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Borel transform technique and the n-bubble-diagram contribution to the lepton anomaly
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(Received 3 September 1980)

By using the Sorel transform technique we calculate analytically the muon anomaly from the mass-dependent n-
bubble diagram in the limit where the mass ratio m„/m, is large. For large n the sign oscillates, in contrast with the
correct anomaly. The analysis shows that the validity of expanding in L =ln(m /m, ) is strongly dependent on the
order N = 2n + 2, in which we calculate.

I. INTRODUCTION

I

In calculating the mass-dependent contribution
to g-2 of the muon, it has been customary for
many years to use the large mass ratio m /rn, -
207 as a good expansion parameter. "We restrict
ourselves to the class of diagrams with electron
vacuum polarization insertions into the lowest-
order muon vertex (see Fig. 1).

One considers the asymptotic part of the photon' s
self-energy dz(q'/m, '), that is, terms of order
0(m, '/q') are neglectedg From this one can, in
principle, calculate the anomaly to O(1). Another
possibility is to use the Kinoshita method. For
low-order perturbation theory this approximation
seems to work very well. The question is whether
this will be valid in high order n &&1, and how
strongly the approximation depends on m /m, .

It is the purpose of this paper to investigate this
question for a simple class of diagrams, namely
the mass dependent -n-bubble diagram (see Fig. 2).

Our analysis shows that the expansion breaks
down for g ~ n„where n, is dependent on the mass
ratio m, /m, . In particular we show that the answer
starts oscillating like (-1) in disagreement with
the exact anomaly which is positive for all n.

It is possible to explain why this so-called "false
expansion" breaks down. We have neglected terms
such as m, '/q'. Now to get the full anomaly one

must integrate d„(q'/m ') with q'= -m, 'x'/(1 —x)
over the range 0&x&1. Clearly, the term m'/q'
contains a singularity at x= 0, and so the neglected
terms may become important. The full anomaly
does not have such a problem since dR goes to
zero for x-0.

It was shown earlier that dR satisfies a homo-
genous Callan-Symanzik equation, ' and since the
asymptotic anomaly is a linear functional of dR,
it. itself satisfies a CS equation. This equation is
then solved to all orders, but in view of the above,
one might question the validity of this. That is,
one cannot neglect the right-hand-side function
h(q'/m. ') —0.

In Sec. II we calculate the anomaly exactly for
all n, in the limit m„/m » 1, by making use of the
Borel transform technique. ' For large n an ap-
proximate expression is obtained. The exact
anomaly is evaluated numerically and is compared
to the above-mentioned anomaly for different mass
ratios. We also compare with Lautrup's asymp-
totic estimate. '

II. MUON ANOMALY FROM THE MASS-DEPENDENT
n-BUBBLE DIAGRAM

The exact muon anomaly from the mass-depen-
dent n-bubble diagram is a„(nlw)"", where

0„=
0

FIG. 1. Electron vacuum polarization insertion into
the lowest muon vertex.

FIG. 2. The mass-dependent n -bubble diagram con-
tributing to g-P, of the muon.
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w"'being the standard second-order vacuum pola-
rization function' given by

(2)i f 8B iI B}B1= - ——+
I

- ——}»n
(m,' 9 3 ~2 6 j B+1

and

B= (1 4m-,'h)~'

The anomaly (evaluated in the limit m„/m, && 1) is
denoted b„and uses the asymptotic vacuum polari-
zation function

TABLE I. Coefficients b„~ up to n = 5.t.

b0,0
1

bi 0'—25
36

bi 1'. 1

b2, 0: ~9&( )+,'24

b2 1' 25
27

2
e 9

(2) 5 2 m, , gr„=——-ln
9 3 m.

Furthermore, let c„stand for the anomaly with
the x' in w "„' replaced by 1. c„represents the
true asymptotic value of a„ for large n.

In the following let I stand for ln(m„/m, ), a =

g 3 L, and b = —3 . In order to evaluate b „we
will consider the Borel transform B(K) of the
series

(2)
b3,0:

bs, i:
bs, 2:

bs, s:

b4, 0:

b4, 1:

b4.s:

b4,4:

2
g (3) 25' (2) 8609

9 27 5832

9 &(2)+~1"'

25
27

8

(4) +
27 ~ (2) +

81 ~ (3) + f/~ (2) +
26244

16f (3) 200
g (2) 8602

200

86
which is defined as'

()0

B(K)= Q ~ K".
„~ est

Using Eqs. (1), (2), and (4) one finds

(4)

(1+ Kb) I'(1+ Kb)l" (1-2Kb)
( )(2—Kb)(1-Kb) I'(1-Kb)

To obtain b„one now differentiates B(K) n times
with respect to K.

d B(K) B())&(0)
dK

b5, 0:

b5 1'.

b5,2:

b5 3'.

b5,4:

b5, 5:

—e(5) —-1~(3)~(2) ——-- ~(4)

m500g2(2) 3170 g(3)
43045

g (2) 21S2775
6561. 472392

160'(4) + 80)2(2) + 1000 g(3)81 @ 243

+ 6340 y(2) + 323065
729 S9S66

80 g(3) 1000 g(2) 43045
Si 243 6561

160 g(2) + 6340
243 2187

500
729

16
243

Since it is easier to differentiate ln I'(Z), we find
it convenient to define G(K) = lnB(K). Using the
fact that the Euler function $(Z) satisfi'es

TABLE II. Check of asymptotic expression for b„ for
the mass ratio )num~=10.

[!)(Z)= ln I'(Z),

0("'(Z) ~, , =(-1)"'n!t(n+ 1),

we find

G +)(0) = -a + 'b = ,'L —25, ——
G' ( )= (n 0)!!!I(- ))" '+ —„(+-)n-1

+((n)[(-))"+2"-)[}., n-2.

Asymptotically for large. n, G'"'(0) approaches

G'"'(o) = (2b)"(n-I)! .
To obtain b„we first notice that the following
recursion formula holds (easily proved by differen-

0
1
2
3

5
6
7
8
9

10
11
12
13
14
15

0.500
0.072
0.390

-0.180
1.36

-3.23
1.51 x 101

-6.70 x 10
3.64x 102

-2.17x 103
1.45 x 104

-1.06 x 10
8.52 x 105

-7.38 x 10
6.89x10'

-6.89 x 108

b„(asymptotic)

0.230
—0.153

0.205
-0.409
1.09

-3.64
1.45 x 101

-6.78 x 10
3.62 x 102

-2.17x103
1.45 x10

-1.06x 10
8.49 x 105

-7.36x 106
6.87x10'

-6.87 x 108
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TABLE III. The quantities a„, b„, and c„up to
a= 15 for the physical mass ratio mmmm =207. b „g=b„ I

m=p

Eq. (11) gives easily

(12)

0
1
2
3
4

6
7
8
9

10
11
12
13
14
15

0.500
1.09
2.72
7.23
2.02x10'
5.85 x10
1.75 x10
5.40 x 10
1.71x103
5.53 x 1Q

1.83 x104
6.20 x 104
2.14x 105
7,55x 10~
2,71 x10
9.93x 10

0.5
1.08
2.72
7.19
2.02 x 10'
5.81 x 10
1.75 x 102
5.34x10'
1.71 x10'
5.40 x 103
1.89 x 104
5.65 x 104
2.54 x10
3.96 x 10~
6.06 x 1Q6

-2.36x 10~

3.27 x 10~
5.45 x 10
1.82 x10
9.10x 105
6.06 x 105
5.05 x 10
5.Q5 x10~
5.90x105
7.86x 10
1.18x 106
1.97 x10
3.60 x 106
7.21 x 10'
1.56 x 107
3.64 x 107
9.11x 107

25
~ff, fft 3~n-ls m-1 18 ~n-ls m

8 2 (n ! G(rt k)(0) g (13)

with the requirement 5p z Gp . We now have a
recursion relation allowing us to calculate the
coefficients b„of L for arbitrary n. Using
REDUCE, ' we have calculated b„up to n=18.
Table I shows the results up to n= 5. The n = 0, 1,
2, 3 values are well known. '-'

To get an asymptotic estimate for b„ for n»1,
we go back to Eq. (2). We notice that the singula-
rity at z= 0 is stronger than the x= 1 singularity.
Setting x= 0, and using the method of steepest
descents we obtain for large n

(-—,)"n! e ', »nI ~

tiation of B(z)= exp[G(z) J):

B (.) =
~ ~

G'" "(.)B'"(.)(n-9
=OI, k j

and, therefore,

(n —I) G'"-"(O)S„.
&ui

If we further write

(10)

Notice that the answer is of O(m, /m„) and so is
comparable with the neglected terms. For a mass
ratio m /m =10, we checked that this estimate
was good to within 2% for n ~ 6 (see Table II). To
see how we11 b„approximates a„, we evaluated a„
by numerical integration. The results for a„, 5„,
and c„, where'

m 4
(1 )nn i e-lcA

e

0
1
2:
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

CEn

0.500
0.248
0.217
0.236
0.293
0.405
0.610
0.990
1.72
3.19
6.30
1.31x 10'
2.92 x 10
6.84 x 10'
1.69x 10'
4.42x10'
1.21 x 103
3.54 x 10
1.08 x 104
3.45 x 10
1.15x105

0.500
0.072
0.390

-0.180
1.36

—3.23
1.51 x 10'

-6.70x 10
3.64x102

-2.17x 1Q
1.45 x 104
1.06x10
8.52 x10

-7.38 x 106
6.69x 10'
6.89 x 1Q
7.35x109
8 33x10
9.99x 10

-1.27 x10
1.69 x 10

1.78xlQ
2.97 x10i
9.90
4.95
3.30
2.75
2.75
3.21
4.28
6.42
1.07 x 10
1.96x10
3.93 x 10
8.50 x10i
1.98 x 102
4.96 x 10
1.32 x 103
3.75x103
1.12 x 104
3,56 x 104
1.17x 105

TABLE W. The quantities a„, b„, and c„up to g =20
for the mass ratio m„/m~=10.

are shown in Tables III and IV for the mass ratios
m„/m, = 207 and m„/m = 10.

We see that for the physical mass ratio m, /m, =

207 the approximation a„=b„ is good up to n = 10,
while for the ratio m /m = 10, the approximation
is totally wrong for all n~ 1. That is, in the
latter case, the neglected terms of O(m /m„) are
now bigger than the logarithmic terms and the
O(1) terms together. On the other hand, for n&18,
the approximation a„=c„ is very good.

To summarize, for very large mass ratios, b„
provides a good approximation for low n, while
c„ is good for very large n. In the region in be-
tween, neither is valid, and one must therefore
use the full anomaly. This might have some
relevance for the ~-lepton anomaly with muon
bubble insertions since (m, /m, ) = 16.9.
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