Borel transform technique and the n -bubble-diagram contribution to the lepton anomaly

Morten L. Laursen and Mark A. Samuel

Quantum Theoretical Research Group, Department of Physics, Oklahoma State University, Stillwater, Oklahoma 74078 (Received 3 September 1980)

By using the Borel transform technique we calculate analytically the muon anomaly from the mass-dependent n bubble diagram in the limit where the mass ratio m_{μ}/m_e is large. For large n the sign oscillates, in contrast with the correct anomaly. The analysis shows that the validity of expanding in $L \equiv \ln(m_\mu/m_e)$ is strongly dependent on the order $N = 2n + 2$, in which we calculate.

I. INTRODUCTION

In calculating the mass-dependent contribution to $g-2$ of the muon, it has been customary for to g-2 of the muon, it has been customary for
many years to use the large mass ratio m_{μ}/m_{e} ~
207 as a good expansion parameter.^{1,2} We restri 207 as a good expansion parameter.^{1,2} We restric ourselves to the class of diagrams with electron vacuum polarization insertions into the lowestorder muon vertex (see Fig. 1).

One considers the asymptotic part of the photon' s self-energy $d_R^{\infty}(q^2/m_e^2)$, that is, terms of order $O(m_e^2/q^2)$ are neglected. From this one can, in principle, calculate the anomaly to $O(1)$. Another possibility is to use the Kinoshita method. For low-order perturbation theory this approximation seems to work very well. The question is whether this will be valid in high order $n \geq 1$, and how strongly the approximation depends on m_{μ}/m_{μ} .

It is the purpose of this paper to investigate this question for a simple class of diagrams, namely the mass-dependent n -bubble diagram (see Fig. 2).

Our analysis shows that the expansion breaks down for $n \ge n_0$, where n_0 is dependent on the mass ratio m_{μ}/m_{ρ} . In particular we show that the answer starts oscillating like $(-1)^n$ in disagreement with the exact anomaly which is positive for all n .

It is possible to explain why this so-called "false expansion" breaks down. We have neglected terms such as $m_e²/q²$. Now to get the full anomaly one

FIG. 1. Electron vacuum polarization insertion into the lowest muon vertex.

must integrate $d_R(q^2/m_e^2)$ with $q^2 = -m_\mu^2 x^2/(1-x)$ over the range $0 \le x \le 1$. Clearly, the term m^2/a contains a singularity at $x=0$, and so the neglected terms may become important. The full anomaly does not have such a problem since d_R goes to zero for $x \rightarrow 0$.

It was shown earlier that d_R^* satisfies a homogenous Callan-Symanzik equation,³ and since the asymptotic anomaly is a linear functional of d_R^{∞} , it. itself satisfies a CS equation. This equation is then solved to all orders, but in view of the above, one might question the validity of this. That is, one cannot neglect the right-hand-side function $\Delta(q^2/m_a^2) \to 0.$

In Sec. II we calculate the anomaly exactly for all *n*, in the limit $m_{\mu}/m_{e} >> 1$, by making use of the Borel transform technique.⁵ For large n an approximate expression is obtained. The exact anomaly is evaluated numerically and is compared to the above-mentioned anomaly for different mass ratios. We also compare with Lautrup's asymptotic estimate.⁶

II. MUON ANOMALY FROM THE MASS-DEPENDENT n-BUBBLE DIAGRAM

The exact muon anomaly from the mass-dependent *n*-bubble diagram is $a_n(\alpha/\pi)^{n+1}$, where

FIG. 2. The mass-dependent n -bubble diagram contributing to $g-2$ of the muon.

 ${\bf 23}$

2478

1981 The American Physical Society

 $\pi^{(2)}$ being the standard second-order vacuum pola-

rization function⁶ given by

$$
\pi^{(2)}\left(\frac{t}{m_e^2}\right) = \frac{8}{9} - \frac{B^2}{3} + \left(\frac{1}{2} - \frac{B^2}{6}\right)B\ln\frac{B-1}{B+1}
$$

and

$$
B=(1-4m_e^2/t)^{1/2}
$$

The anomaly (evaluated in the limit m_μ/m_e >>1) is denoted b_n and uses the asymptotic vacuum polarization function

$$
\pi_{\infty}^{(2)} = \frac{5}{9} - \frac{2}{3} \ln \frac{m_{\mu}}{m_e} - \frac{1}{3} \ln \frac{x^2}{1-x}.
$$
 (2)

Furthermore, let c_n stand for the anomaly with the x^2 in $\pi \stackrel{(2)}{\sim}$ replaced by 1. c_n represents the true asymptotic value of a_n for large n.

In the following let L stand for $\ln(m_\mu/m_e)$, $a =$ $\frac{5}{9} - \frac{2}{3}L$, and $b = -\frac{1}{3}$. In order to evaluate b_n we will consider the Borel transform $B(\kappa)$ of the series

$$
\sum_{n=0}^{\infty} b_n \kappa^n, \tag{3}
$$

which is defined as⁵

$$
B(\kappa) = \sum_{n=0}^{\infty} \frac{b_n}{n!} \kappa^n.
$$
 (4)

Using Eqs. (1) , (2) , and (4) one finds

$$
B(\kappa)=e^{-\kappa a}\frac{(1+\kappa b)}{(2-\kappa b)(1-\kappa b)}\frac{\Gamma(1+\kappa b)\Gamma(1-2\kappa b)}{\Gamma(1-\kappa b)}.
$$
 (5)

To obtain b_n one now differentiates $B(\kappa)$ *n* times with respect to κ :

$$
b_n = \frac{d^n B(\kappa)}{d\kappa^n} \bigg|_{\kappa=0} \equiv B^{(n)}(0) \,.
$$
 (6)

Since it is easier to differentiate ln $\Gamma(Z)$, we find it convenient to define $G(\kappa) = \ln B(\kappa)$. Using the fact that the Euler function $\psi(Z)$ satisfies

$$
\psi(Z) = \frac{d}{dZ} \ln \Gamma(Z),
$$

\n
$$
\psi^{(n)}(Z)\Big|_{Z=1} = (-1)^{n+1} n! \zeta(n+1),
$$
\n(7)

we find

we find
\n
$$
G^{(1)}(0) = -a + \frac{5}{2}b = \frac{2}{3}L - \frac{25}{18},
$$
\n
$$
G^{(n)}(0) = b^{n}(n-1)! \left\{ (-1)^{n-1} + \frac{1}{2^n} + 1 \right. \qquad (8)
$$
\n
$$
+ \zeta(n) [(-1)^n + 2^n - 1] \right\}, \quad n \ge 2.
$$

Asymptotically for large $n, G^{(n)}(0)$ approaches

$$
G^{(n)}(0) \simeq (2b)^n (n-1)!\ . \tag{9}
$$

To obtain b_n we first notice that the following recursion formula holds (easily proved by differenTABLE I. Coefficients $b_{n,m}$ up to $n = 5$.

$$
b_{0,0}: \frac{1}{2}
$$
\n
$$
b_{1,0}: -\frac{25}{36}
$$
\n
$$
b_{1,1}: \frac{1}{3}
$$
\n
$$
b_{2,0}: \frac{2}{9}\xi(2) + \frac{317}{324}
$$
\n
$$
b_{2,1}: -\frac{25}{27}
$$
\n
$$
b_{2,2}: \frac{2}{9}
$$
\n
$$
b_{3,0}: -\frac{2}{9}\xi(3) - \frac{25}{27}\xi(2) - \frac{8609}{5832}
$$
\n
$$
b_{3,1}: \frac{4}{3}\xi(2) + \frac{317}{162}
$$
\n
$$
b_{3,2}: -\frac{25}{27}
$$
\n
$$
b_{3,3}: \frac{4}{27}
$$
\n
$$
b_{4,0}: \frac{16}{27}\xi(4) + \frac{8}{27}\xi^2(2) + \frac{100}{81}\xi(3) + \frac{634}{243}\xi(2) + \frac{64613}{26244}
$$
\n
$$
b_{4,1}: -\frac{16}{27}\xi(3) - \frac{200}{81}\xi(2) - \frac{8602}{2187}
$$
\n
$$
b_{4,2}: \frac{16}{27}\xi(2) + \frac{634}{243}
$$
\n
$$
b_{4,3}: -\frac{200}{243}
$$
\n
$$
b_{4,4}: \frac{8}{81}
$$
\n
$$
b_{4,4}: \frac{8}{81}
$$
\n
$$
b_{5,0}: -\frac{40}{27}\xi(5) - \frac{80}{81}\xi(3)\xi(2) - \frac{1000}{243}\xi(4) - \frac{5002}{263}\xi^2(2) - \frac{3170}{243}\xi(3) - \frac{43045}{2681}\xi(2) - \frac{2182775}{243}
$$
\n
$$
b_{5,1}: \frac{160}{81}\xi(2) + \frac{832065}{2729}\xi(3) - \frac{4302775}{2729}\xi(3) + \frac{634
$$

TABLE II. Check of asymptotic expression for b_n for the mass ratio $m_{\mu}/m_{e}=10$.

n	b_n	b_n (asymptotic)
0	0.500	0.230
1	0.072	-0.153
2	0.390	0.205
3	-0.180	-0.409
$\overline{\mathbf{4}}$	1.36	1.09
5	-3.23	-3.64
6	1.51×10^{1}	1.45×10^{1}
7	-6.70×10^{1}	-6.78×10^{1}
8	3.64×10^{2}	3.62×10^2
9	-2.17×10^{3}	-2.17×10^{3}
10	1.45×10^{4}	1.45×10^{4}
11	-1.06×10^{5}	-1.06×10^{5}
12	8.52×10^{5}	8.49×10^{5}
13	-7.38×10^{6}	-7.36×10^{6}
14	6.89×10^{7}	6.87×10^{7}
15	-6.89×10^{8}	-6.87×10^{8}

n	a_n	b_n	c_n
0	0.500	0.5	3.27×10^{7}
$\mathbf{1}$	1.09	1.08	5.45×10^{6}
$\boldsymbol{2}$	2.72	2.72	1.82×10^{6}
3	7.23	7.19	9.10×10^{5}
$\overline{\bf 4}$	2.02×10^{1}	2.02×10^{1}	6.06×10^{5}
5	5.85×10^{1}	5.81×10^{1}	5.05×10^5
6	1.75×10^{2}	1.75×10^{2}	5.05×10^5
7	5.40×10^{2}	5.34×10^{2}	5.90×10^{5}
8	1.71×10^{3}	1.71×10^{3}	7.86×10^{6}
9	5.53×10^{3}	5.40×10^{3}	1.18×10^{6}
10	1.83×10^{4}	1.89×10^4	1.97×10^{6}
11	6.20×10^{4}	5.65×10^{4}	3.60×10^{6}
12	2.14×10^{5}	2.54×10^{5}	7.21×10^6
13	7.55×10^{5}	3.96×10^{5}	1.56×10^7
14	2.71×10^{6}	6.06×10^{6}	3.64×10^7
15	9.93×10^{6}	-2.36×10^{7}	9.11×10^{7}

TABLE III. The quantities a_n , b_n , and c_n up to $n= 15$ for the physical mass ratio $m_{\mu}/m_{e} = 207$.

tiation of $B(\kappa) = \exp[G(\kappa)]$:

$$
B^{(n)}(\kappa) = \sum_{k=0}^{n-1} {n-1 \choose k} G^{(n-k)}(\kappa) B^{(k)}(\kappa) \qquad (10)
$$

and, therefore,

$$
b_n = \sum_{k=0}^{n-1} {n-1 \choose k} G^{(n-k)}(0) b_k.
$$
 (11)

If we further write

TABLE IV. The quantities a_n , b_n , and c_n up to $n = 20$ for the mass ratio $m_{\mu}/m_{e}=10$.

\boldsymbol{n}	a_n	b_n	c_n
0	0.500	0.500	1.78×10^{2}
1	0.248	0.072	2.97×10^{1}
$2 \cdot$	0.217	0.390	9.90
3	0.236	-0.180	4.95
4	0.293	1.36	3.30
5	0.405	-3.23	2.75
6	0.610	1.51×10^{1}	2.75
7	0.990	-6.70×10^{1}	3.21
8	1.72	3.64×10^{2}	4.28
9	3.19	-2.17×10^3	6.42
10	6.30	1.45×10^{4}	1.07×10^{1}
11	1.31×10^{1}	-1.06×10^{5}	1.96×10^{1}
12	2.92×10^{1}	8.52×10^{5}	3.93×10^{1}
13	6.84×10^{1}	-7.38×10^{6}	8.50×10^{1}
14	1.69×10^{2}	6.69×10^{7}	1.98×10^{2}
15	4.42×10^{2}	-6.89×10^{8}	4.96×10^{2}
16	1.21×10^{3}	7.35×10^{9}	1.32×10^3
17	3.54×10^{3}	-8.33×10^{10}	3.75×10^{3}
18	1.08×10^{4}	9.99×10^{11}	1.12×10^4
19	3.45×10^{4}	-1.27×10^{13}	3.56×10^{4}
20	1.15×10^{5}	1.69×10^{14}	1.17×10^{5}

$$
b_n = \sum_{m=0}^{n} b_{n,m} L^m,
$$
 (12)

Eq. (11) gives easily

$$
b_{n, m} = \frac{2}{3} b_{n-1, m-1} - \frac{25}{18} b_{n-1, m} + \sum_{k=m}^{n-2} {n-1 \choose k} G^{(n-k)}(0) b_{k,m}
$$
 (13)

with the requirement $b_{0, m} = \frac{1}{2} \delta_{0, m}$. We now have a recursion relation allowing us to calculate the coefficients $b_{n,m}$ of L^m for arbitrary n. Using REDUCE,⁷ we have calculated $b_{n,m}$ up to $n=18$. Table I shows the results up to $n=5$. The $n=0,1$, 2, 3 values are well known.¹⁻⁴

To get an asymptotic estimate for b_n for $n \geq 1$, we go back to Eq. (2). We notice that the singularity at $x=0$ is stronger than the $x=1$ singularity. Setting $x = 0$, and using the method of steepest descents we obtain for large n $x=0$ is stronger than the $x=0$, and using the method
s we obtain for large *n*
 $(-\frac{2}{3})^n n! e^{5/6} \left(\frac{m_e}{m_\mu}\right)$, $n >> 1$.

$$
b_n \simeq (-\frac{2}{3})^n n! e^{5/6} \left(\frac{m_e}{m_\mu} \right), \quad n >> 1.
$$
 (14)

Notice that the answer is of $O(m_e/m_\mu)$ and so is comparable with the neglected terms. For a mass ratio $m_{\mu}/m_{\nu} = 10$, we checked that this estimate was good to within 2% for $n \ge 6$ (see Table II). To see how well b_n approximates a_n , we evaluated a_n by numerical integration. The results for a_n , b_n , and c_n , where⁶

$$
c_n \simeq \left(\frac{1}{6}\right)^n n! \, e^{-10/3} \left(\frac{m_\mu}{m_e}\right)^4,\tag{15}
$$

are shown in Tables III and IV for the mass ratios $m_{\mu}/m_{\rho} = 207$ and $m_{\mu}/m_{\rho} = 10$.

We see that for the physical mass ratio m_μ/m_e = 207 the approximation $a_n \approx b_n$ is good up to $n \approx 10$, while for the ratio $m_\mu/m_e = 10$, the approximation is totally wrong for all $n \geq 1$. That is, in the latter case, the neglected terms of $O(m/m_u)$ are now bigger than the logarithmic terms and the $O(1)$ terms together. On the other hand, for $n \ge 18$, the approximation $a_n \simeq c_n$ is very good.

To summarize, for very large mass ratios, b_n provides a good approximation for low n , while c_n is good for very large n. In the region in between, neither is valid, and one must therefore use the full anomaly. This might have some relevance for the τ -lepton anomaly with muon bubble insertions since $(m_{\tau}/m_{\mu}) = 16.9$.

ACKNOWLEDGMENTS

We wish to thank R. Coquereaux for informing us about the Borel transform technique. This work was supported by the U. S. Department of Energy.

- ¹T. Kinoshita, Nuovo Cimento 51B, 140 (1967).
- H. Suura and E. Niehmann, Phys. Rev. 105, 1930
- (1957); A. Petermann, *ibid.* 105, 1931 (1957).
- 3 B. E. Lautrup and E. de Rafael, Nucl. Phys. $\underline{B70}$, 317 (1974).
- 4M. A. Samuel, Phys. Rev. D 9, 2913 (1974).
- ⁵R. Coquereaux, Phys. Rev. D <u>23</u>, 2276 (1981).
⁶B. E. Lautrup, Phys. Lett. <u>69B</u>, 109 (1977).
-
- $7A.$ Hearn, Interactive Systems for Experimental Applied Mathematics, edited by M. Klerer and J. Reinfelds (Academic, New York, 1968).