Borel transform technique and the *n*-bubble-diagram contribution to the lepton anomaly

Morten L. Laursen and Mark A. Samuel

Quantum Theoretical Research Group, Department of Physics, Oklahoma State University, Stillwater, Oklahoma 74078 (Received 3 September 1980)

By using the Borel transform technique we calculate analytically the muon anomaly from the mass-dependent *n*-bubble diagram in the limit where the mass ratio m_{μ}/m_e is large. For large *n* the sign oscillates, in contrast with the correct anomaly. The analysis shows that the validity of expanding in $L \equiv \ln(m_{\mu}/m_e)$ is strongly dependent on the order N = 2n + 2, in which we calculate.

I. INTRODUCTION

In calculating the mass-dependent contribution to g-2 of the muon, it has been customary for many years to use the large mass ratio $m_{\mu}/m_{e} \sim$ 207 as a good expansion parameter.^{1,2} We restrict ourselves to the class of diagrams with electron vacuum polarization insertions into the lowestorder muon vertex (see Fig. 1).

One considers the asymptotic part of the photon's self-energy $d_R^{\infty}(q^2/m_e^2)$, that is, terms of order $O(m_e^2/q^2)$ are neglected.³ From this one can, in principle, calculate the anomaly to O(1). Another possibility is to use the Kinoshita method.⁴ For low-order perturbation theory this approximation seems to work very well. The question is whether this will be valid in high order $n \gg 1$, and how strongly the approximation depends on m_μ/m_e .

It is the purpose of this paper to investigate this question for a simple class of diagrams, namely the mass-dependent n-bubble diagram (see Fig. 2).

Our analysis shows that the expansion breaks down for $n \ge n_0$, where n_0 is dependent on the mass ratio m_{μ}/m_e . In particular we show that the answer starts oscillating like $(-1)^n$ in disagreement with the exact anomaly which is positive for all n.

It is possible to explain why this so-called "false expansion" breaks down. We have neglected terms such as m_{ρ}^{2}/q^{2} . Now to get the full anomaly one

FIG. 1. Electron vacuum polarization insertion into the lowest muon vertex.

must integrate $d_R(q^2/m_e^2)$ with $q^2 = -m_\mu^2 x^2/(1-x)$ over the range $0 \le x \le 1$. Clearly, the term m_e^2/q^2 contains a singularity at x = 0, and so the neglected terms may become important. The full anomaly does not have such a problem since d_R goes to zero for $x \to 0$.

It was shown earlier that d_R^{∞} satisfies a homogenous Callan-Symanzik equation,³ and since the asymptotic anomaly is a linear functional of d_R^{∞} , it itself satisfies a CS equation. This equation is then solved to all orders, but in view of the above, one might question the validity of this. That is, one cannot neglect the right-hand-side function $\Delta(q^2/m_c^2) \rightarrow 0$.

In Sec. II we calculate the anomaly exactly for all n, in the limit $m_{\mu}/m_{e} >> 1$, by making use of the Borel transform technique.⁵ For large n an approximate expression is obtained. The exact anomaly is evaluated numerically and is compared to the above-mentioned anomaly for different mass ratios. We also compare with Lautrup's asymptotic estimate.⁶

II. MUON ANOMALY FROM THE MASS-DEPENDENT n-BUBBLE DIAGRAM

The exact muon anomaly from the mass-dependent *n*-bubble diagram is $a_n(\alpha/\pi)^{n+1}$, where

FIG. 2. The mass-dependent n-bubble diagram contributing to g-2 of the muon.

23

2478

© 1981 The American Physical Society

 $\pi^{(2)}$ being the standard second-order vacuum polarization function⁶ given by

$$\pi^{(2)}\left(\frac{t}{m_e^2}\right) = \frac{8}{9} - \frac{B^2}{3} + \left(\frac{1}{2} - \frac{B^2}{6}\right) B \ln \frac{B-1}{B+1}$$

and

$$B = (1 - 4m_e^2/t)^{1/2}$$

The anomaly (evaluated in the limit $m_{\mu}/m_{e} >> 1$) is denoted b_{n} and uses the asymptotic vacuum polarization function

$$\pi_{\infty}^{(2)} = \frac{5}{9} - \frac{2}{3} \ln \frac{m_{\mu}}{m_{e}} - \frac{1}{3} \ln \frac{x^{2}}{1-x}.$$
 (2)

Furthermore, let c_n stand for the anomaly with the x^2 in $\pi_{\infty}^{(2)}$ replaced by 1. c_n represents the true asymptotic value of a_n for large n.

In the following let L stand for $\ln(m_{\mu}/m_{e})$, $a = \frac{5}{9} - \frac{2}{3}L$, and $b = -\frac{1}{3}$. In order to evaluate b_{n} we will consider the Borel transform $B(\kappa)$ of the series

$$\sum_{n=0}^{\infty} b_n \kappa^n, \tag{3}$$

which is defined as^5

$$B(\kappa) = \sum_{n=0}^{\infty} \frac{b_n}{n!} \kappa^n.$$
(4)

Using Eqs. (1), (2), and (4) one finds

$$B(\kappa) = e^{-\kappa a} \frac{(1+\kappa b)}{(2-\kappa b)(1-\kappa b)} \frac{\Gamma(1+\kappa b)\Gamma(1-2\kappa b)}{\Gamma(1-\kappa b)}.$$
 (5)

To obtain b_n one now differentiates $B(\kappa) n$ times with respect to κ :

$$b_n = \frac{d^n B(\kappa)}{d\kappa^n} \bigg|_{\kappa=0} \equiv B^{(n)}(0).$$
(6)

Since it is easier to differentiate $\ln \Gamma(Z)$, we find it convenient to define $G(\kappa) = \ln B(\kappa)$. Using the fact that the Euler function $\psi(Z)$ satisfies

$$\psi(Z) = \frac{d}{dZ} \ln \Gamma(Z),$$

$$\psi^{(n)}(Z) \Big|_{Z^{-1}} = (-1)^{n+1} n! \zeta(n+1),$$
(7)

we find

$$G^{(1)}(0) = -a + \frac{5}{2}b = \frac{2}{3}L - \frac{25}{18},$$

$$G^{(n)}(0) = b^{n}(n-1)! \left\{ (-1)^{n-1} + \frac{1}{2^{n}} + 1 + \frac{1}{2^{n}} + 1 + \frac{1}{2^{n}} + 1 + \frac{1}{2^{n}} + 1 \right\}, \quad n \ge 2.$$
(8)

Asymptotically for large $n, G^{(n)}(0)$ approaches

$$G^{(n)}(0) \simeq (2b)^n (n-1)!$$
 (9)

To obtain b_n we first notice that the following recursion formula holds (easily proved by differen-

TABLE I. Coefficients $b_{n,m}$ up to n = 5.

b , , 0:	<u>1</u>
b1,0:	- <u>25</u> 36
b1,1:	
b2,0:	$\frac{2}{9}\zeta(2)+\frac{317}{324}$
b2,1:	-25/27
b2,2:	2 9
b 3, 0:	$-\frac{2}{9}\zeta(3) - \frac{25}{27}\zeta(2) - \frac{8609}{5832}$
b 3,1:	$\frac{4}{9}\zeta(2)+\frac{317}{162}$
b 3,2:	$-\frac{25}{27}$
b 3,3:	<u>4</u> 27
b4,0:	$\frac{16}{27}\zeta(4) + \frac{8}{27}\zeta^2(2) + \frac{100}{81}\zeta(3) + \frac{634}{243}\zeta(2) + \frac{64613}{26244}$
b4,1:	$-\frac{16}{27}\zeta(3) - \frac{200}{81}\zeta(2) - \frac{8602}{2187}$
b4,2:	$\frac{16}{27}\xi(2) + \frac{634}{243}$
b4,3:	$-\frac{200}{243}$
b4,4:	<u>8</u> 81
b 5,0:	$-\frac{40}{27}\zeta(5) - \frac{80}{81}\zeta(3)\zeta(2) - \frac{1000}{243}\zeta(4)$
	$-\frac{500}{243}\zeta^2(2) - \frac{3170}{729}\zeta(3)$
	$-\frac{43045}{6561}\zeta(2) - \frac{2182775}{472392}$
b 5,1:	$\frac{160}{81}\zeta(4) + \frac{80}{81}\zeta^2(2) + \frac{1000}{243}\zeta(3)$
	$+\frac{6340}{729}\zeta(2)+\frac{323065}{39366}$
b 5,2:	$-\tfrac{80}{81}\zeta(3) - \tfrac{1000}{243}\zeta(2) - \tfrac{43045}{6561}$
b 5,3:	$\frac{160}{243}\zeta(2) + \frac{6340}{2187}$
b 5,4:	- <u>500</u> 729
b 5,5:	

TABLE II. Check of asymptotic expression for b_n for the mass ratio $m_{\nu}/m_e = 10$.

5 a		
n	bn	b _n (asymptotic)
0	0.500	0.230
1	0.072	-0.153
2	0.390	0.205
3	-0.180	-0.409
4	1.36	1.09
5	-3.23	-3.64
6	1.51×10^{1}	$1.45 imes10^1$
7	-6.70×10^{1}	-6.78×10^{1}
8	3.64×10^{2}	3.62×10^{2}
9	-2.17×10^{3}	-2.17×10^{3}
10	1.45×10^{4}	1.45×10^{4}
11	-1.06×10^{5}	-1.06×10^{5}
12	8.52×10^{5}	8.49×10^{5}
13	-7.38×10^{6}	-7.36×10^{6}
14	6.89×10^{7}	6.87×10^{7}
15	-6.89×10^{8}	-6.87×10^{8}

n	a _n	b _n	c _n
0	0.500	0.5	3.27×10^{7}
1	1.09	1.08	5.45×10^{6}
2	2.72	2.72	1.82×10^{6}
3	7.23	7.19	9.10×10^{5}
4	2.02×10^{1}	2.02×10^{1}	6.06×10^{5}
5	5.85×10^{1}	5.81×10^{1}	5.05×10^{5}
6	1.75×10^{2}	$1.75 imes 10^2$	$5.05 imes 10^{5}$
7	5.40×10^{2}	$5.34 imes 10^2$	5.90×10^{5}
8	$1.71 imes10^3$	1.71×10^{3}	7.86×10^{6}
9	5.53×10^{3}	5.40×10^{3}	$1.18 imes 10^6$
L0	1.83×10^{4}	1.89×10^{4}	1.97×10^{6}
11	6.20×10^4	5.65×10^{4}	3.60×10^{6}
12	2.14×10^{5}	2.54×10^{5}	7.21×10^{6}
13	7.55×10^{5}	3.96×10^{5}	1.56×10^{7}
4	$2.71 imes10^6$	6.06×10^{6}	3.64×10^{7}
5	9.93×10^{6}	-2.36×10^{7}	9.11×10^{7}

TABLE III. The quantities a_n , b_n , and c_n up to n=15 for the physical mass ratio $m_\mu/m_e=207$.

tiation of $B(\kappa) = \exp[G(\kappa)]$:

$$B^{(n)}(\kappa) = \sum_{k=0}^{n-1} {\binom{n-1}{k}} G^{(n-k)}(\kappa) B^{(k)}(\kappa)$$
(10)

and, therefore,

$$b_{n} = \sum_{k=0}^{n-1} {\binom{n-1}{k}} G^{(n-k)}(0) b_{k}.$$
 (11)

If we further write

TABLE IV. The quantities a_n , b_n , and c_n up to n = 20 for the mass ratio $m_{\mu}/m_e = 10$.

n	a _n	b _n	c_n
0	0.500	0.500	1.78×10^{2}
1	0.248	0.072	2.97×10^{1}
2	0.217	0.390	9,90
3	0.236	-0.180	4.95
4	0.293	1.36	3.30
5	0.405	-3.23	2.75
6	0.610	1.51×10^{1}	2.75
7	0.990	-6.70×10^{1}	3.21
8	1.72	3.64×10^{2}	4.28
9	3.19	-2.17×10^{3}	6.42
10	6.30	1.45×10^{4}	1.07×10^{1}
11	1.31×10^{1}	-1.06×10^{5}	1.96×10^{1}
12	2.92×10^{1}	$8.52 imes 10^{5}$	3.93×10^{10}
13	6.84×10^{1}	-7.38×10^{6}	8.50×10^{-10}
14	1.69×10^{2}	6.69×10^{7}	1.98×10^{-1}
15	4.42×10^{2}	-6.89×10^{8}	4.96×10^{-10}
16	1.21×10^{3}	7.35×10^{9}	1.32×10^{-3}
17	3.54×10^{3}	-8.33×10^{10}	3.75×10^{-3}
18	1.08×10^4	9.99×10^{11}	1.12×10^{6}
19	3.45×10^4	-1.27×10^{13}	3.56×10^{6}
20	1.15×10^{5}	1.69×10^{14}	1.17×10^{-1}

$$b_{n} = \sum_{m=0}^{n} b_{n,m} L^{m}, \qquad (12)$$

Eq. (11) gives easily

$$b_{n,m} = \frac{2}{3} b_{n-1,m-1} - \frac{25}{16} b_{n-1,m} + \sum_{k=m}^{n-2} {\binom{n-1}{k}} G^{(n-k)}(0) b_{k,m}$$
(13)

with the requirement $b_{0, m} = \frac{1}{2} \delta_{0, m}$. We now have a recursion relation allowing us to calculate the coefficients $b_{n,m}$ of L^m for arbitrary n. Using REDUCE,⁷ we have calculated $b_{n,m}$ up to n=18. Table I shows the results up to n=5. The n=0,1, 2,3 values are well known.¹⁻⁴

To get an asymptotic estimate for b_n for n >> 1, we go back to Eq. (2). We notice that the singularity at x=0 is stronger than the x=1 singularity. Setting x=0, and using the method of steepest descents we obtain for large n

$$b_n \simeq (-\frac{2}{3})^n n! e^{5/6} \left(\frac{m_e}{m_\mu}\right), \quad n >> 1.$$
 (14)

Notice that the answer is of $O(m_e/m_{\mu})$ and so is comparable with the neglected terms. For a mass ratio $m_{\mu}/m_e = 10$, we checked that this estimate was good to within 2% for $n \ge 6$ (see Table II). To see how well b_n approximates a_n , we evaluated a_n by numerical integration. The results for a_n , b_n , and c_n , where⁶

$$C_n \simeq (\frac{1}{6})^n n! e^{-10/3} \left(\frac{m_\mu}{m_e}\right)^4,$$
 (15)

are shown in Tables III and IV for the mass ratios $m_{\mu}/m_{\rho} = 207$ and $m_{\mu}/m_{\rho} = 10$.

We see that for the physical mass ratio $m_{\mu}/m_e^{=}$ 207 the approximation $a_n \simeq b_n$ is good up to $n \simeq 10$, while for the ratio $m_{\mu}/m_e^{=} 10$, the approximation is totally wrong for all $n \ge 1$. That is, in the latter case, the neglected terms of $O(m_e/m_{\mu})$ are now bigger than the logarithmic terms and the O(1) terms together. On the other hand, for $n \ge 18$, the approximation $a_n \simeq c_n$ is very good.

To summarize, for very large mass ratios, b_n provides a good approximation for low n, while c_n is good for very large n. In the region in between, neither is valid, and one must therefore use the full anomaly. This might have some relevance for the τ -lepton anomaly with muon bubble insertions since $(m_{\pi}/m_{\mu}) = 16.9$.

ACKNOWLEDGMENTS

We wish to thank R. Coquereaux for informing us about the Borel transform technique. This work was supported by the U. S. Department of Energy.

23

- ¹T. Kinoshita, Nuovo Cimento <u>51B</u>, 140 (1967).
- ²H. Suura and E. Wichmann, Phys. Rev. <u>105</u>, 1930
- (1957); A. Petermann, *ibid.* 105, 1931 (1957). ³B. E. Lautrup and E. de Rafael, Nucl. Phys. <u>B70</u>, 317 (1974).
- ⁴M. A. Samuel, Phys. Rev. D <u>9</u>, 2913 (1974).
- ⁵R. Coquereaux, Phys. Rev. D 23, 2276 (1981). ⁶B. E. Lautrup, Phys. Lett. <u>69B</u>, 109 (1977).
- ⁷A. Hearn, Interactive Systems for Experimental Applied Mathematics, edited by M. Klerer and J. Reinfelds (Academic, New York, 1968).