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We find that SU(5} and SO(10) grand unified theories are almost uniquely chosen under the

major ansatz: only left-handed particles in SU(2) doublets and their antiparticles in SU(2)
singlets. We have not used any information on the color group, family structures, or quark-

lepton correspondence, etc. , at all. The consequence of grand unification is that the color group
2 1

is SU(3), quarks come in color triplet, and their electric charges are
3

and ——.

Because of our general belief in the gauge princi-
ple, many people have been attempting to construct
grand unified models of strong, weak, and elec-
tromagnetic interactions; among these, the original
SU(5) (Ref. 2) and its extension SO(10) (Ref. 3) are
the most popular ones. However, aside from the re-
quirement of renormalizability (hence, the anomaly-
free condition"), there seems to be a lack of princi-
ples for grand unification, which has resulted in a
proliferation of models. In this paper, we show that
the quantum-number assignments in the Glashow-
Weinberg-Salam SU(2) 8 U(1) (Ref. 5) alone yield
the surprising results: The possible grand unified
simple groups are only SU(5) and SO(10). The color
group is SU(3) with quarks in color triplets. Quark

2 1
electric charges are 3 and —3. Consequently, no

simple group exists for unifying the family structure
with the grand unified theories. There is a good con-
trast between our approach and that given by Gell-
Mann, Ramond, and Slansky, who have investigated
the embedding of the color SU(3) group into a grand
unification group.

For particle unification, just fixing the electric
charges of quarks and leptons is enough to pick up
possible unification groups without specifying the struc
tures of the electroweak group or the color group
Here, we are attempting the more grand scheme, i.e.,
unification of particles and antiparticles as Georgi and
Glashow' have attempted.

Our motivation is provided by the work of Georgi,
which has shown that we cannot unify the electron
family if the color group is not SU(3). Our results
are the generalization of his and are more general.

Our main ansatz is as follows: There exist only left

handed particles in SU(2) doublets and their antiparticles
in SU(2) singlets We hav. e neither right-handed par-
ticles in SU(2) doublets nor their antiparticles in
SU(2) singlets. We do not put any restrictions on the
number of quark or lepton doublets. We denote lep-
tons and quarks as N, E, U, and D and their numbers
by nt and n~, respectively. The quantum-number as-
signments under G(color) 8 SU(2) 8 U(1) are as
follows:

nt (N, E)L (1,2, —-'). ,

n, EL: (1,1, 1),
no NLc. (1, 1,0),
n, (U,D), : (m, 2, n/2m),

n, Utc. (m, I, —(m+n)/2m),

n~ DLc: (m, I, (m —n)/2m),

where o, denotes the ratio of nt to n~ and the electric
charge operator is defined by Q = I3+ Y. The U(1)
quantum numbers for quarks are chosen to cancel
the triangle anomaly. ' We include the possibilities
such as nt 4 n~ (violation of quark-lepton correspon-
dence), n, & no (possibility of having Majorana neu-
trinos), and nt & I and n~ & I (more than one family
in a single multiplet). If we have the case of n, W 1,
then we might have a simple group to unify the fami-
ly structure. Our other ansatz is that no quarks can
have zero electric charges.

Using the fact that m ~ n, since otherwise the
electric charge of the D quark is zero, we have
Tr Ys AO. However, any group except E6, SO(10), or
SU(N) (N «3) satisfies TrX' =0 for any (irreduci-
ble or reducible) representation X of its Lie-algebra

23 2486

I

1981 The American Physical Society



23 RAPID COMMUNICATIONS 24S7

element. ~ Thus, we can use only E6, SO(10), or
SU(N) (N «3) to unify quarks and leptons in (1)
(and, moreover, the use of non-self-contragredient
representations of these groups is necessary, other-
wise we have TrX'=0). At this point we can say
more about the highest weight of the representation:
They are, if fully reduced, one of A& or AJ+Ak,
where A& denotes the fundamental weight for G,
since the weak i-spins are only doublets and singlets.
The derivation is similar to the one given in Ref. 10.

Now, we consider the unification of particles in (1)
as a single irreducible representation. For SU(N)
(N «3), the representation should be completely an-
tisymmetric with the highest weight At (1 ~j~ N
—I); otherwise it would contain more states other
than doublets and singlets in SU(2) as can be shown
using the argument used by Gell-Mann et al.
Then, the anomaly coefficient, which is in proportion
to the third-order Casimir invariant, does not vanish,
except for the self-contragredient case. For the case
of E6, we have the quartic trace identity"

TrX =E (p)(T Xr) (2)

TrX~ =D(p) TrX2TrX' (3)

which is a consequence of the fact that SO(10) (also
E6) does not possess fundamental seventh-order
Casimir invariants. Actually, we can show that the
quark-line rule is used only to eliminate SU(2) as the
color group.

Next, we consider the unification of particles as t~o
irreducible representations p~ and p2. We can show

for any irreducible representation p and for any gen-
eric element X of the Lie algebra of E6. Applying
this identity to X = Y+ tr3, where t is an arbitrary
number, we find that m =a in order to satisfy Eq.
(2), which leads to the neutral electric charge of the
D quark. Therefore, we have only SO(10) as a possi-
ble candidate for grand unification of a single irredu-
cible multiplet.

The nonexactness of the quark-line rule demands
that the color group should be one of E6,
SO(4m+2) (m «2), or SU(m) (m «3) (see Ref.
12). The examination of subgroups in SO(10) shows
that we can have only SU(3) as the color group After.
some calculation, using the result noted in an earlier
paragraph, the possible representations are of the
type A5, A~ + A5, or 2A5 (as well as their complex
cortjugates). It turns out that the last two representa-
tions under the decomposition into SU(3) 8 SU(2)
S U(1) contain triplets in SU(2). Therefore, we

have found that the spinor representation A5 is the
only candidate in SO(10), which is the standard
model: n~ = n~ = no = 1, m =3, with the electric

charges QU = —, and QD =—
—,. Wecan prove the2 1

same result, using the identity"

that'the only two multiplet structures possible are

(nt(N, E)L,no' NL, n~DL ),

(n,Et, n0 Nt, n (U, D)L, JUL)
(4)

for the case where given leptons and quarks with the
same Y and I will not split, except possibly N~~. oth-
er cases will contradict Trt'~ Y =0 or Trt'~Q =0, since
m ~ a, where Tr~'~ denotes the trace operation in the
representation space p&. Note that in order to have
the multiplet structure (4), we must have m =3a,
which gives QU=-, and QD =——,. Then Tr"' Y' WO

tells us that the unification group should be SU(N)
(N «3), since TrX3 =0 for any group except SU(N')
(N «3).9 The representations to be used are of the
types Ai and Ak (1 ~ j, k ~ N —1).

The anomaly. -free condition is

d(At)13(Ag) +d(Ak)I3(A/g) 0 (5)

where d(A&) and 13(A&) denote the dimension and
the value of the third-order Casimir invariant for the
irreducible representation A&. We have to satisfy one
more condition:

Tr&»(l, )2 d(AJ)l2(AJ)
Tr (l3) d(Ak)12(Ak)

(6)

2N =j+3k
Up to SU(500), we have found only two solutions to
Eqs. (5) and (6): 5 S 10 in SU(5) and 4368 8 11440
in SU(16). By counting the number of i-spin doub-
lets in each representation AJ, which is given by the

binomial coefficient . 1,we can dispose the case

of SU(16). Thus, we have only one SU(5) with
nr=n& =1, no=0, m =3, A=5 6 10, which is the
standard model. We conjecture that this holds
without any restriction on N, such as N ~ 500 used
here.

Actually, we can prove the same if n0= 0 from the
beginning. The proof goes as follows: As is sho~n
in Ref. 10, the form of diagonal operators, which has
only two eigenvalues x and y and satisfies x —y =1,
can be given explicitly in terms of fundamental.
weights, apart from a constant multiplication. For
the representation A& (2 ~j ~ N —2), the diagonal
operator above has the unique form X ~ A~(H),
where 8 denotes the Cartan subalgebra element.
However, we can define two operators Yand Z as

5 3
Y =

6
Y and Z = I3+

5 Y, whose eigenvalues for p~

which is derived from the well-known identity

Tr(X„X„)= l, (a)g„„,d(t )
d zo

where 12(it) denotes the second-order Casimir invari-
ant and Ao denotes the adjoint representation. Then,
Eqs. (5) and (6) yield
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are (-, , —
—,) and (-, , —

—,), respectively. Thus, the
2 3 1 4

fact that eigenvalues for the same operator differ
from each other implies that we cannot use the
representation AJ (2 ~j «N —2). For A~ (or
A~, ), the diagonal operator does not have a unique
form (see details in Ref. 10) and Eqs. (5) and (6)
yield the unique solution N = 5, j=1, and k =3,
which is the standard SU(5) model. In the foregoing,
we have assumed the cancellation of triangle anoma-
ly. However, for the uniqueness of SU(5), it turns
out that this assumption is not necessary, but
emerges as a consequence. Since the argument for
this is quite involved, it will be given elsewhere.

A few comments are in order: %hy can we not use
groups larger than SU(5) or SO(10)? The reason is
that we always have particles with opposite chirality
in addition to those in Eq. (1) for bigger groups.
That is why TrX'=0 can be satisfied trivially. Thus,
for groups larger than SU(5) or SO(10), we must in-
vent some mechanism to make those particles heavy.

Recently, Zee has found the uniqueness of SU(5)
and SO(10) by examining the maximal simple sub-

group of SU(Nf) 8 U(1), which is free from ano-
maly and free from bare masses. " The choice of
Nf =45 yields only SU(S) and SO(10). Note that our
conclusion is far more general than those obtained. by
Georgi and Zee. ' %e have assumed only the quan-
tum number of G(color) 8 SU(2) 8 U(1).

As a consequence of the uniqueness of the SU(5)
and SO(10) grand unified models, we see that no sim-

ple group exists for unifying the family structures,
using just ordinary quarks and leptons. Our result
may provide some justification why the color group is
SU(3) and why the eiectric charges of U and D quarks

2 1
are —, and ——,, respectively.

Many details of the results presented here will be
discussed elsewhere. '
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