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Zitterbewegung and the internal geometry of the electron
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Schrodinger's work on the ZI'tterbeuegung of the free electron is reexamined. His proposed "microscopic
momentum" vector for the Zitterbeeegung is rejected in favor of a "relative momentum" vector, with the value
P = med in the rest frame of the center of mass. His oscillatory "microscopic coordinate" vector is retained. In the
rest frame, it takes the form Q = —i(AI2mc Pcf, 'and the Zitterbetoegung is described in this frame in terms of P,
Q, and the Hamiltonian mc P, as a finite three-dimensional harmonic oscillator with a compact phase space. The
Lie algebra generated by Q and P is that of SO(5), and in particular [Q, ,P ]1= —ifigsP It .is argued that the
simplest possible finite, three-dimensional, isotropic, quantum-mechanical system requires such an SO(5) structure,
incorporates a fundamental length, and has harmonic-oscillator dynamics. Dirac s equation is derived as the wave
equation appropriate to the description of such a finite quantum system in an arbitrary moving frame of reference,
using a dynamical group SO(3,2) which can be extended to SO(4,2). Spin appears here as the orbital angular
momentum associated with the internal system, and rest-mass energy appears as the internal energy in the rest
frame. Possible generalizations of these ideas are indicated, in particular those involving higher-dimensional
representations of SO(5).

I. INTRODUCTION

It is widely known that Schrddinger' examined the
behavior in time of the coordinate operator x as-
sociated with Dirac's equation, ' and discovered the
highly oscillatory, microscopic motion with veloc-
ity c which he called the "Zitterbeseegugg. "

A1.—

though Dirac' has argued that such a motion does
not contradict relativity or quantum mechanics,
very little attention has been given over the years
to the physics of the Zitterbeseegung. 4 Most studies
have dealt with the behavior of expectation values
of operators in wave packets, or with the question
of attributing the Zitterbemegueg to the mixing of
positive- and negative-energy states, without going
into the details of the microscopic motion. In con-
trast, Schrodinger attempted a precise description
in terms of microscopic" dynamical variables
(coordinates, momenta, , and angular momenta),
distinct from "macroscopic" variables associated
with the mean motion.

The general view might be that his attempt cari
now be seen as somewhat irrelevant. For it is
often said now that when Dirac's equation is being
interpreted at the one-particle level, rather than
as a field equation, the only Hermitian operators
which can represent observable quantities are
those which leave separately invariant the spaces
of positive- and negative-energy solutions of the
equation. ' The Zitterbesoegung is then apparently
relegated to the position of an unobservable mathe-
matical curiosity, as it involves the motion in
time of an operator x which does not satisfy this
criterion.

However, the Zitterbezoegung does have observ-
able effects. These will appear, for exampl. e, if
one calculates the matrix elements of (x ~ x) be-

tween positive-energy states. ' Moreover, it is
also true that one cannot fully describe the prob-
lem of an electron in all possible external weak
and electromagnetic fields without employing the
whole algebra of operators associated with Dirac's
equation. So although one may argue that some of
these operators do not represent observables in
the presence of a given field, one cannot deny
them some physical significance.

The interpretation of x as the "position of the
charge" of the electron seems to us logically in-
escapable' unless one is to regard the minimal-
coupling formula I see Etl. (26) below] as a mere
mathematical device, devoid of any direct physical
interpretation. Furthermore, it is this coordinate
vector x which forms a four-vector with the time
t, a fact to which great significance must surely be
attached in a relativistic theory. Should we assume
that the very coordinates of the space-time mani-
fold, within which Dirac's equation is formulated,
cannot be directly associated with observable
quantities; and if so, why should we attach any
significance at all to Lorentz transformations
among such coordinates'

We are well aware of the popular and contrary
point of view —that t has a privileged role even in.
relativistic quantum mechanics, and so should not
be considered conjointly with one-particle coordi-
nate operators; and that the latter should not be
expected to transform simply with respect to the
homogeneous I,orentz group. ' This point of view
is largely based on the work of Newton and Wig-
ner. ' In our opinion, the noncausal properties'
(not often mentioned) of operators such as the
"mean-position" operator of Foldy and Wouthuy-
sen" make it doubtful that they can have a primary
significance in a relativistic theory. '
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For these reasons, we feel that there are still
aspects of Dirac's equation not fully understood,
and that Schrodinger's analysis is worthy of re-
appraisal and further development. As Schr5-
dinger did, we work in what follows in the space
of arbitrary superpositions of positive- and neg-
ative-energy states of the "one-particle system, "
and we deal with operators whose eigenvectors
are such superpositions. We give no further justi-
fication for this, except to say that there is a very
interesting geometrical and dynamical substruc-
ture associated with Dirac's equation, which can-
not be revealed unless these superpositions are
considered.

It will become clear that the substructure of the
electron as revealed here admits natural gener-
alizations. Furthermore, the analysis of this
substructure may throw new light on the theory
of the electron itself. For if the electron is not
a point particle, but a massl. ess charge perform-
ing a complicated motion around a center of mass,
such a picture cannot possibly be without implica-
tions for the self-energy and renormalization
problems of the electron.

Writing this last equation as

dQ-ga —=
dt

with

(8)

/=cd —CH p ~

SchrMinger noted that

d7/-zk —= -A —= 2'dt dt

so that

(10)

q»(t ) e2IHc/&q»

Here g, is a constant operator:

q, =q(0) =u(0) —cH 'p . (12)

—+ d—= [H, u] = -{H,u }+2Hu = —2cp+ 2Hu .

II. SCHRODINGER'S ZITTERBEVEGUNG PAPER

The Hamiltonian for the free electron-positron
system according to Dirac is

II= ce p+ mc'p,

where a and P satisfy

It is easily checked that

{H,q}=0={H,g.}
so that one can also write, from Eq. (11),

«g(t ) q e-2lHtg

(13)

{u, , u~}=26,~I (i,j =1, 2, 3),

[x),p~ ] =ih6)~I,
(3)

and to. commute with 0. and p.
In the Heisenberg picture, all these relations

hold at,any one time, and the time derivative of

any one of these operators which do not depend

explicitly on time, say A, , is given by

{u, , p}=0, p'=I .
The momentum vector p and a conjugate coordi-
nate vector x are taken to satisfy

[x„x,]=0=[p„p,],

(14)

which he integrated again to get

x(t ) = a+ c'H 'pt + ,' iXcq,H 'e "—~+,

with a a constant (operator) of integration

a=x(0) -2Ncu(0)H '+-,'iSc'H 'p .

Now Eg. (15) can be written as

(15)

(16)

Combining Egs. (V), (9), and (11'), 8chr5dinger
obtained

i

Ax—= cn = c'8 'p+ cg e ""'~
dt

=i[H,A]/I .
dt

(4) x(t ) = x„(t) +g(t )

with

(1V)

dp - dH—=0 —=0
dt ' dt

x„(t ) = a+ c'H ' pt, (18)

while

—= CQf
dt

(6)
'

the form one might expect for the "position"oper-
ator of a relativistic point mass, by analogy with
the classical result. The remaining contribution
to x is
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$(t ) = ~&Scq, H 'e ""' = 2skcqH ' The proof is straightforward. From Eq. (9) one
has

S= -~zkn&z, L=x&p, (20)

then (L+ S) is a constant of the motion, while
neither I; nor S alone-is constant. Rather, Schro-
dinger found that

which describes a microscopic, high-frequency
Zitte~beseegung superimposed on the macroscopic
motion associated with x„. The Zitte~bezeegung
has a characteristic amplitude 8'/2mc, half the
Compton wavelength of the electron, and a char-
acteristic angular frequency 2mc'/It (see below).

Schrodinger went on to note, as Dirac had done, "
that if the spin vector S and the orbital angular
momentum vector L are introduced, as

S = —~pj's~ x ot

= —gN ('g+ cH p)x('g+CH p)

= ——,'N(qxq~ 2cqH 'x p},

using Eq. (13). Now using Eq. (19) one has

IIS=2) xq ——g xpc
and a comparison with Eq. (21) yields Eq. (24).

Combining Eqs. (21), (22), and (24) one has

L+5=L„+S„=x„xp+ &g xp-c (25)

S(t) =S.-K(t)xp,

L(t ) = I.„+((t )xp,

where Z„and L„are constants, and exp is oscil-
latory. This is easily seen from Eqs. (1V) and
(18):

L=xxp

=x„xp+ f xp

= L„+exp,

II II dx
C C

0+p= 2 (23' )

which might suggest the adoption of (H/c) q as the
microscopic momentum. One can then also write

Apart from the factor —,', by which Schrodinger
admitted to being puzzled, this formula has an
attractive unifying appearance, as a sum of two
"moments of momenta, " one macroscopic and
one microscopic. However, Schrodinger's choice
of qH/c as the microscopic momentum can be
criticized on several grounds.

In the first place, one could just as easily have
multiplied Eq. (9) by H/c on the left to obta. in

where 18
L +S =-pxxA 2c (25' )

= a&p (22)

is constant. Since (L+8} is constant, it follows

that S has the form given in the first equation of

Eqs. (21), with 5„constant.
Schrodinger next introduced a "microscopic

momentum" vector to be associated with the co-
ordinate vector (. From Eq. (9) he found

H II dx H
fj +p= Q —=—

C C CQ C
(23)

which he interpreted as a statement that the sum

of the oscillating microscopic momentum (=qH/
c) and the constant macroscopic momentum (= p)
should equal the "total" momentum, assumed to
be given by (dx/dt) H/c ' (by analogy with the
classical value for a relativistic point mass). He

then showed that

a formula just as attractive as (25). But these two

choices for the microscopic momentum are in-
compatible, one being the negative of the other by
virtue of Eq. (13). In the second place, the oper-
ator qH/c, unlike x„, p, and (, is not Hermitian,
and the attempt to make it so by symmetrizing
fails, again because of Eq. (13). In the third
place, one can argue that p itself should represent
the total momentum of the system —it is a con-
stant, unlike (dx/dt)H/c' —and one should not look
for a formula in which p appears as a component
of a greater total momentum.

It is sometimes said that one should distinguish
two "centers" for the electron-positron system:
one a center of charge, the other of mass. The
coordinate x should be the center of charge, since
the four-vector potential is evaluated at this x
when it appears in the minimal electromagnetic
coupling prescription

S„=-,' $ xq — (= —,'@0x9) .
c (24)

p- p-eA(x, t),
H -H - erp (x, t ) .

(26)
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In the present context the logical candidate for
the center of mass is clearly x„. However, there
are certain ambiguities in the definition of center
of mass in relativistic mechanics (quantum or
classical), "and it is important and interesting to
note that x„ is not the mean-position operator
X of Foldy and Wouthuysen. " That operator X,
like x~, satisfies

dX
dt ~P' (27)

but X differs from x„by a constant of the motion

x„-X=[m(E+mc')1 '(pxg„), (28)

where

E = c(p'+ m2c2)' (29)

The operators x„and X are two of several
"mass centers" described by Pryce" for Dirac's
equation (he denoted x„by q and X by q). Among
these operators, X is distinguished by the fact
that its components. commute, whereas those of
x„, in particular, do not. Instead, we have

[&~) &~g 1= —inc E et~a S~~ (30)
I

We have seen little discussion of the occurrence
of x„rather than X as the coordinate vector rela-
tive to which the Zitterbeme~ng takes place.
Foldy and Wouthuysen incorrectly claimed that

(x -X) is "oscillating rapidly about zero, " whereas
Schrodinger's analysis shows clearly. that it is f
(=x -x„)which is the oscillating coordinate. It
then follows from Eq; (28) that in general the cen-
ter of the Zitterbewegung should be thought of as
displaced by a constant amount from what Foldy
and Wouthuysen called the "mean" position. The
magnitude of this displacement, i.e. , lx„-Xl, can
be seen from Eq. (28) to be of the order 2&(clplE ').
Tani" made some observations on this matter,
and Davydov'4 correctly distinguishes x„as the
"average-position" operator for the electron.
Following Schrodinger' and Pauli, ' Pryce noted

that

satisfied by L„and S „are not the usual SO(3)
relations. For example, one can deduce, using
Eqs. (22) and (30), that

[L~;, L&g ]= @a;sa [L~a —c'(S„~ p)p» E 1- (32)

III. RELATIVE MOTION IN THE CENTER-OF-MASS
REST FRAME

Here p= t), and the Hamiltonian and its inverse
become

H„=mc'p, H '= p/mc' (33)

where p = p(0) is now a constant of the motion.
The center-of-mass coordinate x„ is not well de-
fined in this frame, in the sense that it does not
commute with p. [The same is true of X, but in
passing we note from Eq. (28) that the difference
between x„and X is well defined and equal to f.]
The relative coordinate $ is well defined, and
takes the form

5(t)l;=-. =-.'i~c~(t)l-, - H-

' i n(t )p

—Li g~ (0)ps-248ct/k

= Q(t ), say. (34)

Here A. is the Compton wavelength.
The velocity dx/dt of the center of charge is

also well defined and is different from zero even
though p= 0. We have

If we think of x„as a center-of-mass coordinate,
and ( as the coordinate of a motion relative to that
of the mass center, then we are led to think of p
as the total or center-of-mass momentum of the
system, and to look for an independent "internal"
or "relative" momentum vector P„,. This is to be
contrasted with the view adopted by Schrddinger,
as described above. In the rest frame of the cen-
ter of mass, such a relative momentum vector is
not difficult to identify.

x„=,'(x+HE 'xHE -'), (3l) dx~ ~ dx
dt

' '""
dt dt

" (35)

so that x„ is that part of x which commutes with

the "sign of the energy" operator HE ' Then $.
is the remaining part of x, and anticommutes with

HE '. For this reason Pryce called x„ the "ob-
servable part" of x. Similarly, L„and S„are in

this sense the observable parts of L and 5. We

emphasize that L~ is mt equal to X&p, called by
Foldy and Wouthuysen the mean orbital angular
momentum operator. Likewise, f„ is not their
mean spin operator. The commutation relations

= P(t), say. (36)

In other words, we suppose that

P"i=Pcs ge ~ (37)

and we are led to suggest the identification of the
relative momentum in this frame as

p„,l- -, = mcn(t )
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The relative motion or Zitte~besoegung is then
described by the variables Q(t), P(t), with Ham-
iltonian II„. We have the commutation relations

[ q, , H„]= ', i~mc2 [a,p,. p] = i P—, ,
(28)

then the relations (42) and (44) can be written in a
standard form for SO(5):

[e...e„]= i(5„e„+5,„g„-5„g„—5„g„),

(46)
SCS[Pi,H„]™~ [ui, p]= —4 ~2 qi

so that

dQ 1 dP 4ch
dt m ' dt

and we have a harmonic oscillator:

, +&u2Q=O,

d'P
2+4) p=0

The general solution of these equations is

A,2

Q(t ) = Q(0) cosset+ —P(0) sinu&t,

21
P(t ) = P(0) cosset ——,Q(0) sin&et .

(40)

(41)

S22QX P,
but this is not surprising in a curved geometry.
We pan, however, write

S =Qxi'P = —P xi Q, (47)

where a, b, c, and d run over 1, 2, 3, 4, 5. The
operators 8~ are all Hermitian. We can say that
the phase space of the Zitterhenregung is curved
and compact. The SO(5) algebra can be compared
with the seven-dimensional nilpotent Heisenberg
algebra generated by Q and P in the case of canon-
ical commutation relations, or better, with the
ten-dimensional algebra, spanned by I, Q, P, and
L=QXP, in that case. For the vector S can suit-
ably be called the angular momentum vector for
the Zitte~bemegung in this frame, where it is a
constant of the motion in view of the last equation
of Eels. (44). We cannot write S as the moment
of the momentum in the usual sense, i.e. ,

The operators Q and P do not satisfy the canoni-
cal commutation relations. Instead we have (at
any time)

where f is a kind of metric operator for this
space:

2p =e4i ~ (48)

[q„p, ] -ia5„P,
iA.~ 4'

[qi2 qi] h equi»S» 2 I Pi2Pi ]= ~2 E~i»S»

Again, the Hamiltonian H„cannot be written in the
form (a, /m)P'+a2m&o'Q', as both P' and Q' are
c numbers, but we can write

where

S = —~ i g cx x at .
It can be seen that the Lie algebra generated by
the q, and P, closes on the -ten-dimensional al-
gebra of SO(5), with (1/&)Q, (&/h)P, p, and (1/
I)f forming a basis. The remaining commutation
relations are

H„=~ P ~ gP+ a, m&a&2Q gQ

provided

3(a, +a,)=2.
We note further that

(Qg 2ty)= 2 ill (22Pi)'=2( ) llggl

(49)

(50)

[q) p1=i
h

p;2 [p)2pj= —
~2 q)2

[q), S]i= icIi;)q»», [p, , S ~ ]= i k e;t» p», (44)

[Si,Si]=ibad~»S„, [p, S,.1=0.

If we write

-1 = -1e.t=h "i»S». ei~=-e42=~ q2

8q, = —8,] = ~ Pq 84, = —8, = —~ p

i A.2Pq*-=-ql3=-
2h P' PP = P;P=2--

and we see that each component of Q has just two
eigenvalues+ —,'~, and each component of P has
just two eigenvalues +Ilk We cannot simultan-
eously diagonalize Q and P, nor even two different
components of Q or of P, but we can at one in-
stant diagonalize q, and P„ for exainple. Thus
at t= 0 we can introduce the four basis states

, with

q, (0)4. =+-'~4, , P.(0)4, =- ~4, (52)
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etc. These are not "stationary states, " and from
Eqs. (41) we can see that at time f we have

()(()oos~t ——
& p, (() siooO) ()„=+-,'a()„,

ordinate operators Q, and a set of momentum
operators P, (i=1, 2, 3) for the charged point.
We take these operators to be Hermitian.

Because of the finite dimensionality, it cannot
be true that

~

~

~a N
P,(t ) cosset+ —, Q, (t ) sin&et

Although each component of dQ/dt [= (1/m)P]
has only two eigenvalues +c, we see from these
equations that it is not until f = )(/&u that

Q, (f )y,

Thus the mean speed in the Q, direction, when
the system is in the state g, , is only A/()(/e),
or c/((.

Stationary states can be defined by diagonalizing
H„and one component of S. It is clear from the
fact that Q and P anticommute with H„[ secthe
last of Eqs. (51)] that the expectation values(Q,
(P) of Q and P vanish at all times in such states.
If we define as usual the uncertainties hQ, , b,P,.
by, for example,

[Q), P~]=i%5,)I,
as one can see by taking the trace of each side of
this equation. However, we can suppose that

[Qg)Pg]=-f@5gg& o (57)

where p is traceless and Hermitian, and

p2=I. (56)

[S, , S, ]=fr~„,S„[S,, p]=0,

If we suppose further that the Q, and the P; form
three-vectors, then we require in addition that
there act in the Hilbert space three Hermitian
operators S, generating a representation of SO(3)
and satisfying

(&Q; )'=(Qg') -(Qg)', (54) [S; Qg]='g~;yaQa [S Pg]='~~@&Pa ~

(59)

hQ;=2&, 6Pq=- (55)

In general, we also have the uncertainty rela-
tions

then it follows from Eqs. (51) that in any station-
ary state

Now whit can we take for the commutation re-
lations between the components of Q'P They can-
not be taken to commute, because (1/&)Q and (1/
h )S would then satisfy the defining relations of the
Lie algebra of the Euclidean group E(3), which
has no (faithful) finite-dimensional unitary repre-
sentations. The next simplest possibility is to
have

. A,
~

[Qs, Qg]= t+~ c;gas)) (60)

&Pg &Pg ~ ~. I &gg) (Sg) I o

25

&Qg&Py~ 2~" I(P) I5gg .

We could now recover the full set of states and

algebra of operators associated with Dirac's.
equation by suitably "boosting" the states and

operators associated with the Zitterbemegung in
the rest frame. However, we prefer to proceed
in a slightly different way, beginning with a dis-
cussion from "first principles" of a finite,
charged, quantum system, and then arriving at
Dirac's equation by a quasideductive argument.

IV. A DERIVATION OF DIRAC'S EQUATION

We imagine a system having a compact phase
space, with three degrees of freedom for a point
carrying a charge e. In quantum mechanics, the
associated Hilbert space can be taken to be finite
dimensional, and there will act in it a set of co-

where ~ is a positive constant with dimensions of
length. The appearance of such a constant is in-
evitable in a finite-dimensional Hilbert space. In
particular, each of the Q, will satisfy a polynom-
ial (Cayley-Hamiltonian) identity, with constant,
dimensional coefficients. Note that the plus sign
could not be replaced by a minus sign on the right-
hand side of Eq. (60), since (1/&)Q and (1/h)S
would then satisfy the defining relations of the I.ie
algebra of the Lorentz group SO(3, 1), which also
has no (nontrivial) finite-dimensional unitary
representations.

By a similar argument, we cannot have the com-
ponents of P commuting, and the next simplest
possibility is to have

~
S

[p, , p, ]=+a',— ~„,s, , (61)

where b is a positive dimensionless constant.
Consistency of the relations (57), (59), (60), and

(61) with the Jacobi identity requires that
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A.2[P, ting]= —i@ P;, [P, P)]=i Q),

and we arrive at the Lie algebra of SO(5}, spanned
by (1/&)Q, (&lb@)P, (1/b)P, and (1/R)S. It is
easily checked" that the only irreducible repre-
sentation of SO(5) in which Eq. (58) can hold is the
four-dimensional representation and then only if
5 = 2. Then the anticommutation relations (51) also
hold, and we arrive at the Zitte~bezoegung phase-
space algebra of Eqs. (42), (44), and (51).

We remark that Santhanam has recently written
about the modification of the canonical commuta-
tion relations appropriate to finite-dimensional
Hilbert spaces. Following Weyl's idea" that one
should approach this question by consideration of
finite-dimensional, unitary, projective repre-
sentations of finite Abelian groups, he derived
possible commutation relations between one Q and
one P in a finite-dimensional space. Our results
here provide a particular generalization for the
case of three Q's and P's We no. te in this connec-
tion that the operators

~~ &4&l ~)q~ g ge &g &&/'2~~+g (68)

generate under multiplication a representation
of the appropriate Weyl group in this case. We
have

4&i»»]=~)»f =4&g &»] (&y &»)=O ~ (64)

H„=—
(up +vf ),Sc

(65)

where u (which can be assumed non-negative with-
out loss of generality) and v are real, dimension-
less constants. [ Pseudoscalar contributions like
(c/&')QXQ P and (c/tf)P&&P Q are excluded from
consideration. ] Since we then have

[Q&, H„]=iucX P;, [P;,H„]=—4i+» Q;,

(66)

the only possible nontrivial dynamics is that of
a harmonic oscillator, with angular frequency

2c
(0=Q —.

A.
(6V}

We note that we then have dQ/dt =uc(X/tt )P, so
that each dQ, /dt has eigenvalues +uc. Further-
more, if v ~ u, the eigenvalues of II„are non-

To return to our line of reasoning, we next ask
what are the possible dynamics of this system with
four-dimensional Hilbert space. We know from
our familiarity with the Dirac matrices that the
only three-scalar Hermitian Hamiltonians one can
construct from the Q, P, P, and S have the form

A'
=c 'H„'=, , [(I,'+v')I+2uvp] (68}

in the rest frame. But if v 10, we would find it
impossible to boost the rest-frame states and
operators in such a way that the operator [(u'
+ v')I+ 2ueP] does represent the form of an invar-
iant in the rest frame, while (hc/&) (uP+vI)
represents the form of the fourth component of a
four-vector (energy-momentum) there. We are
forced to take v = 0, and then we have

H„= mc2p, M =m I, where m= —.2= 2 QS
Xc

(69)

Note that we do not assign any mass to the point
charge at Q. Rather we prescribe the constant &

(which may be thought of as determining the
"curvature" of the internal phase space), and the
rest-mass energy of the system as a whole, i.e. ,
the "particle, " appears as simply the energy of
the internal motion in the rest frame.

Now let ( denote an arbitrary normalized four-
component state vector of the internal dynamics.
Then any state vector of the particle in its rest
frame, in a p representation, will have the form

}t„(p)= const x g 6(p)

for some such g. In order to obtain the state vec-
tors for the particle in an arbitrary frame, we
want first to identify for the internal dynamics a
suitable dynamical algebra, containing the Lie
algebra of the homogeneous Lorentz group and a
four-vector operator. Then we shall be able to
follow essentially the procedure used elsewhere"
to obtain a wave equation for the hydrogen atom,
regarded as a "relativistic particle. "

The compact SO(5) Lie algebra described above
is unsuitable for this purpose: we need one of its
real, noncompact forms. In particular, we seek
boost operators M, acting in the four-dimensional
space and satisfying

[M;, M~ ]= —ik e )~ »»,S[M(, S) ]= t@e)~» M» . (V1)

negative. However, we find that if the model we
have described is to admit to a relativistic inter-
pretation, we must set v=0, u=1, so that each
dQ, /dt . has eigenvalues ac, and positive and nega-
tive energies appear symmetrically.

We now suppose that the dynamical system we
have described is that associated with the internal
dynamics in the rest fraroe of a relativistic "par-
ticle, " with energy-momentum four-vector (H/c,
p). Thus we suppose that H=H, when p=0.

Then the quantity (rest mass squared) of the par-
ticle has the form

M'=—c '(H' —c'p')
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Acting with hindsight, we make the choice

M=(l/uc)H, Q = ——2itP. (V2)

[Other possibilities would be M=+2iXP, M=+(ik/
&)Q. However, these would lead us eventually to
wave equations with the property that minimal
coupling to an external electromagnetic field could
not be made consistent with the charge being
"at Q" in the rest frame. ] A suitable dynamical
algebra should include the Hamiltonian II„, the
generators S of its invariance algebra, and the
operators M. Then the commutator

i - . cN—[M, H„]=2iu —,Q

must be included, and we find that the Lie algebra
closes. Defining

1
Sjg

=
~ E ]pa Sq,

1 1 1 ~S„=27 S46= 2r„ (V8)

1 ~

S)4= 2&y' y5

Now we use the operators M in defining the state
vectors of the particle with p=KTs. Consider a
vector y „,of the general form in Etl. (VO):

SO(3, 2). [An inequivalent extension from SO(3, 2)
to SO(4, 2) would replace S4s, S«, and S«by
—S„, -S«, and —S « in Eqs. (76) and (77). Al-
ternatively, two inequivalent extensions from
SO(3, 2) to SO(3, 3) can be defined by replacing

In terms of the operators y" and y, (= —y'y'y'y')
we can write the operators of Egs. (73), (76), and
(77) as

Sfj 4L~L y y &, S„=2iy y, S„=--,'

1.A,

S) = -S ]= ——M] = -z —&]2

S44= -S44= -~ @i

(73)

X„=const x$,6(p)

with

H, X„,= +me'g „, or y'g, = +g, .

(79)

(80)

1
56 65 2P 2 2 F2mc

we have

[ S~B a CD] AC BD +BD saC

gBC AD gAD BC (V4)

An appropriate Lorentz boost operator for the
positive- and negative-energy states is

S (8)=expi+- O' Mij

=Icosh(28) a — sinh(B8),1 2~ ~iM 1

where

(81)

whereA, 8, C, D run over 1, 2, 3, 5= 0, 6 and

g» is diagonal, with g55=g«=1, g»=g»=g33 —1.
This is therefore the Lie algebra of SO(3, 2). It
does contain a four-vector operator as desired:

a i%i8
@)

arctanh
( a a aga)ala I

8 [ 8

(82)

y" =-(~', y')=(as-, as") =(s, —„4,) .2i
(75)

The dynamical algebra can be extended to the
Lie algebra of SO(4, 2) if we include the pseudo-
scalars

84s= -Ss4 —
6@a PXP ~ Q,

S44 ——$44 ——3~ QXQ ~ P,

and the pseudovector with components

-1
S44= 2g ~4ga~gpa .

(76)

(7V)

Then the commutation relations are as in Eg. (V4),
where nowA, B, C, D run over 1, 2, 3, 4, 5, 6,
and g44= -1. The irreducible, nonunitary four-
dimensional representation of SO(4, 2) involved
here, remains irreducible when restricted to

l.e. )

5 (y'k, —y %)g &
= mc XT (85)

The ~ sign in B'(8) is necessary because the par-
ticle with positive or negative energy and moment-
um 8% is "moving with velocity +cS i%[(m'c'
+II'F') ' ' (= +c tanh8) relative to the rest frame. "
Then the general form of a positive- or negative-
energy state with momentum N% is

yT„(p) = constxB'(f)|t, 6(p -5%) . (83)

In view of Eg. (80), we have

&'(8)y'&'(&) ')g, = ~X~, ,

and, noting that B'(f} '=B (F), we find that this
equation reduces to

2i 0) M
yo cosh8+ — sinh8 X&~= +XT,~, 84
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where

Sk,)p„, =+(m'c'+h'%')'~'X-„, . (86)

Since the energy of the state y» is then chk„ the
Hamiltonian of the particle equals

pretation consistent with relativity is the Zitte~-
beme gung.

Dirac's equation has been obtained as the rela-
tivistically invariant equation appropriate to the
description of this system in an arbitrary moving
frame of reference.

(ch y'y k+ mc'y')

when p=Sk; and in general then

(87)

V. POSSIBLE GENERALIZATIONS
H=cy y p+mc'y'=ca. p+mc'p (88)

as in Eg. (1).
We can now go to the usual configuration repre-

sentation via a Fourier transform, and then go to
the Schrodinger picture to obtain the familiar
Dirac wave functions g(x, i) satisfying

1
iky&s (=me) 8 = ——,vcat (89)

f = ~i — &p = r'i —&p = —Qmc u u
(90)

Since we began by assuming that the relative co-
ordinate of the charge is Q in this frame, we
must for consistency now set u =1. ThenSc, III =—P =mc'p m=-Pc' (91)

and we conclude that the only dynamics of the fin-
ite, charged quantum system which has an inter. -

Although the coordinate vector x introduced in this
way is mathematically conjugate to p, it need not
be —and indeed it is not —the coordinate vector of
the center of mass.

If we now couple the particle to an external
electromagnetic field via the minimal-coupling
prescription (26), we are in effect saying that the
charge is at x at time t. But then in the rest
frame, according to Schrodinger's analysis as
described in Sec. I, the relative coordinate of
the charge has the value

The ideas discussed above suggest new ways of
looking for relativistic wave equations for other
elementary particles, starting with an analysis of
finite quantum systems. One could remove the
constraint (58), and consider representations of
SO(5) other than the four-dimensional representa-
tion: this would evidently lead to the class of wave
equations discussed first by Lubanski" and Bhab-
ha, "and later by many others. Owe could retain
Egs. (57), (58), and (59), but seek to replace Egs.
(60) and (61) by other relations which would make
the algebra generated by Q and P close on a Lie
algebra larger than that of SO(5). Or one could
consider finite quantum systems with more than
three degrees of freedom.

On the other hand, we know that Majorana's
equation' (and Dirac's" and Staunton's" positive-
energy wave equations, which are closely related
to it) can be interpreted as providing the des-
cription, in an arbitrary frame, of an internal
two-dimensional dynamical system with an infinite-
dimensional Hilbert space." In particular, the
internal system can be taken to be a two-dimen-
sional harmonic oscillator. This "infinite quantum
system" can also be regarded as a generalization
of the finite quantum system we have described
above. The dynamical group is again SO(3, 2), but
inf inite-dimensional unitary representations are
now involved. Further generalization to a three-
dimensional internal motion leads to the infinite-
dimensional unitary representations of SO(4, 2)."
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