)],  (2.9a)
F(2,Q%)=F4"(z,Q%)
=%2[G%(z,Q%)+ 26™(z,Q?)].  (2.9Db)
Similarly, one can obtain®
2F3Y (2,Q%)=2F}"(2,Q%)=0, (2.10a)

2F% (z,Q%)=2FP(z,Q%)=22G™*(z,Q?%) . (2.10Db)

Through (2.7), (2.9), and (2.10) all the structure
functions of the valons have been expressed in
terms of G° and GNS,

We now go to the moments of these distribution
functions,*? defining

Mz's(n,Q2)=f1dxx"'2{fz}(x,Q"’), (2.11)
0 F3
1
Mo0n,@0)= [ @376, (5,09, a=v/N,S,NS.
0
It then follows from (2.1) that (2.12)
M¥(n,Q2)=2 M,y () M*(n,Q?) . (2.13)

In the following we shall always refer the valon
distributions to those in the proton by charge
symmetry, i.e.,

Un)=My,,(n)=Mp,,(n),
Dn)=Mp,,(n)=My ().

(2.14a)
(2.14b)
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The number and momentum sum rules imply
U(1)=D(1)=1, (2.15)
2U(2)+D(2)=1. (2.16)

Now, for u scattering we have from (2.7) and
(2.13)

M (n,Q%) = 3[2U (n)+ D(n)|M*(n,Q?)

+ [4U (n) = D(n)| M3 (n,Q?) , (2.17a)
M¥"(n,Q%) = [2U (n)+ D(n)]1M® (n,Q?)

- 2[U(n) =D(n)] M™®(n,Q?). (2.17b)

For v and ¥ interactions we have, suppressing the
n and @2 dependerices,

MY =MP"=2(2U + D)M® - $(U =D)M™ , (2.18a)
M =My"=2(2U + D)M® + 3(4U =D)M™S | (2.18Db)
(2.19a)
(2.19b)

M¥P=M7"=2DM™S |
MP=My"=4UMNS |

so for an average of v and v interactions on an
isoscalar target we obtain

MY = £ (P + M3+ M +ME")
=3(2U +D)(2M® +M™Ns) |
Mg =5 (M +ME" + MY +ME")
=(2U +D)M™S (2.21)

Equations (2.17), (2.20), and (2.21) form the basis
of our phenomenological analysis of the nucleon
structure functions. Note that the application of
(2.16) to (2.20) and (2.21) yields, for n=2,

MM (2,Q%) =3[2M5(2,Q%) +MM(2,Q)],  (2.22)
M,y(2,Q%) =MM5(2,Q%). (2.23)

Thus the n =2 case offers direct relationships
between the measurable quantities MS”, M, and the
theoretical functions M® and M™ without any de-
pendence on the valon distributions. Equation
(2.23) has been exploited in Ref. 3 for the deter-
mination of Q,.

For the moments of singlet and nonsinglet valon
structure functions we shall use, as discussed
earlier, the leading-order solutions of the re-
normalization-group equations in QCD. They can
be expressed entirely in terms of the evolution
parameter s. They are'

(2.20)

MM (n, Q%) =exp(—dyss), (2.24)
M3(n,Q%) =3(1 +p) exp(-d,s)
+3(1 —p)exp(-d.s), (2.25)

where Q% and s are related by (2.2), and the
anomalous dimensions d’s and other associated

parameters are
p= (dns 'dg,)/A )
B =d, —d_=[(dyg —dg,)? +4d,qdo, I "

-1 2 1
dNS_?ﬂTb [1 —n(n+1)+4g;j]’

=—224n4n
€Q 31p n(n?® -1)°

_=f 2+n+i?

b

dQ‘_m nn+1)(n+2)’

d =.:_3. [il 1 + 1

& qp 712 nn-1) (n+1)(n+2)
£ l]
18T &y )

ds=3dys +d”iA] s

b=(33-2f)/12r.

III. VALON DISTRIBUTIONS

The basic formalism of our model having been
expressed for specific processes in (2.17), (2.20),
and (2.21), we are now in a position to extract
the valon distributions, or, more precisely, their
moments U(r) and D(n). We use (2.24) and (2.25)
for the nonsinglet structure functions of the val-
ons, and we use experimental data at high Q2 for
the nucleon structure functions M4#'", M;"’, and
M;. Evidently, the system of equations is highly
constrained. In fact, we need only M5*'" at one
value of Q2 as phenomenological input; the neu-
trino data will actually be used to chek the pre-
dictions of our model.

To facilitate the phenomenological analysis, we
assume a simple form for the exclusive valon dis~
tribution

Guup;s(¥1s V25 ¥3) = Ay 1v2)*y3°0(ys +y. +y3- 1),
(3.1)

where ¢ and b are two free parameters, y; and
y, refer to the two U valons, and y; refers to the
D valon. Spin and color degrees of freedom have
all been averaged over. The inclusive valon dis-
tributions can be obtained by double integration
over the unspecified variables:

Gyypy) :ﬁY2dY3GUW/p@;y2,y3)
=B(a+1,a+tb+2)"y(1-y)*"", (3.2)
Gv/p(v)=_[dV1: dy:Guup; s(Y1s ¥, )

=B(b+1,2¢+2) 7y (1-y)*. (3.3)

The normalization parameter a has been fixed
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by (2.15), i.e.,

1 1
fo Gu,p(y)dy = f0 Go,p(dy=1 (3.4)

and B(B, 7) is the Euler beta function. The mo-
mentum sum rule (2.16) is automatically satis-
fied as can be verified since it is built in via the
6 function in (3.1).

'The moments of these inclusive valon distrib-
utions, according to (2.12) and (2.14), are there-
fore

Bla+n,a+b+2)
Blg+t1,a+b+2)’
B(b+n,2a+2) |
B(b+1,2a+2)

For the data that we shall analyze, these two-
parameter formulas will prove to be quite ade-
quate.

For neutrino scattering off isoscaler targets,
(2.20) and (2.21) reveal that the combination 2U
+ D is involved in both MY’ and M;, so data on
those structure functions alone cannot be used to
resolve the U and D moments. ‘Thus either M§*?
or M4" or both must also be used. Their mo-
ments are given by Duke and Roberts!* whose an-
alysis is based on the muon scattering data of the
Chicago-Harvard-Illinois-Oxford (CHIO) collabor-
ation'® and the electron scattering data from
SLAC.'® The moments for the highest value of
Q% (22.5 GeV?) are determined mainly by the CHIO
muon data. They are shown in Fig. 1. We have
determined U(n) and D(x) by fitting M§?(x, Q°) and
M§"(n, Q%) at Q% =22.5 GeV* using (2.17) in con-
junction with (2.24), (2.25), and (3.5). The fol-.
lowing values of the parameters are obtained:

a=0.65, b=0.35, (3.6)

U(n) = (3.5a)

D(n) = (3.5b)

@0=0.81 GeV, A=0.63 GeV. (3.7)

The results are shown by the solid lines in Fig. 1.
Despite its appearance in (3.6) we have made no
attempt to favor an integral value for a+b. To
fit nine moments for both proton and neutron data
places rather severe constraints on the para-
meters. To be able to fit the data so well is in
itself an indication of the physical relevance of
the model.

Using the same parameters in (3.6) and (3.7)
we have calculated the same quantities at Q2
=12.5 GeV%. The result together with data are
also shown in Fig. 1. Although the agreement
is not bad, there are some discrepancies which
we have anticipated, since the leading-order ap-
proximation is not expected to be good at lower
values of QZ.

T T T T T T T T Tl‘l
Moments of ng"‘
R i * Proton | :
10" o Neutron 10!
o~ 10"k Q% 1256GevZ |52
e
= L
e
1 L
a
3102 103
| a2 2 >
(3L Q%225 Gev 5
o4l 0.

FIG. 1. Moments of F§? and F§¥". Data are from Ref.
14. Valon distributions are adjusted to give best fit to
the @2=22.5 GeV? data, as shown by the solid lines. The
solid lines for @*=12.5 GeV? are calculated results
using the same distributions.

Thus we go in the other direction and consider
neutrino scattering at higheer. First, we note
that the parameters obtained in (3.6) and (3.7)
pertain to two separate parts of the problem. The
parameters a and b describe the valon distribu-
tions in a nucleon, while @, and A characterize
the valon structure in leading-order perturbative
QCD. So far we have found®* that the values of
Qo and A vary somewhat according to the exper-
imental dataused. It is well known that the data of
Aachen-Bonn-CERN-London-Oxford-Saclay
(ABCLOS)'” and CERN-Dotrmund-Heidelberg-
Saclay (CDHS)'® differ not only in the inferred val-
ues of A, but also in their normalizations. Thus
in fitting the neutrino data we allow the values of
@ and A to deviate from the values given in (3.7)
in order to account for a possible mismatch in
normalizations. We assume that g and b do not
vary from experiment to experiment because they
characterize the relationship between moments
(hence, insensitive to absolute normalization of
the data) while @, and A describe the evolution in
@* and are more sensitive to the experimental
normalization. For the neutrino data we choose
the ones provided by the CDHS group,19 which
have far smaller errors quoted than in Ref. 17.
The data for M3 are shown in Fig. 2 for four
different values of @%. We used (2.21), (2.24),
(3.5), and (3.6) to fit the data by adjusting @, and
A, and found perfect fit for all @ values (es-
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T T T T
Moments of xF(x)

CDHS data 1
102

Q2=10 GeV?]|

—10°
%2l Gevzl,

P
Q2:45 GeV? |

Q?:75 GeV? -
Ji0®

2 3 4 5 6 7
n

FIG. 2. Moments of xF3(x). Data are from Ref. 18.
The solid lines are calculated results.

pecially high ones) for

Qy=0.79 GeV, A=0.66 GeV. (3.8)
These values do not differ very much from those
in (3.7). Note that the same values of ¢ and b,
as specified in (3.6), have been used; we there-
fore regard them as having been reliably deter-
mined. In the following calculations we shall
adopt the average values of @, and A from (3.7)
and (3.8), i.e.,

Qy=0.8 GeV, A=0.65 GeV. (3.9)

It is fitting to remark here that the value of A
is determined here phenomenologically and is
independent of #. The analysis of Duke and Rob-
erts' using lower values of @’ yields large er-
rors bars for the values of A as a function of #,
so much so that they are consistent with both a
constant value at A=0.65 GeV and an n-depen-
dent A, suggested by first-nonleading-order cal-
culations. ! In fact, a constant value for A fits
the data better. Theoretically, the value of A
is meaningless unless the nonleading terms are
specified whereupon the n dependence emerges.
Even so the normalization of A, must still be
determined by experiment. In our model we have
ignored the possible #» dependence of both A and
Qo; if A is allowed to depend on n, then @ is
likely to depend on n also, but in a way that is
unknown at this stage. We have defined @, in
the context of leading-order evolution only for

which neither A nor @, have » dependence and both

are to be determined phenomenologically. As long
as the values of A and @;, as given in (3.9), give
good fits to the data at high Q2 in the framework

of the valon model, they are useful for the deter-
mination of the valon distribution at @, and the
quark and gluon distributions at any high @.

Substituting (3.6) into (3.2) and (3.3) we have the
result

Gy () =1.98y"55(1 - y)?, (3.10a)
Gp, () =6.01y"% (1~ y)*? . (3.10D)

A plot of these functions is shown in Fig. 3(a).

If the valons were loosely bound so that their
kinetic energies in the nucleon are negligible,
then their momentum distributions would be close
to 8(y—3). The fact that the functions in (3.10)
are significantly broader than a 6 function at y
=1 signifies that the valons are not loosely bound.
They cannot be too tightly bound either, for,
otherwise, the impulse approximation implied

in (2.1) would be invalid and the model cannot be
expected to work as well as it does. The model
basically involves only two parameters (e and b)
besides @) and A and yields good fits to all deep-
inelastic scattering data at high @°.

It is possible to infer from (3.10) an interesting
implication about the matter- and charge-density
distributions. These two distributions in the
coordinate space have been assumed to be the
same in the droplet model of Chou and Yang. 2
The statement to be made here is in the y var-
iable, i.e., the longitudinal-momentum space
which is related to.the coordinate space by a
Fourier transform and a boost to infinite-mo-
mentum frame. First, it should be recognized
that the matter and charge densities of the valons
ought to be independent of the valon flavors,

30 —

—

P (y)- Pety)
2.0
f\ 015 .

1.0 ' y

(b)

I

o]

FIG. 3. (a) U and D valon distributions in the proton.
(b) Difference between matter-density and charge-density

distributions.



since the valon structure is due to QCD virtual
processes which are flavor independent. Hence,
the charge-density distribution in a proton is

pq(}’)=%Gy/',,(y)- %Gp/p(S’), (3.11)

whereas for the matter-density distribution we
presume that it is proportional to the total valon
distribution, i.e.,

Pu(¥) =3 [2Gy, (3 +Gp,,()]. (3.12)

Both pg(y) and p,(¥) are normalized to one upon
integration over y. Evidently, their difference
is

Ply) = po(¥) =%[Gp,,(y) = Gy (9], (3.13)

which is shown in Fig. 3 (b). Whether this is
small enough to be negligible depends upon the
model in which this difference enters into the
consideration and upon the accuracy demanded.

IV. PARTON DISTRIBUTIONS

Having obtained the valon distributions, the de-
termination of the parton distributions is straight-
forward. In the following we shall let the num-
ber of flavors fincrease, as Q2 is increased.
Recall first that the muon data at @*=22.5 GeV?
have been used as phenomenological input. For
such data we have assumed f=3 in the deter-
mination of the valon distributions. Starting from
the valon distributions we now calculate the par-
ton distributions for both f=3 and 4 at higher Qz.
Of course, how the transition from 3 to 4 takes
place, as Qz'is increased, is hard to ascertain.
Threshold effects due to charm quarks cannot be
unambiguously introduced. We shall provide a
smooth interpolation formula for every quantity
that depends on f and Qz.

The distributions that we shall calculate (all
referring to the proton) are for the valence u-
quark xu,(x), valence d quark xd,(x), sea quarks
Xt o ) = xu(x) = xdg oo %) = xd(%) = x5(x) = x5(x) - - -,
generically denoted by xg(x), and gluons xG(x).
Their moments are denoted, respectively, by
M, (n, ), My(n,s), M,(n,s), and M/n,s), where
s is the evolution parameter. Following the
procedure in Sec. II, we obtain

Mu,v,(n,s)=20(n)MNS(n,s) , (4.1)
M, (n,s) =D(n)M™(n,s), (4.2)
Msea(n’ s)= (2f)-l [2U (n) +D(”)]

x [MS (n,s) =M (n,s)], 4.3)
M (n,s)=[2U(n) +D(n)]M,q(n,s) , (4.4)

where M., is the quark-to-gluon evolution func-
tion given by'®
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M, o(n,s)= A"d‘Q [exp(-d.s) —exp(~ds)]. (4.5)

The calculation of these moments is simple. We
have used (3.5) and (3.6) for the valon moments
and f =3 and 4 in (2.24), (2.25), and (4.5) for a
number of values of s between 2.0 and 2.8. Instead
of exhibiting the moment distributions, we pre-
sent the results in parametric form. That is, for
every s we fit the moments by a sum of beta func-
tions that are the moments of the following forms
for the parton distributions:

xq,(x) =a(l —x)°x°

where ¢,(x) can be either u,(x) or d,(x), and

.xq(x)}z iai(l — %), (4.7)
xG(x)) *1

Good fits to within 2% of the moments in (4.1)-
(4.4) have been achieved with the parameters
shown as dots in Figs. 4-7. Almost all the pa-
rameters depend on s linearly; the exceptions

are b, for xg(x) and e, and b, for xG(x). Those
that are linear are further parametrized in the
following notation:

a(s) =a(0) +a’s (4.8)

with similar expressions for b(s), c(s), a;(s),
and b,(s). The tabulation of the coefficients a(0),
a’, etc. in Table I then completely specifies these
parameters. For the nonlinear ones the fits are

6.76 —6.56e* (f=3),
6.98 ~6.56e™° (f=4),

sea: b,(s) ={ (4.9)

FIG. 4. Parameters a, b, and c in Eq. (4.6) for  and
d valence-quark distributions. The dots represent val-
ues obtained directly from moment inversion. The bro-
ken and dashed lines are straight-line fits of the dots for
three and four flavors, respectively. The continuous
lines represent interpolations between the two cases of
flavors according to the prescription described in the
text.
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FIG. 5. Parameters a; in Eq. (4.7) for the sea-quark
distribution xg(x). Descriptions of the symbols in the
figures are as in Fig. 4.

a.(s) _{[1 +b3(s)](—0.117 +0.164s) (f=3),
o(s)=
[1 +b3(s)](—0.064 +0.146s) (f=4),
27 +4.2¢5 (F=3), (4.10)

20+6.2¢° (f=4). (4.11)

glue:
by(s) ={

These fits are represented by the broken (f =3)
and dashed (f =4) lines in Figs. 4-17.

At low @* we expect f =3 to be relevant, but at
high @° f should be 4. How the transition takes
place is complicated and unknown. It seems to
us that a smooth interpolation between the two
in the description of the parton distribution func-
tions would be useful. There is, of course, no
unique way of doing this. We choose a formula
in which the incremental change of the parameters
is proportional to the change in s. We pin the
interpolating parameters to those for f=3 at s

1) I L e L
20 22 24 26 28 30

FIG. 6. Parameters a; in Eq. (4.7) for the gluon dis-
tribution xG(x). Descriptions of the symbols in the fig-
ures are as in Fig. 4, except that for a3 the fits are ex-
ponential.

FIG. 7. Parameters b; in Eq. (4.7) for both sea-quark
and gluon distributions. Descriptions of the symbols in
the figures are as in Fig. 4, except that b, for xg(x) and
b3 for xG(x) are nonlinear.

=2.0 and those for f =4 at s =2.8. Note that the
values of Q® corresponding to these values of s
are, according to (2.2) and (3.9),

Q%*(s =2.0)=9.1 GeV?,
Q%(s =2.8) =390 GeV?2.

(4.12a)
(4.12b)

There is no significance to the precise values
of these choices; the reader with alternative
preferences can easily make his substitutions.
Using s =2 and 2.8 for definiteness, we have for
the interpolation formula
s =2

p($)=by(s) +55[4(8) =p5()], (4.13)
where p,(s) stands for any one of the parameters
a(s), b(s), ete., for flavor f. They are plotted as
solid lines in Figs. 4-7. With these interpolating
parameters we now have a smooth prediction of
all parton distribution functions in accordance
to (4.6) and (4.7) for s>2. They are shown in
Figs. 8 and 9 for various representative values
of @*. A comparison of the shapes and normaliza-
tions of the various parton distributions at @
=100 GeV? is shown in Fig. 10.

Several remarks are now in order. First, the
large-x behaviors of u,(x) and d,(x) are governed
by the parameters b in (4.6), and according to
Fig. 4 they differ by only 0.3 for all values of s.
This is significantly less than the difference of
one unit that was guessed by Field and Feynman®
and subsequently used by many others. Since our
result is based on recent data of muon deep-in-
elastic scattering on neutron and proton having
very small error bars, and since we make no
guesses, our result should be more reliable.
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TABLE I. Quark and gluon parameters.

Valence-quark parameters

a b c
a(0) a b(0) b c(0) ¢
f=3 U, 10.78 -2.63 1.89 0.66 1.36 —0.27
’ d, 3.96 -1.00 2.22 0.66 1.19 -0.27
f=4 %, 8.28 - =1.89 1.66 0.8 1.14 -0.21
d, 3.27 -0.8 1.99 0.8 0.98 -0.21
Sea-quark parameters
f=3 f=4
a; bi a; bi
i a;0) aj 5;(0) by a;(0) a; b;(0) b!
1 0.044 -0.01 a a 0.044 -0.01 a a
2 0.117 -0.01 16.6 -1.5 0.085 0.003 18 ~2.44
3 -0.92 0.74 54 20 -2.2 14 138.5 =23.75
Gluon parameters
f=3 f=4
a; b; a; b;
i a;00 - af b;(0) b} a;(0) a; b;(0) b;
1 1.34 ~0.35 3.6 0.65 1.25 -0.35 3.7 0.65
2 1.87 ~0.063 12.6 -0.38 2.25 -0.3 127 -0.63
3 a a a a a a a a

#See Egs. (4.10)—(4.12).

Note that the value of b itself for «, is about 3.2
at s =2 and is roughly one unit higher than the
exponent of 1 =y in (3.10a) for the U-valon dis-
tribution. This can easily be understood from
the basic convolution equation, (2.1), in which
F¥(z, Q%) approaches a nonvanishing constant as
z—1, if @® is small enough.

The small-x behaviors of xu,(x) and xd, (x) are
governed by the parameter ¢, which according
to Fig. 4 is around 0.5 for xd,(x) but higher by
almost 0.2 for xu,(x). The former is roughly
consistent with Regge behavior.?? Note that this

08 | e T 08 ——1——7 71—

xuy(x) xdy(x)

0.6 +4 0.6} 4

2 2
Q%-2256GeV
/

041 1006wz 4 [ B
Q%:4006Gev? Q%:225Gev?
/ o:= 100 Gesz
0%=400Gev
0.2 4 o2 -
ol 0
0.2 06 10 0.2 0.6 10

FIG. 8. The distributions of xu,(x, Q% and xd,(x, Q%)
for various values of Q* using interpolated values for the
parameters a(s), b(s), and c(s).

is a property that emerges from our analysis and
was not put ina p7riori as a boundary condition.
Note also that our results exhibit sharp peaks
in both x7(x) and xG(x) at very small x. From
the parametrizations it is clear that they both
approach finite values (~a,) at x =0, but they are
damped very fast [~(1 —x)*] as x increases. Es-
sentially, the ¢ =3 term in the sum in (4.7) which
accounts for this sharp peak contributes only to
the » =2 moment. This is due to the effectiveness
of soft-gluon bremsstrahlung in QCD and has been
noted by certain papers in Ref. 10. The large-x
behaviors governed by the exponent b, shown in
Fig. 7 are roughly what one would expect. The

04 : . — a4 . .
1
E
|
0.3 A:‘ xq(x) 143 xG(x) i
1
i
i
|
0.2} ! .
1 ---q?=225Gev? 2rh ---Q%:2256Gev2 1
— Q%=400 Gev? —— Q2= 400 Gev?
0.1} 18 4
0 LL_‘ B Rt S|

0 ol - 02 030 01 02 03 o4
X X
FIG. 9. The distributions of xg(x, Q% and xG(x, @?) for
two values of Q2 using interpolated values for the
parameters a;(s) and b;(s).
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FIG. 10. Plots of xu,(x), xd,(x), xq(x), and xG(x) for
@%=100 GeV®. The latter two are finite at x=0.

precise behaviors in the limits x -0 and x~1 can
be examined analytically. In the Appendix we study
their behaviors in the framework of QCD and the
valon model. The results differ from our param-
eters in this section, and are applicable only in
the extreme limits: x<<0.01 and 1 —x << 0.05.

In view of the sharp peaks in xg(x) and xG(x)
at small x, it is of interest to examine the mo-
mentum fractions that each of the parton types
carries. The average total momentum fraction
of each parton type is, of course, the =2 mo-
ment of the appropriate distribution. Now, we
have from (4.1)—(4.4) for general =,

Mg (n,s)=M, +My +2fM,, +M

=[2U(n) +D(n) |[M3(n,s) +M q(n,s)], (4.14)

but in the case n =2 it can be shown that for every
fixed f

MB(2,8) +M,q(2,s)=1. (4.15)

Consequently, on account of (2.16) we also have
Mo, (2,8) =1, (4.186)

as we should. This is the sum rule that our n =2
moments calculated from (4.6) and (4.7) should
satisfy for all s. However, in order to account
for the change in f in going from low to high s,
(4.13) has been suggested as an interpolating
formula for all the parameters a(s), etc. While
this procedure provides a smooth evolution for
the individual parton distributions, there is no
guarantee that (4.16) would be satisfied exactly.
The contributions from the four components in
‘(4.14) give

M,,(2,s)= fl dx x[u,(x,s) +d,(x,s)

()

+S(x,s) +G(x,s)], (4.17)

where
S(x,s)=2f(s)g(x,s). (4.18)

As with all other parameters, we choose a linear
interpolation formula for f(s) from 3 to 4, i.e.,

f(s)=0.5+1.25s . (4.19)

The four integrated components of (4.17) are shown
in Fig. 11, They add up to a sum that satisfies
the sum rule (4.16) to an accuracy well within 1%
for the entire range of @* plotted. It is therefore
reasonable to regard our parametrization as being
satisfactory. Now, from Fig. 11 we see that the
fraction of momentum that the gluons take is con-
fined to the range from 0.45 to 0.5 which is com-
patible with earlier guesses and estimates.?"?3
The sharp peak at small x therefore does not
imply that the gluons carry an unduly large frac-
tion of the proton momentum. Previous guesses
about the x dependences of the gluon and sea-quark
distributions are accordingly quite wrong.

To check further the observable consequences
of our predictions, we have calculated Fa(x) at
Q?=100 GeV? for muon scattering on nuclear tar-
get using (10s ~ 8)x7(x,s)/9 as the contribution
from all the sea quarks. The result is shown in
Fig. 12 where the sharp peak at small x appears as
expected. Recent experiment by the European Muon
Collaboration (EMC) (Ref. 24) has data at such high
@2, as showninthe same figure, but only forx >0.2.
They agree well with our prediction but are not for
sufficiently small x to be able to verify the peak. We
have calculated F,(x) for smaller @?assuming f=3

06 : ,

0.5 :

Momentum Fraction
o o o
AV} w D
T T T
<C @
wm
i

o
T

I 10 102 103
Q2(GeV?)
FIG. 11. Total momentum fractions of the four types
of partons.
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FIG. 12. Structure function for nuclear target at Qz

=100 GeV?, calculated using interpolated parameters.
Data are from Ref. 22,

(without using extrapolation) inthe hope of coming
closer to the data that exist at extremely smallx, but
not for such low values of @* as to invalidate our
calculation. For Q% =20 and 50 GeV? the result for
KLp scattering is shown in Fig. 13. The dip at x
~0.05 is more prominent than in Fig. 12 because
the proton target does not have the smearing ef-
fect that exists in the nuclear target for which the
dip for the neutron target occurs at a shifted val-
ue of x. The CHIO data'® are generally higher in
normalization than those of EMC ?%; the latter has
two points that agree perfectly with our predic-
tion. The peaking at extremely small x is hinted
by the CHIO data but certainly not verified, espe-
cially since the data points are for smaller val-
ues of Q2. Nevertheless, it is encouraging that
our prediction at very small x is not ruled out

by experiment. It should be remarked, however,
that our calculation does not take into account
threshold effects associated with massive quarks.
At the values of @* shown in Fig. 13, one would
expect the charm quarks to exhibit their presence
at small x and round out the dip structure.

We have also calculated F£"/F2* and xF>#/Fo¢
which are fairly insensitive to @* for Q%> 20 GeV?,
They are shown in Fig. 14. Data for these ratios
are not yet available for the @ range required.

V. CONCLUSION

We have used the valon model to describe deep-

inelastic scattering. The model bridges the gap
between the bound-state problem and the scatter-
ing problem of a hadron. It also eliminates the
necessity of making arbitrary guesses about the

1.2 — ———
Q2(Gev?
Q2=50 Gev? :
1.0 |- ®4-8 —
o 8-15
. 15-30 [ CHIO
_ oshk o 30-50 i
g 20 Gev2 & 20 EMC
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T, oer i
u % i*
04l g & % 4
02| { J
o R B N R )
1073 1072 107! |

FIG. 13. Structure function for proton at =20 and -
50 GeV?, calculated using parameters for f=3. Data
are from Refs. 13 and 22.

parton distributions at low @? in the usual theo-
retical approach to scaling violation. We have
determined the valon distributions which now can
serve as a goal for the solution of the bound-state
problem. From the valon distribution we have
further inferred the difference between matter -
density and charge-density distributions. Various
properties of the nucleon, such as charge radius,
high-@* behavior of the form factor, and g,/g,
should all be investigated in the light of our knowl-
edge about the nucleon wave function in the valon
representation.

We have further calculated the parton distribu-
tions at high @* without arbitrary assumptions or
parameters, except in the specification of the
number of relevant flavors. For both f=3 and
4 we have determined the parameters that de-
scribe the x and @* dependences of all the quark
and gluon distributions. Formulas are provided
for smooth interpolation from f =3 to f =4. The

T T T T T T T T T
L4k ]
L2} o .
v v
szp/ sz
1.0
0.8 J
BN, Cpp
0.6 F27F ]
04 B
0.2 ‘ o]
o L 1 1 | 1 1 | 1 I
0 0.2 0.4 06 0.8 1.0

X

FIG. 14. Ratios of structure functions calculated for
Qz=22.5 GeVz, but nearly independent of Qz.
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resultant structure functions agree well with ex-
periment wherever data exist. We predict that

a sharp peak and a shoulder should exist at very
small x, when @2 is large. Experimental verifi-
cation of this phenomenon would give crucial sup-
port to the reliability of the valon model and the
applicability of QCD considerations to the prob-
lem. As it stands our approach offers a complete
description of the parton distributions at high @?
without any free parameters.
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APPENDIX: ANALYTIC EXPRESSIONS FOR THE
PARTON DISTRIBUTIONS

In our approach to the determination of the
parton distributions, once the valon distributions
are obtained, the parton distributions are com-
pletely calculable in principle. However, the
inversion of moments is practical only numerical-
ly for the bulk of the x range. Our parametriza-
tions of the distributions in x are not expected

to be reliable for x outside the range 0.01 < x< 0.95.

Fortunately, in the extreme limits of x—0 and
x—1, it is possible to determine their behaviors
analytically. It is the purpose of this appendix
to supplement the results obtained in the text by
deriving analytic expressions of the large- and
small-x behaviors.

From the moments M(n,s) that are supposedly
known the corresponding parton distribution
G(x,s) can be obtained by the inverse Mellin
transform

G(x,s)=-2:r—i£dnx'"M(n,s), (A1)

where the contour C in the complex » plane lies
to the right of all the singularities of M(n,s) in

n (see Fig. 15). This analytic inversion of the
moments over the whole range of x is complicated
since it calls for the summing over all the res-
idues of the integral in (A1).>® However, obtain-
ing leading analytic expressions for G(x,s) at
large- and small-x regions is much easier,'®2°
We shall do this separately in the following two
subsections.

C+ico
(n 1
Y S S O,
W’B—G C
=10 |
C-ioo

FIG. 15. Contour of integration for integral in (A1),

1. Large-x region (x ~ 1)

To obtain analytic expressions in this region
it is better to rewrite (Al) as

1
G(x,s) e j;ee"M(n,s)dn R

where € =1 —x and therefore the most dominant
behavior at x~1 is influenced by the large-» limit
of the Mellin transform. In this limit, it can be
shown, by using the asymptotic forms of the I'
function, that the U and D valon moments reduce
to

B(a +n,a +b +2)
B(a+1,a +b+2)

=B(b +n,2a +2)
B(b +1,2a +2)

U(n) = 15.96n7%

D(n) ~16.13n7%3,

a. Valence-quark distribution

From (4.1) and (4.2) we obtain the expressions
for the moments of u,{x,s) and d,(x,s), respec-
tively, as

Muv(",S) =2U(n) exp(—dygs) ,
Mdv(n,s) =D(n) exp(—dyss) .

The analytic form for dyg () is

dys (n)=—3;—b{1 _;1(72;—17
+4[yy -1 +\If(n+1)]},
where
Y(n+1)=I"(n+1)/T'(n+1)

- 1 Yy By,
=In(n+1) ~ 50 T) T &e T+ 1P

1 e
==yt -]— for n =positive integer.
j:
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Y is the well known Euler constant and its value in
0.577- - -and B,, are the Bernoulli numbers. In
the large-» limit we have

dys (n) 2~ 5= (3 =7 —1nn)
and (A2)
M, (n s) ~ 31.92n°° exp[34b G-ve- lrm)]

from which, after performing the integration, one
derives

31.92
%=1 F(3 + 4s/37b)
E)] (1 - x)2+4s /3vp

x [J*i(i
eXP37p \a 7

Proceeding the same way, we obtain for d-valence
quark distributions

16.13
x-1 (3.3 +4s/37b)

4s (3 .
X exp[3"b ( -'YE)] 1 = x)*3 4s/3rd

From Fig. 4(b), we see that the difference in the
values of the parameter b for # quark and d quark
is also ~0.3 for any number of flavors. Evidently,
this difference which is due to the flavor depen-
dence of the valon distribution persists unaltered
in the x—1 limit.

u,(x,8) ~

d,(x,8)

b. Sea-quark distribution
The moments of the sea-quark distribution are
given by
1
M s(n,s) =§f-[2U(n) +D(n) ][ M(n,s) =M™ (n,s)].
MS(n,s) can be written as

(dyg —d.)e — (dyg —die-s )
d,-d.

M3(n,s)=

For large n, the leading contributions to the
anomalous dimensions are

d.~dys *8,
d_“‘d" -
0 =dthQe/ (dNS "d:g) ’
(A3)
3 f

d“~—1—1-b-(~}§ 1nn)+6 o

2
deq™ - 3mbhn’

f
49~ ~ St *

hence

5
d,-d_~ - 37D Inn,

&~ —f(5mbn? Inn)™ .
The large-» limit of dyg has been obtained before.
With the help of (A2) and (A3) we have

MS(n,s) ~ exp(—d,s)=(1 —s6)exp(—dygs)
n-ec

for s6<< 1. This assumption is valid for n—
even for sufficiently large @*. Therefore, the
large-n expression of the moment of sea-quark
distribution finally becomes

sd 31.92 16.13
Msea(n S) ~ —gexp( stS)(—'— W)

and the x distribution becomes
d(x,s) C,( —x)irashor

+CB(1 _x)4.3*4s/3rb ,

e )]
AT 3mm/) *Pl3m\2~ 78|

_1.63s ( 4_)]-1 [4 (3 )]
=" [ 5.3+35 )] P Fm\z 7=

We have neglected Inln terms compared to lnn.
Here we can see that U and D valons make sep-
arate contributions to sea-quark distributions.

¢. Gluon distribution

The moments M,(n,s) of gluon distribution are
given by

M(n,s)=[2U(n) +D(n) M q(n,s) .

With the help of the results in (A3), the large-n
behavior of Mgo(n,s) can be easily derived as

M, o(n,s)=dqo(e* —e*-%)/(d, —d)

~ 2(n1nn)™ exp(—dygS) .

Therefore, the x distribution is

G(x,s) U(l x)3HAsBE L O (1 — x)3-3r4s /om0

where

_ 4s\]* 4s (3 )]
CU—12.77[ (4 +3 b)] exp[sﬂb(Z—YE ,
Cp =6.45 [I‘(4.3 +31rb )] expl3.7\z 7=/ s
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and we neglected again Inlnz terms compared to
Inz. We can note the power of (1 —x) for gluon
and sea distributions differs by one unit and this
was also obtained for b, in parametrizing their
respective distributions earlier in the main sec-
tion (Fig. 7).

2. Smallx region (x ~0)

For small x the dominant contribution in in-
verse Mellin transformation comes from the
rightmost singularity in the complex » plane. We
can rewrite (Al) as

xG(x,s)=§7lr; jc'dne‘"'”"M(n,s),

where v=1In(1/x)~ » as x-0,
a. Valence-quark distribution

We have
1
wu,(x,8) =507 _/c'ZU(n) exp[(n =1)v ~dygs ldn

The rightmost singularity occurs at =0 as can
be observed by looking at the expression for
dyg (n). Therefore, keeping only the terms non-
zero and singular around »=0, we get

1/ ( +23)d
77 ) exp(nv e Jdn.

The integration is well known in terms of the
Bessel function of second kind and we get

xu,(x,S) o 5.62¢"v*s /b 3

/ 88 1/2
xu,(x,S) o 5.62¢° 3"’x<§m)

le[(ss/mrb ;n%)llz].

Similarly, we have

3wy 8s '
s 8
xd,,(x,s):)7-57e x(swb 1n1/x>

o

where for large arguments, the Bessel function
behaves as :

L(y)~e*/(2my)'®.

b. Sea-quark and gluon distributions

For sea-quark and gluon distributions, one can
show that the rightmost singularity is at n=1.
Keeping only the singular and nonvanishing parts
of the anomalous dimension as before, we get
their expressions around n=1 as follows:

dys~ (mn=1)/2mb ,

g~ _4_( 1 _9_)
Q0 “3mp\n-1-16/"’

~_t

doe™ =305

.3 1 (11 i)
Aye _nb(n—1)+21rb(2+3 ;

1 6 a
4= -7 (n—l "2')’

¥
d. 271 °
where
a= 11+-2Z-,

27

Hence, we have

3s

Ms(n, s)~ 4-«3’4"’(;1 V[ -2 - 1)]exp—b(——)

and from (4.3),

= [u,(x,5) +d,(,5)]

4fs 12s . 1\~
e aslavh 4% .2
:; 9mb 1n1/xI2 [( 1/) lnx) ]

For gluons M,,(n,s) behaves in the n~1 limit as

- &(n —1)]exp————ﬂb(zs_ I

xq(x,s) + o

M‘,Q(n,s),\/1 g-oslard N
n-

1t then follows from (4.4) that
%G (x,8) ~u e0s/rd $(3s/7b Inl/x)* %
x~0

XI,[2(3s /7b Inl/x)'2].
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