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Higher-order corrections in the cut-vertex formalism
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An algorithm is given for the calculation of higher-order corrections to the cut vertices and their coefficient

functions of deep-inelastic and annihilation processes in the model field theory (@ ),. The introduction of covariant

phase-space variables renders the calculation simple and elucidates the relations between the deep-inelastic and

annihilation structure functions.

I. INTRODUCTION

In the past few years, perturbative field theories
were used to describe deep- inelastic lepton-hadron
and totally inclusive electron-positron annihilation
processes. Recently, an extension of the light-
cone expansion method, the so-called cut-vertex
formalism, ' extended the applicability of these
theories to other hard-scattering processes.
Therefore, we think that it is worth trying to de-
velop simple techniques for the calculation of cut
vertices and the relevant coefficient functions. In
this paper we present such a technique.

In Sec. II we present our renormalization tech-
niques. In Sec. III we define phase-space vari-
ables, which are simply related to light-cone vari-
ables. They are useful in the study of various re-
lations between the spacelike and timelike regions,
while at the same time they simplify the calcula-
tion. In Sec. IV we give characteristic examples
for the calculation of spacelike and timelike cut
vertices as well as for their coefficient functions.
In Sec. V we present the results of the cut vertices
up to the order g~ and the coefficient functions up
to the order g'. We also discuss the relations be-
tween the deep-inelastic and annihilation structure
functions. In this paper we work in (4'), theory
because of the formal simplicity of that theory; the
extension to quantum chromodynamics is postponed
to a future paper.

A summary of the results of this paper appeared
in Ref. 2. In the meantime a similar work had
been done by Kubota. ' In the later reference the
coefficient functions up to order g' and the anomal-
ous dimensions of the spacelike and timelike cut
vertices up to order g~ have been calculated in
(4'), theory. The calculation is carried out in the
Mellin moment space and in the minimal-subtrac-

tion renormalization scheme, while ours is made
in the momentum-subtraction scheme and in the
inverse Mellin transform space. We agree as to
the structure functions and the dimensionally re-
gularized form of the cut vertices in order g4 as
they are presented in Ref. 3.

II. RENORMALIZATION ALGORITHM FOR
THE CUT VERTICES'

with the following renormalization conditions for
the two- and three-point one-particle-irreducible
(1PI}Green's functions:

1"~2 '(p2) 1~2=, = 0 (2.2a)

p t2)(p2)
dp'

p 2 4 2
(2.2h)

I'"'(p', y', (p- k)')~, 2,2, ,.„2=—ig. (2.2c)

g is the renormalized coupling constant. We also
define

o.,=g, '/(4m)" ~', o.'g'/(4w)'. (2.2}

Renormalization conditions (2.2a)-(2.2c) determine
the anomalous dimension of the field 4 and the P
function,

In this section we develop the conventions and
notations for the renormalization algorithm which
is applied to multiplicatively renormalizable Feyn-
man amplitudes in a massless field theory. We
will use the dimensional regularization going to
n =6 —2& dimensions, and the renormalization
conditions will be taken at a fixed point 4m p',
where p,

' is the scale appearing in the dimensional
regularization.

The prototype theory that we will use is (4'),
theory which is defined by the bare Lagrangian4

(2.1}
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np(n, f)= p', n8p2 (2.4)

(2.5a)

e, eof ixed.

As shown by Mueller, in order to analyze the
deep-inelastic processes one has to introduce the
spacelike and timelike cut vertices (SLCV, TLCV).
The SLCV are closely related to the minimal-
twist Wilson operators, and the- TLCV can be for-
mally considered as an "analytic continuation" of
the SLCV. These quantities are multiplicatively
renormalizable and we give their definition in
what follows.

(i) The amputated minimal-twist Wilson opera-
tors (WO) [Fig. 1(a)]:

r, ( „)=(oy(p):y(o)(' &) y(0);y(p) o).

(ii) The spacelike cut vertex (SLCV) [Fig. 1(b)]:

~) = ''&, &.I' )9(' 4P'..(P, ').
(2.5b)

(iii) The timelike cut vertex (TLCV) [Fig. 1(c)]:

In the former equations ~ is a lightlike vector

62=0, ~ p &O. (2.8)

P' is spacelike for WO and SLCV and'timelike for
TLCV; 0 is any even integer for WO, and any
complex number with Reo & 0 for SLCV and TLCV,

(&»= +& IT(e('&)@(+&)) lx&&~IT'(@(' I )8+ &))10)
I

G"'("' +' e)l'.
X

(2.')

(2.Sa)

, fp'
ASLII4gp, ' j

( p' =' ~

&4& P

(2.8b)

(2.8c)

In the case where 0, is a conserved current, the
renormalization conditions (2.2a), (2.2b), and

(2.8a), valid already in the free-field theory, do
not spoil the corresponding Ward identity. [In
(4'), theory, there is only one conserved current,
the energy-momentum tensor 0,.] This point is
essential for the parton-modeL interpretation of
the cut-vertex formalism.

Being multiplicatively renormalizable, the WO,

where G"' is the renormalized propagator, and T
and T are the symbols for the time- and antitime-
ordered products. Note that the formulas (2.5b),
(2.5c), and (2.V) suggest a parton-madel interpre-
tation of the cut-vertex formalism. '

We choose the following renormalization condi-
tions for I', A', and A

(p'
I'o.

l 2, n
l

=1,
'& 4& P ] P=-4,g2

8 8,+P(n)n +y„—2y~ A =—0,8p2 an (2 9)

where y„ is the anomalous dimension of A and yo
the anomalous dimension of the field C. Using
Eq. (2.9) (RGE), one greatly simplifies the com-
putation of A. Indeed, since we work in a mass-
less theory, and since A is a function of only one
momentum, it is obvious by power counting that
up to the Nth order in n we have

Al „n = Q a„(n)ln
li,4p p, 0 4m p

(2.10)

with
n

a„(n)=g n'c„, . (2.11)

Therefore, by applying the RGE (2.9) to the ex-
pression (2.10) for A, one gets a recursion rela-
tion between the a 's which can be expressed as

I

SLCV, and TLCV satisfy renormalization-group
equations (RGE). In all that follows we will denote
by A(P'/4v p, ', n) any of these three quantities. One
has

1 m

a„(n) = , P(n)n , +r"(n) —2r, (n) a—,(n).

(I) tb) tel

FIG. 1. (a) Graph for the matrix element of the
minimal-bvist Wilson operators; p2 & 0, ZP = 0. Q)
Spacelike cut vertices; p &0, 5, =0, E.p &0. (c)
Timelike cut vertices; p &0, b,'=0, h-p&0.

(2.12)

The relation (2.12) shows that, given P(n) and

po(n), A is completely determined by its renor-
malizatior. condition ao(n) -=A(1, n) and its anomal-
ous dimension p„(n), or alternatively by a, (n) and
the simple logarithmic coefficient a, (n), in the
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expansion (2.10). If a, (a) —= 1 as in Eqs. (2.8a),
(2.8b), and (2.9c) one has simply that

y„—2y =«,(a). (2.13)

(2.14)

a, = (4(& p') 'Z (a, &)a . (2.is}

We now turn to the computation technique itself,
which will be illustrated up to two loops. First,
we must define the wave-function and coupling
normalization constants S~ and Z,

Q =Z '~'(a, a)Q,

'The subscript zero denot;es the bare quantities. In
any finite order in n, say N, Z~ and Z can be
written in any renormalization scheme as

e (o) ~ &n e(e)

(2.17)

Z~"(' ) is a polynomial in E of a maximal degree n.
On the other hand, the renormalizability of A im-
plies the relation

Z~ and Z can be computed in perturbation theory
from the following conditions:

Q2
A „a =limZ„(a, e)A, (P', a„c).

4FP 6 O

(2.18)

I &»(p 4vp2 a}-I;mg (a $)l"&»(p«a g)

Equation (2.16b) is equivalent to

I'"'(p, q, 4(&y', a)/- ig

(2.16b)

with

=limZr(a, a)I',"&(p, (f, ao, ~)/-fg(& (2.16c)

Zr(a f ) = Z~' '(a, e)Z ' '(a, 6) . (2.16(i)
I

(2.16a)

I (p {I 4(&p, a) =limg i (a, f)I (I (p, (I, ao, f).

In this equation the renormalization constant Z„
has a similar expansion to that of Z~ and Z,

Z (a, ~) =g —Z„&"&(«), Z„"&(c)=1.A
f1=0

(2.17')

(2.19)

We observe, using dimensional analysis, that the
general form of the bare amplitude A, (P', a„&) is

S
A, (P', a„e)=i++; (P') "A "&(c).

k'=1

In Eq. (2.19), the A" &(e) are analytic functions of
(We will take the convention P'=-p' for the

WO and P = ~p'~ for the SLCV and TLCV. ) Then
we combine Eqs. (2.19), (2.15), (2.17), and (2.17')
to get

A(t, a) =lim 1++—„(Z„'n'(e)+g e""« "A'" «'(e)Z„'«'(E)l,
n~ 0 n=) ( «=(&

(2.20)

(2.21)

In Eq. (2.20), whatever the renormalization condi-
tions are, the Z„'"' must satisfy the following con-
straint coming from the finiteness of A as &-0:

Z&(n&(g}+g en(n-«& A &n-«&(~ }Z(«)(~)
dc 6~p

= 0 (2.22)

with A. =O, 1,2, . .. ,n -1. We illustrate that up to
two loops (N=2)

A(f, a) =lim I+—[A"'(a)(e"—I)+A "&(c)+Z"&(&)]
6-O

Q
+—(A"'(e)(e"—1)'

+[2A' '(e)+A"'(g)g "&((.)](e'& I)].

+—, (n "'{a) + n „"' (c ) + n "' {a){"' (a )]).

(2.23)

where we have defined f =In(4(& p, '/P') and the poly-
nomial in E, Z~«&(&), as

N

Z„(a, &)[Z (a, a)] =g —
« Z~ '(e),m= 0,1,2, . . . , N-I .

We note that Eq. (2.21) gives for n =1

g (1)(~) g (1)+g (1) (2.24)

Therefore, the conditions (2.22) for N=2 [i.e., the
fact that there are no poles in E in the expression
(2.23)] read

A "&(~)+Z„"&(e)~, ,=0,

2A'«&((. )+A»(&)[g»(e)+Z" &] ~, ,—P,

(2.2Sa)

(2.25b)

(A ( ) ((n ) +A ( )(«)[g (& ) (g ) +g (1 ) (~ )] +g («) (~)] p
d

6=0

(2.2Sd)

Using these constraints and Eq. (2.23) we obtain
for A the following expression valid in any renor-
maliz ation scheme:

A"'(e)+A("(&)[Z"'(c)+Z"'(e)]+Z"'(z)~, ,=0,

(2.25c)
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A(f, a) =1+~[A' t+(A"'+z "') ]+~'A"t'

+ ~3t[2A &3&'+A &1 &'(Z&1& A &1&)

+A (1)(Z (1)'+Z(1)')]

+ ~3 1
[A &3&"+Z &3 &"pA &1 &"

(Z &1 & A &1&)

+ 2A (1 &'(Z (1 )' ~ Z (1 ) ')] (2.26)

where
dA' =—A(e), A"=,A(e)

dC 60

We suppose now that Z has already been deter-
mined and before specifying the renormalization
scheme for A. we observe the following well-known
results.

(i) The leading-logarithm coefficient is indepen-
dent of the renormalization conditions for the
Green's functions of the theory and for the opera-
tors SLCV and TLCV.

(ii) The coefficient of the simple logarithm at the
two-loop level depends on the renormalization
conditions of the operators through Z~+' which ap-
pears in the terms of order n; as soon as one
fixes the renormalization conditions Z„"' can be
written as a function of A"'.

(iii} Z(3) can also be eliminated from the formu-
I

la (2.26) in the same way as Z~&'&' and can be writ-
ten as a function of A"' A"', 4"' Z"', and
Z"' after fixing the renormalization conditions for

So we have only to compute the contribution of
the bare diagrams of A, A"'(0) A"'(0) A("(0),
and A(3) (0), i.e., the coefficients of simple and
double poles in & of the bare two-loop diagrams
and the coefficient of the simple pole and constant
term in & of the one-loop bare diagram. In order
to go further we need to compute Z and Z~.
Therefore, we expand the 1PI Green's functions
r, '/-1p' and r("/ig, ~;,3 „as

'(p n )/ 1p'=1+ g o (&') "'D&3&(g),
a=~

(2.27a)

r~»~ n~0 (Pt It 0} 1 + Q 0 (~2)-3eR (3&(~)—Zgo p =q2=pa

(2.27b}

These expressions are of the same type as that of
Eq. (2.19) when we change A-D and A-R, re-
spectively. Then one can write the analogous
equations to (2.26) for the renormalized I'"'/-ip'
and r& &/

(2.28 a)

(2.28b)

(2.29a)

r&'&(p', 4vi1', n)/ ip =[as-Eq. (2.19),A-D, Z„-Z ],
r "'(p, q, 4&()1', (r )/-ig

~ 3,3 „=[as Eq. (2.19), A -R, Z„-Z„J .
Taking into account the renormalization conditions (2.2a), (2.2b), (2.2c), and (2.8a), (2.8'b), and (2.8c) we
can now eliminate all the Z„, Zo, and Z dependence in the quantities A, r&3), and r&3)~ 3

A(t, o')=I+oA f+o.'A f +Q t[2A( & —A( 'A ) — 2A~ &R&1)+SA&&1D&&( —I g)]~

r "'(p, q, f, ~) |,3.3 „=-&g(I+oR"'t+a'R "'t'+ a'f[2R ' - SR"R" + SR"'D" (I -~)]

r"'(p f (y)= ip (I+oD&»(i+I)+o&3D&3)f3

+ &3(i +1)[2D"'(I—2e) -2D u'(I -e)R &'&+2D &'&D &»(I 2e]~,j..

(2.29b)

(2.29c)

The expressions (2.29a), (2.291), and (2.29c) give
the renormalized quantities as functions of bare
ones. (The renormalization conditions are there-
fore automatically taken into account. ) Using Eq.
(2.19) we can now easily determine the anomalous
dimension y„and y~ as functions of bare quanti-
ties:

2y = ()(D "'+ «' [2D"'(1 —2e)

—2D"'(1 —E)(R "'—D "'(1—e))]~~„

(2.30a)

I

ularized quantities. Section III will be devoted to
the phase-space analysis necessary to compute
them.

III. PHASE-SPACE PARAMETRIZATION

In this section we study the phase-space domain
which is necessary for the computation of the dia-
grams contributing to the SLCV, the TLCV, and
their coefficient functions.

Considering the processes shown in Figs. 2 (a}
and 2 (b) we choose a frame where

&&A
&1 ) ~ &32 [2A (2) A (1 )A &1 ) 2A &1 )R &1 )

A

+3A 1'D" '(1 —e)]', &)
. (2.30b)

We are now at the point where the renormalized
quantities have been expressed in terms of reg-

(lot 131

In the SL case we have [Fig. 2 (a)]

(3.1a)

(s.lb)



2468 L. BAULIEU, , E. G. FLORATOS, AND C. KOUNNAS

where

p' (z —x)(1 —p)
q' (p —x)(1 —z)' (3.9)

la)

FIG. 2. (a) One-virtual-particle (k~) configuration
of the process J(-q)+y(p) X;p, q, 2p q& 0. (b)
virtual-particle (k") configuration of the process J(q)
-q (p)+» P', q', 2P.q& 0.

We note that the variables p, z, P, and x can be
expressed in terms of Lorentz invariants, since
one has

(3.10a)

q &0; q, =q, +q, &0, q =q -q, &0, (3.2a) (3.10b)

p'&0; p. =p, +p, &0, p =p, -p, &0 (s.2b)

and the condition that the particles produced in the
upper and lower parts of Fig. 2 (a} are real par-
ticles implies the following inequalities:

12 2 p x (0 Pm(n)
~k —q~ = —q x

(p -q}'=- (q'-xp')
x

(3.10c)

(3.10d)

(p-k). &0, (p-k) &0,

(k —q). » 0, (k —q) o-0,

(P k).(P —k) o(P —k)' O,

(k q).(k q) (k-q)' O.

In the TL case [Fig. 2 (b)], one has

q'&0; q.&0, q &0,

p'&0. p &0, p &0

and also

(k-p). »0, (k-p)»0,
(q - k). » 0, (q - k) o- 0

(3.3a)

(s.3b)

(s.sc)

(3.3d)

(3.4a)

(s.4b}

(3.5a)

(3.5b)

p2&0; p.&0, p &0 (3.11)

and the reality of the produced particles together
with the presence of the function g(k') in the Fig.
1 (b) imply the inequalities

(p-k), »0, (p-k)»0
(p —k), (p —k} o- (p —k}'& 0,
k'& 0.

For the TLCV we have

(S.12a)

(S.I2b)

(3.12c)

We now consider the phase-space domains associ-
ated with the SLCV and TLCV shown in Figs. 1 (b}
and 1 (c).

For the SLCV we have,

(k —p), (k —p) & (k —p)'&0,

(q —k), (q —k) o- (q —k)'» 0.
(3.5c)

(s.5d)
p'&0; p&0, p &0

and also

(3.13)

We introduce the following set of dimensionless
variables:

and

q, k' k.x —
~ z —

q p—P" kP+ ' P,

P 1 —p2Zk' 1 —z'

(S.sa)

(s.sb)

Then in terms of these variables the phase-space
domains for the processes of Figs. 2 (a) and 2 (b)
are defined by the following sets of inequalities:

(i) In the SL case

(k-p). oo, (k-p) o,

(k-P).(k-P) o (k-P)' O.

(3.14a)

(3.14b)

0(p(z (I,
0( (]

(S.15a)

(3.15b}

[In the TLCV there is no 8(k').] The phase-space
domain defined by Eqs. (3.12a) and (3.14b) can be
expressed in terms of the variables defined in
Eqs. (3.6a) and (3.6b). One obtains the following
set of inequalities:

(i) SLCV:

0 (I (p(8 (1,
0&P &P&I

(ii) In the TL case

00. o g )~ P ) Z )~ f

(3.7a)

(3.7b)

(s.sa)

(ii) TLCV:

o0'))~ P)~Z &~ $

0( (]
Introducing a lightlike vector &~,

~'=0 and & ~ p=p, &0,

(3.16a)

(3.16b}

(3.1V)

0&P &P&l (s.sb) we can express k', (p'- k}', and & ~ k as functions
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of p, z, and P:

k
Q ep

(1- p) 1
(1-z) P' (3.18a)

(3.18b)

(3.18c)

These equations show that z, p, and P are invari-
ant under a Lorentz transformation.

For the calculation of the TL cut diagrams we
shall use the variables x, p, z, and p,

1 1 1x=-, p=-, z=-, p=p,
X P

(3.19)

rather than x, p, z, and P. It is worth noticing
that the inequalities (3.8a), and (3.8b) and (3.16a)

l

and (3.16b) written in terms of these variables,

Q&g &p&g c1
0&p &pc]

(3.2Oa)

(3.2Ob)

d"k=2dk, dk d 2'k

and we find the following.
(i) In the SL case:

(3.21)

are the same as the inequalities (3.7a} and (3.7b)
and (3.15b) corresponding to the SL case. We
think that this symmetry between the TL and SL
phase spaces is a key point for the existence of
crossing relations between spacelike and timelike
quantities.

We now express the measure d"k (n =6 —2c) in
terms of the variables p, z, P or p, 7, and P.
First we write

—p'j (2v)"(k')' (4 )v'I'(2 —z) ~ p' '
~ min

(ii) In the TL case:

(2v'j " d"k(p, ')' e" "' dp I' dz, 7 ' '~1 —pj' ' 1 —z~ " ' dp

(, p'& „(2v)"(k')' (4v)'I'(2-e) . ,„,P J, z p ( p & z & . .„P' ''

(3.22 a)

(3.22b)

(3.23a)

where t-=I (4npvPI~P ~) ~

The expressions (3.22a) and (3.22b) allow us to
compute in a systematic and straightforward way
the bare cut diagrams up to two loops. We will
also use the following identities':

x ""=- 5(x}+s—+O(z')x

and

(x+io)'= x8()x+e "((- x)' (ex) (3.23c)

1
. ~,=2' 5g)+z —+O(z2) (3.23b)

+

(o)

A AL

/iX
(b) (c) (~)

where

4x GX—
V (x) = —[(((x)- V'(0)] .

4O X+ 4o X
(3.23d)

(e, )

These identities will allow us to compute in a very
simple way the Laurent expansion in & of the dia-
grams. Explicit examples will be given in Sec. IV.

r:w
(gi)

/ I 'jj, / I 4 I
(g, ) (~, ) (~, ) (a) (b) (c, ) (c )

(h~j (&~j (ij (jj (&j ((j (e, ) (e)

FIG. 3. (a)-(h). Relevant diagrams for both spacelike
and timelike cut vertices, up to the two-loop approxima-
tion. (i)- (k). The two-point function diagrams. (l)
The three-point function at the one-loop level.

FIG. 4. (a)-(e). Diagrams related to the spacelike
and timelike structure functions of the processes J(q)
+ y(p) X and J'(q) q(p)+X up to the one-loop ap-
proximation.
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IV. TVfO-LOOP CALCULATION OF SLCV AND TLCV
AND THEIR COEFFICIENT FUNCTIONS

, We now describe a technique to compute two-loop diagrams contributing to the SLCV, TLCV, and their
coefficient functions for the case of the current J{2C)=:42(X):. The renormalization algorithm is the one
described in Sec. II.

We show in detail the calculation of the diagrams presented in Figs. 3(a)-3(e) contributing to the SLCV
and TLCV, and of the diagrams of Figs. 4(a)-4(e) contributing to the SL and TL coefficient functions. We
start with the sum of the diagrams 3(h, ) and 3(h, ) and of their relevant counterterms 3(h, ) and 3(h2). The
phase-space analysis we gave in Sec. III allows us to write directly the value of the sum of the diagrams
3(h, ) and 3(h,):

&, =()t dpp'J —z '(1 —p, )' '(1 —p)' '(1 —z) "',, G(p, k),

where the variables p, z, and P are defined in Eqs. {3.2), {3.5), or (3.17a), (3.17b), and (3.17c),

4m p,
'

)P2)

and

l
(z') r '*'+ r "' i r "'+)""' z(t —t)']G(i), k = ' . disc, . = ' . 5i
2)( -ig2 (P —it)2+ iO igo -)( i

P2
i

(4.1)

(4.2)

where I',"' is the one-loop bare three-point function [Fig. 3(e)]

?? ~3

Iz (2) —
(

'
)2-ig, ' 0 i (2)))"(q2+iO)[(p —q)2+i0][(q —k)2+i0]

e "I'(1+&) ()'
J,

/1 (p ?)2 p2 ?)2 -z
dyy' ' xy(1 —x), +(1 —y) x

p2 +(1-x) p2
— wi0 (4.3)

(x and y are some Feynman parameters). Using the constraint (p —k)2=0 we have

& ~{a)
—Zgo

e "I'(1+e)B(2 —e, 1 —e) "' —P'
(1

—?)'

I O'
I I

O'I (4.4)

Taking into account the identity (3.23c), we have

etta (1)(&) 1 P2 ?
2 -2

= a dx 2 x, + (1 —x) (4.5)

where

8")(e) = r(l + ~)B(2 —2, 1 —2) . (4.6)

Combining Eqs. (4.1), (4.2), (4.5), and (4.6) one gets

82ttit(1)(2 f1''dz~ =c(' '
I dpp' )

—z '(1 —p/z)' '(1 —p) "(1—z) ""
&I'(2 —e) J, J, z

—6(l —P) I
dx —+(1-x)

' dP (' (1 —z)x
P . .(1-P)z (4.7)

We can expand (1 —z) "2' in powers of e [see Eq. (3.23a)], and the expression (4.7) is written as

e"tR")(e) "' & "'d p&' '
A, =2u2

2 dp p'! —z 2' 1 ——
i (1 —p) '5(l —z) i dx(l —x) '

2e'I'(2 —~) ' )r" Jo

&'dz j.
+ tz, —(1 —z/z) i dx+ z)(z')

I(1 —z). J,
(4.8a)
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or equivalently

eRttft (1&(e) 1 fdpp'((2-p)+nI(1 —p)[(2-21o(1 —p)&2e'r(2 —e),
+ 2 (1-y) (8) — + O(z') I,

+ p

where the convolution product S is defined as follows:

(V (y)(gf(y)), = " V'(y)f—(p/y) = V(—p/y)f(S) .P
g y ~P

(4.8b)

(4.9)

(4.10)

Note that the inverse Mellin transform of the diagrams appears directly in E(l. (4.8b). We now compute
the contribution of the diagrams which contain the three-point function counterterms Z~ '. Since we have
chosen the renormalization condition (2.2c) for the three-point function we have [see E(l. (4.4)]

Z„")(c)=-R"'(e) =r(1+a)B(2 —e, 1 —e) .

yo —o(R(2~(R& g(1&ft (1))y
e e 6=0 P

f'1 1
dp p'(1 —p) ln —.

p40

Proceeding exactly in the same way as for E(l. (4.8a), we obtain

e tftt (1&(e} p 1-2u', dp p'~ (1—p)+e -2(1—p)ln(l —p)+ (1 —y) (I +O(e')&I .
E I'(2 —E) do (1 -y).-,

From E(ls. (4.8b) and (4.11) we extract A~& and -A(2&8(2'.

ft (1&(&) pl 1dtn=2 dpp' (1 —p)+2 (1 —p)[(l —2)n(1 —p)]n(( —y)P) +O(n')I,2I'(2- e) ., (1 - y),-
ft(1& ~ pl-An'R"'=2 dpp' (1 —p)+n. -2(1—p))n(1 —p)+(1 —y)tp +O(n)I.r(2-e) „ (1-y).

Then the contribution to the anomalous dimension y' is [see E(l. (2.31b)j

(4.11)

(4.12a)

4.12b)

(4.13a)

(4.13b)

(4.15)

The inverse Mellin transform of y', P(p), is

P(p) = u'p(1 —p)ln —.1
(4.14)

p
We now turn to the T'I,CV, with the example of diagrams 3(h, ) and 3(h,). The computation is very similar
to the case of the SLAV, and we will only outline the differences which are of interest for the investigation
of the crossing relations between SLAV and TLCV.

Indeed from the phase-space analysis of Sec. III, the sum of these diagrams is given as

e" 'dp 'y(z )'l. —p)' 'f1-Zl "' (' dP
d4 =

(2 ) pj( —,—-.—( /p- 1)' 'I& ) ~& -,I

J p
C(p }t),

p2

where

~
p2i Z (3j+p(3)

C(p, }'t) = ' . disc
(-Sgp

r('&+r( &, (p-~)'&~
~P'I &

(4.16)

Z (3)+Z (3)

—Zgp

e dtft "&(&)= lX

~Pgk )0
(P k)2=0

&1
d»2 cost[((I», -. (1-»,'

40

(4.17)

The expression for the sum F."'+I'"' becomes
after E(ls. (4.4), and (4.5)

ye a Ppe -Pl-d, .1
-0 p

(4.18a)

1
dp p (p —1) ln-

p
(4.19a)

and its inverse Mellin transform:

I
However, since we need only the 1/e and a' terms
in the expression (4.17) we can take cosa)[—= l.

The rest of the computation of TLCV is made
using the same procedure as in the spacelike
case, and the contribution of the diagrams 3(h, )
and 3(h,) and 3(h, ) and 3(h, ) to the anomalous
dimensions y is
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1
P(p) = ap(p —1) ln —.

p

The relation satisfied by P(p) and P(p)

(4.19b)

P(p) =-P(p) (4.20)

will be discussed in Sec. V. Let us give also
some interesting points appearing in the calcula-
tion of the diagram of Fig. 3(e). Since we work
in a massless theory the particular discontinui-
ties of the diagram 3(e) are without meaning, so
one has first to calculate the one-loop bare propa-
gator and then take the discontinuity. We find for
the regularized bare propagator [Fig. 3(i)]

FIG, 5. (a) J(-q)+y(p) X; q, p, 2p ~ q& 0. (b)

J(q) - fI(}(p)+X' q ~p ~2p 'q &0

Another interesting technical point in the calcula-
tion of Fig. 3(e) is the integration over P which
leaves us with an integral of the form

I=, ,„=— dp 6(p)+2e 1
+o(e')dp 1 1

,' p-"(1-p). 2e., P, 1 P. -
6(,'1 p

1+6
ZD(1) ~

I
O'

I
—p [-(1 —P) —f0]'"

(4.21a)
01

(4.23a)

where

1D"'(e) = ——[1+e(—' —y)] .
12 3 (4.21b)

=1 "1 1 ", 1
dp —+ +0(e') =—[1+0(&')].2c, p, (1 —p), 2e

(4.23b)

Using the distribution identity (3.23b), we find
the discontinuity of the regularized one-loop bare
propagator,

IP'I
disc G,"'((P —k )'+ io}

IA

= a
l

6(l —p) — —+ o(e')
(1 P). —

(4.22)

We now compute the coefficient functions of the
structure functions W and 5" of the deep-inelastic
and semi-inclusive annihilation processes

~(-q) e(~)-x
[see Fig. 5(a)] and

~(q)-e(~) x

[see Fig. 5(b)] in the particular case of the current
z(x) =:c'.

"(q') ~&0IT«(-q)«») l»&~IT(e(-~)J(q)}lo)..„
P/2Pq f ixed

(4.24a)

w(q, P) It(q') g&ol7'(z(q)@(-p)) }x)&xl T(y(p)z(-q)) lo&„„
+ OO

P/2Pq f ixed

(4.24b)

and

8 8't
,+ P(a)a l~=0—

8p, 8(x j (4.25a)

where R(q') is a normalization factor, such that
S' and $V are dimensionless and also with anomal-
ous dimension equal to zero,

I
'I

ln ~, =
47T p

Q(g ) d~I
a'p(a') ' (4.27)

y~ and y~ are the anomalous dimension. of the cur-
rent J and the field operator 4, respectively.

As has been shown' the moments of the struc-
ture function are factorized as follows:

(
s s&

p,', + p(a)a —lg =0.
8 p. 8&]

(4.25b)
fI) 1 2 2

4p

Explicitly,

Iq'I 0! daI
))(q')= exP, , [2r, (a') —2r, (a')j},

(4.26)

where a(q') is defined as follows:

(4.28a)

(4.28b)

where c' and c' are the SL and TL coefficient func-
tions, and A'„and A» the SLCV and TLCV.
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Since we have chosen the renormalization con-
ditions (2.8b) and (2.8c) we obtain

[q2 I (p -q)2p2 "dh(1 —$)(( —&)
(4 33b)

n3

C'~ » n ~= i
(fxx' 'W(x, q', p')

&4v&2
/ Jo

I P I =4ru

where

and

(4.29a)

1
1=4ru2

(4.29b)

((2p )2 4p2q2P/2

X —Pi /P2

(4.34a)

(4.34b)

(4.34c)

(4.34d)

2

C (x, q „a
~

= W(x, q2, p')
~

'4wp2'
I P2I =42u2

or with inverse Mellin transformation

(4.30a)
(q2 )W=(2»(1-x) In( —,)+21n —I-2

&]
(4.35a)

Pfter performing the integration over g and ne-
glecting the terms of the order p'/q' we obtain

2

C (x, q „n
~

= W(x, q', p')
i '4wp. '' )

t 0 I =4ffu2

(4.30b}
W= ~x(1 «) I

~

—,~+21
~

—(-2,(q'
)p2/ ~» /

(4.35b)

e(», (2(q')) -=C(», 1, ()'(q')),

e(x, K(q2)) =—C(x, 1, ().(q2)),

and using E(ls. (4.30a} and (4.30b) we have

(4.31a}

(4.31b)

For a next-to-leading-logarithm analysis of the
scaling violation in W and 8' one has to compute
the coefficient functions C(x, 1, c() and C(x, 1, (2) up
to one loop. So one has to compute the one-loop
diagrams shown in Figs. 4(a)-4(e} in the Bjorken
limit, and after that we put ~p'~ =

~q ~

=4vg2. We
define the effective charges e(x, n(q2)) and

e(x, n(q')),

with

2 I q' I CP'

), ((2 ). 4 22'/2-x" I 2 .

We note that among the diagrams 4(b)-4(e) only
the diagram 4(d} which is non-2PI in the (p -q)
channel, contains a log

~

p'
~

term. It is now

straightforward to extract from the expressions
(4.3la), (4.31b), (4.32a), and (4.32b) the corre-
sponding coritribution to the coefficient function
and thus to the effective charges:

2. 2

e(x, n(q'))= W
44mp2'4wp2'

02=q 2=-4~u 2
0.=0. (y2)

e(x, n(q2))= W
47/p2 '4vp, 2 '

0 =q -42u

0f =«e 2)

(4.32a)

(4.32b)

C~x, ~„~~=~«(1—») h .+» ——2,
41Fi/. ] 4wt(. »

(4.3Va)

C x'~ 2~ Q =Ax x-1 ln 2+21n ——2
47I'P j 4wi/ »

(4 37b)

We will show the explicit computation of Fig. 4(d)
in the SL and TL cases. Before taking the Bjorken
limit the contributions of this diagram to 8' and
W are

e(x, n(q2))= o.(q2)x(l —x) 2ln ——2 ~,X j

e(x, ai(q')) = fi(q')x(x —() (q (n——q ).
X ]

(4.38a)

(4.38b)

In Table I we have displayed the contribution to e
and e of all the diagrams 4(a)-4(e}.

V. RESULTS AND RELATION FOR DEEP-INELASTIC
AND ANNIHILATION STRUCTURE FUNCTIONS

In Ref. 5 we gave a parton-model interpretation to the moment equations

J) dxx' 'W(x, p', q') =42' 2, c/)exp —J, /, C (1, (2(q')) (5.1)

and
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TABLE I. Graph-by-gxaph contribution to deep-inelastic and semi-inclusive annihilation charge densities e(x, ~) and

e (x, o.').

Cut vertices y (x) P(x)

o.x(l —x) ex(x —1)

CX Q

12
—x(l —x)ln(1 -x) -~(1-x)

12

A—x(l —x)lnx
6

1
n x(1-x)ln—

Q Q2—x (x —1)ln(x —1)——x(x —1)12 12

Q/
2—x(x —l)lnx

6

1
n2x(x —1)ln-x.

o)2x(] x) + ~2x ]nx ~ x(x —1)—n xlnx

0. x(1+x)ln —-2n x(1-x)2 1 2 n x(1+x)lnx —2n xg —1)

1-~'x(1+x)ln —+ 2o'x(l —x)

A
+—x(1+x)ln x+ e x(l —x)lnx

2

~2x(1+x)lnx+ 2e2x(x —1)

2

——x(1+x)ln x+ n x(x —1)lnx
A

2

——xe(1-x)12 12
——x6(x —1)

x(5 (1 —x)
Cl'

xi5 (x —1)

oo 2 &(e ) dni~o ni-
1

TL 4m@2' (5.2)

as follows. Define the parton density and frag-
mentation functions such that

dxx' 'q(x, q')

in the form

W(x, P', q') = e(x, n) (8) q(x, q')
SL

(5.7)

and

2

Q exp
a(a ) dna+a(ni}

n'P(n') (5 3) W(x, )I)', q') = e(x, n) (8) D(x, q') .
TL

Note that

(5.8)

dxx ' 'D(x, q')

f t
2 ) I'n(a2)dni+s(ni)
, , n!exp —,(,)

— . (5.4)

f(x) (8)g(x) = jt —f !g(y)—
I,X)

for the spacelike region and

Define also the effective charges e(X, n) and
e(X, n) such that f(x) (8)g(x) = f —g(y)—dg x

J dxx' 'e(x, n(q')) = C'(1, n(q'))
0

(5.5) for the timelike region. From (5.7) and (5.8) we
obtain the following evolution equations for the
structure functions W and R'.

JI dxx ' 'e(x, n(q')) = C'(1, n(q')) .
1

(5.8)

We can write now the moment E(ls. (5.1), and (5.2)

, W(x, q') = e '(x, n) q', e(x, n)+ I'(x, n)Bq' '
L

'
SL Bq'

e W(x, q') (5.9)
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TABLE II. Graph-by-graph contribution to the inverse Mellin transform of the anomalous
dimensions p(x) and p(x) of the spacelike and timelike cut vertices.

e(x, e) e(x, e)

x6 (1 —x) x6 (x —1)

t'0

V'

G G x=x6(1-x)+—--
12 12 (1-x)

ex6 (1 —x)

=x6(x -1)+—
12 12 (x —1),

Dx

nx (1 —x) nx(x —1)

1
2@x(1—x)ln-

x
-2nx (1—x) .

1
2o.'x (x —1)ln-

-2ex(x —1).

and

where

8 W(x, q'),
TL

(5.10)

q's, W(x, q') = e '(x, a) q', e(x, a) +P(x, a)
Bq

1

j dxx' 'P(x, a) =-y'(a) (5.11)

and similarly for P(x, a). In Table II, we give the
contribution to the functions P and P diagram by
diagram up to order a2. The total contribution for
P is

P(x, a) = a[x(1 —x) --,', 5(1 —x)]+ a'[-', x(1+x)ln'x+&x(7 x)lnx+, x(1 —x)ln(l —x)

+ g x(i - x) —,-'„x5(i -x)] (5.12)

and for P

P(x, a) = a [x(x —1)—,5(1 —x)]+a'[- -', x(l + x)ln'x+ -', x(x —7)lnx+ ~ x(x —1)ln(x —1)

+ ',-', x(x- 1)—,—'„x5(x—1)]. (5.13)

In Table I we give the contribution to the effective
charges e(X, a) and e(x, a) diagram by diagram up
to order a for a current J(x)=:C'(x):. The total
contribution for e(x, a) is

e(x, a) =x5(l —x)+a Ux5(1 —x)+ —'
12 " 1 —x +

-2x(l —x)lnx+ x(x —2) (5.14)

and for e(x, a) is

e(x, a) =x5(x- I)+ a '-'x5(x-1)+ —'
12 "(x-1,

I

-2x(x —1)lnx+.x(2 —x)

(5.i5)

In Ref. 5 calculating the renormalization-scheme
independent quantities S(x, a) and S(x, a) where

I

and similarly for S(X, a), we found that in order

x'Si —,a iw S(x, a),—1

(x j

and this implies considering (5.9) and (5.10) that
the Gribov-Lipatov relation"

(5.17)

1
x W —,q =Wx, q (5.is)

is violated in the next-to-leading logarithmic ap-
proximation.

Let us turn now to the other interesting possible
relation between deep- inelastic and annihilation
processes, the Drell-Yan relation. ' We can see
from our results that in (4'), theory in the next
to-leading logarithmic approximation the following
relation between the structure functions W(x, q')
and W(x, q') holds:

S(x, a) = e '(x, a) Sq', e(x, a) +P(x, a) (5.15)
Bq w(x, q') = -w(x, q'). (5.19)
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This last equality has to be understood in the fol-
lowing way. It is known that passing from the 0
& x&1 to the 1 & x& ~ region we meet cuts of the
function W(x, q') expressing the opening of thresh-
olds when one goes from a negative value of q'
to a positive one.' Therefore, the exact meaning
of the relation (5.19}is the following. As it stands
for x & 1 the right-hand side is complex (and dou-
ble valued from the appearance of cuts) and the
left-hand side is real and positive. In order to
arrive at the timelike structure function W(x, q'),
analytically continuing W(x, q ) in the region x & 1,
we must start from the nonforward structure function

W(x„q„x„q2) of the process Z(q, )+ P(p, }-Z(q,}
+ $(p, ) in the spacelike region

q, , q~, p~, p~ & 0, 0&x„x,&1.

In this region and in the limit x x2 xp qy q2'
= q, p, ', = p~' = p

' the above structure function
W(»„q„x„q,) becomes equal to the structure
function W(x, q}.

In the timelike region P,', p, ', q, ', q, &0, x„x,&1
the function W(x„q„x„q,) has additional discon-
tinuities in these variables and we must give pre-
scriptions for the values of these variables around
their cuts in order to eliminate these discontin-
uities. In order to recover the annihilation struc-
ture function W(x, q) starting from the spacelike
one W(x, q) we must give the following definition to
W(x, q} Ref. (9):

(5.22) is true one simply has to remember that
they are determined by their evolution Eqs. (5.3}
and (5.4}:

8q', q(x, q') = P(», n) e q(x, q'), (5.24a)

q', D(x, q') = P(x, n) S,D(x, q') .8 (5.24b)

Now' for p2= q' we can choose

q(x, q') i~2,2 = 5(1 —x),

D(x, q') ~.2 ., = 6(l -x) .

so for x1, say, x&1, we have

(5.25a)

(5.25b)

q(», q') 1,~,2 = -D(», q')lp=, 2
= o ~ (5.26)

8 2, .q(, q },, = -q', .D(, q ), ,

and so on for higher derivatives. The procedure
we follow for the analytic continuation of the dan-
gerous ln(l —x) terms for x &1 to x &1 is

On the other hand from Eq. (5.24a) and (5.25b) and
the fact that p(x, n) and p(x, n) satisfy relation
(5.19) we find

W(x, q, p) = limW(x+ ie, x —ie, q' —ic)

with

(5.20) ln(1 —x) =
2 [ln(1 —x+ i0) + ln(1 —x —i0]

-ln(x-1) for x&1.

e(x, n} = -e(x, n),

D(x) = —q(x) .
This is true because for x&1,

W(x, q') = e(x, n)eq(x)

(5.21}

(5.22)

= -e(x, n} D(x)
TL

pl —p -SE~ p2 =p + SC ~

The right-hand side of Eci. (5.19) in the physical
region for annihilation has to be understood under
definition (5.20).

Now we proceed to show that the relation (5.19)
is true for x 41. For this it is enough to show
that the functions e(x, n), e(x, n}, q(x), D(x) obey
the same type of relations:

Thus by Taylor expansion of q(x, q') and D(x, q')
around p2 = q' we obtain the desired result (x & 1):

q(x, q') = -D(x, q') . (5.28)

S+ 0

= li.m dy — dy
q'(X) '

y 0)
6~0 6 X c J.

In the spacelike case the domain of the functions

ad&x&1 and one has

Finally, we would like to show the meaning of
analytic continuation of the distributions 1/(1 —x),
of the spacelike region (x &1}and 1/(x —1), of the
timelike region (x&1). The distribution Qy, is
defined in general' as

= -W(», q'). (5.23)
dx

( ) )' y(x) —y(l)

The fact that Eq. (5.21) is true we find from rela
tions (5.14), and (5.15). To prove that relation

In the timelike case where the corresponding do-
main is ~ &x& 1
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dx . " dxy(x) & dxy(1)

VI. CONCLUSION

The calculations have been presented for the
cut vertices (spacelike and timelike) in (4'), theory

up to order g4 and for the coefficient functions of '

deep-inelastic and annihilation processes up to
order g'. The explicit formulation of the dimen-
sional regularization procedure for cut vertices
allows for the complete characterization of the
renormalization-scheme dependence. Convenient
phase-space variables render the calculations
transparent and they illustrate the relation of
timelike and spacelike regions. Explicit examples
offer the ground for the demonstration of the
necessary computational techniques which, we
believe, simplify the calculation enough.
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