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Based on the recently proposed restricted gauge theory an extended gauge theory is constructed which takes into
account not only the local structure but also the topological structure of a non-Abelian gauge symmetry into its
dynamics. The gauge potential is made of two parts, the binding gluons which provide the color-confining force and
the valence gluons which behave as a gauge-covariant colored vector source. The physical spectrum of the theory
includes the magnetic glueballs which are the massive collective modes of the vacuum condensation, and the electric
glueballs made of the valence gluons which form a set of linearly rising trajectories of their own. Based on the group
SU{2) the slope parameter a ~ of the leading glueball trajectories is estimated to be a~ 0.47'' (a' 0.9 GeV' is the
Regge slope parameter of the mesons). Also, a crude estimate of the typical mass scale of the ground states of the
trajectories is presented.

I. INTRODUCTION

In spite of its overwhelming popularity as the
leading candidate for the theory of strong interac-
tion, quantum chromodynamics (QCD), or non-
Abelian gauge theory in general, has so far defied
us to reveal its physical meaning, in particular
its mass spectrum of the physical states. Clearly
the problem of finding out the physical spectrum
of the theory is intimately connected to the prob-
lem of color confinement. On the issue of con-
finement Nambu' has suggested that color confine-
ment could occur in a similar way as magnetic
flux confinement occurs in an ordinary supercon-
ductor due to the Meissner effect. The idea has
further been elaborated by Mandelstam, ' among
others, who observed that the condensation of the
non-Abelian magnetic monopoles of the QCD vac-
uum could produce a dual Meissner effect which
may confine the color electric flux carried by the
quarks. To realize this idea one has, of course,
to show that magnetic condensation does occur in

QCD, and at the same time show that the underly-
ing dynamics does guarantee the dual Meissner
effect. Recently, based on the group SU(2), it has
been shown that" indeed one can construct out of
QCD a dual gauge theory, called restricted chro-
modynamics (BCD), which could produce the mag-
netic condensation dynamically for its vacuum and
at the same time exhibit the desired dual dynamics
that guarantees us the dual Meissner effect. Thus
RCD does provide us with the mechanism of mag-
netic confinement of color. Qwing to the confine-
ment mechanism the quarks as well as the mono-
poles disappear from the physical spectrum of the
theory. At the same time the theory must contain
two magnetic glueballs, ' i.e., the massive scalar
and axial-vector collective modes of the condensed
vacuum, in its mass spectrum.

The restricted theory is extracted from the un-
restricted QCD by imposing an extra internal sym-
metry called magnetic symmetry to its gauge po-
tential. Consequently RCD does not contain the
full dynamic degrees of QCD. Nonetheless, as we
will show in the following, it does constitute a
self-consistent subdynamics of QCD which is very
interesting in its own right. Thus, with its con-
finement mechanism at hand, one may ask what is
the complete physical spectrum of RCD. More im-
portantly, when one removes the magnetic sym-
metry of RCD and reactivates the full dynamical
degrees of QCD one would like to know whether
the confinement mechanism will still work, and if
so, what will be the full physical spectrum of
QCD, and how one could obtain it. The purpose of
this paper is to provide definite answers to these
questions as far as possible. Based on the group
SU(2) we obtain the following results in this pa-
per. First, on the physical spectrum of RCD, we
prove that the allowed physical states made of the
quarks have to be color-singlet states of either
qq mesons, or qq baryons. Any other exotic state
is forbidden. Secondly, by dividing the QCD po-
.tential into binding gluons (the RCD piece) and
valence gluons (the reactivated piece) we show
that removing magnetic symmetry does not affect
the confinement mechanism. Thus the confine-
ment mechanism of BCD must still work in QCD.
Third, we show that the physical spectrum of QCD
must contain the color- singlet "electric glueballs"
made of the symmetric combination of the valence-
gluon pair. Similar to the mesons, these electric
glueballs will have to form linearly rising trajec-
tories. Finally we show how to calculate the slope
parameter of the glueball trajectories. Also, for
completeness we give a crude estimate of the
typical mass scale of the ground states of the
leading glueball trajectories.
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To obtain the physical spectrum of RCD one
must realize that the dual Meissner effect guar-
antees us only color screening, but n0t color
confinement. To complete the proof of confine-
ment it becomes crucial to observe that in our
theory there exists a residual symmetry called
color reflection invariance, under which any phys-
ical state has to be invariant after the con-
finement mechanism has set in. This reflection
invariance, which originates from the fact that
the non-Abelian magnetic charge can be wel. l de-
fined only up to the Weyl reflection, turns out to
be precisely what one needs to establish that the
physical spectrum of the theory is exclusively
made of color singlets. Thus, for SU(2), the
physical spectrum of RCD is made of the color-
singlet qq mesons and qq baryons and the two
magnetic glueballs, with no other exotic states.

One could obtain the (unrestricted) QCD potential
by removing the magnetic symmetry imposed on

the RCD potential and by reactivating the sup-
pressed degrees of freedom. Thus the QCD po-
tential may be written as the sum of the dual po-
tential of RCD and the newly reactivated piece.
Then one can easily show that the RCD piece of the
potential plays the same role as before to provide
the binding force of color. For this reason me

will call the RCD piece of the gluons the binding
gluons. The reactivated piece, however, can be
shown to form g g gee-covgrignt mmltiplet which
behaves as a colored vector source. This means
that removing magnetic symmetry merely amounts
to having an additional colored vector source
which forms an adjoint representation of the gauge
group. For this reason we will call the reactiva-
ted gluons the valence gluons. Then QCD can be
interpreted as nothing more than RCD which has
the valence gluons as an additional source. As an
immediate consequence the physical spectrum of
QCD must contain the electric glueballs made of
the valence-gluon pair. Naturally, owing to color
reflection'invariance only the color-singlet com-
bination (i.e., the symmetric combination) of the
gluon pair appears in the physical spectrum.

Clearly the electric -glueball spectrum will form
another set of linearly rising trajectories, among
whichone would expect nine (3 x 3) leading ones. The
existence of these glueball trajectories perhaps
may not come as a surprise. What is more inter-
esting to know are, of course, the slope para-
meters of the leading trajectories, and the masses
of their ground states. The slope n~ can easily
be calculated by estimating the energy flux car-
ried by the string solution of the valence-gluon
pair. Again with SU(2) we find that nx—- 0.47u'
(u' =0.9 GeV ' is the Regge slope of the meson
trajectories) Now it is m. ore difficult to estim-

ate the masses of the ground states of the l.ead-
ing trajectories. Homever, with some simplifying
technical assumptions we obtain a crude estimate
of the typical mass scale of the ground states
which turns out to be about twice as heavy
(-1.6 GeV) as the p mass, the typical mass scale
of the ground states of the leading meson trajec-
tories.

The paper is organized as follows. In Sec. II
the restricted gauge theory is briefly reviewed for
later convenience. Throughout the paper we mill
use the group SU(2) as the color-gauge group to
avoid unnecessary complications. The realistic
color SU(3) gauge group will be treated in detail
in another paper. In Sec. III we show in detail
how the masses of the magnetic glueballs can be
estimated. The masses of the scalar and the vec-
tor modes are obtained to be around 2.4 GeV and
1.6 GeV, respectively. In Sec. IV we derive the
criterion of color reflectance invariance for a
physically acceptable state of RCD, and show that
the mesons and the baryons of RCD are exclusively
made of qq and qq color singlets. In Sec. V the
concept of binding gluons and valence gluons are
introduced and the extended gauge theory, or @CD
in the large, is proposed. Then we show that the
extended theory is nothing more than the restricted
one but with the valence gluons as the additional
colored source of the theory. As a consequence the
extended theory must contain the glueball states
made of the valence-gluon pair in its spectrum.
In Sec. VI we show how to estimate the slope
parameter of the linearly rising glueball trajec-
tories as mell as their ground-state masses.
Finally, in Sec. VII, various aspects of the the-
ory, in particular some unsettled problems, are
discussed.

II. RESTRICTED GAUGE THEORY: A BRIEF REVIEW

The restricted gauge. theory' describes an inter-
esting dual dynamics between the color isocharge
(i.e., the electric charge) and the topological
charge (i.e., the magnetic charge) of a non-Abel-
ian symmetry in which color confinement can be
made manifest. More importantly, the restricted
theory governs, as me will see later on, a subdy-
namics of the unrestricted theory which charac-
terizes the vacuum structure of the theory. For
these reasons we will start by briefly reviewing
the restricted gauge theory in this section.

The mathematical foundation for the restricted
gauge theory comes from the observation' that the
non-Abelian gauge symmetry does allow an extra
internal symmetry called magnetic symmetry
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which restricts and reduces the dynamical degrees
of the theory while keeping the full gauge degrees
of freedom intact. The magnetic symmetry may
be imposed by insisting that the gauge potential
B„must satisfy the constraint

D~rn =8 rg+gB„x gpss

-0

rn' =1 (2)

without loss of generality, and we will do so in
the following. For SU(2) the constraint restricts
the potential to the form

where A is the electric component of B which is
parallel to m and thus is not restricted by the
constraint.

One of the virtues of magnetic symmetry is that
it can be used to describe the topological (i.e. ,
the magnetic) structure of the gauge symmetry.
This is so since'the multiplet 8z may be viewed
to define the homotopy of the mapping II,(S')

for an arbitrary scalar muitiplet m which forms
an adjoint representation of the gauge group Q.
Notice that the condition is a gauge-covariant con-
straint, so that the gauge symmetry remains un-
broken by the constraint. Mathematically speaking,
this means that the internal fiber space admits an
additional Killing symmetry' characterized by pf~

which commutes with the gauge symmetry itself.
From the constraint it becomes obvious that one
may always normalize A to be

pole which is completely fixed by A up to the Abel-
ian magnetic gauge degrees of freedom. This
demonstrates the fact that in the magnetic gauge
one may indeed bring the topological property of
rn down to a. dynamical variable C*.

The restricted gauge theory may be written
down explicitly using the potential (3). Let us
consider the SU(2} QCD Lagrangian

2 =--, 4„„'+City"D„4 —m,4'4', (7)

where G „ is the gauge field strength and 0 is the
quark doublet. Then the Lagrangian for the re-
stricted chromodynamics (HCD) could, in prin-
ciple, be obtained by substituting the unrestricted
potential by the restricted one (6} in the above
Lagrangian (7). However, the Lagrangian obtained
by this simple substitution will have a few unde-
sirable features. First, the monopole appears as
a pointlike object, but not as a regular field. Fur-
thermore, C„* describes the magnetic field of the
monopole by a spacelike potential, and contains
the well-known string singularity. One may get
rid of these undesirable features by introducing
the dual. magnetic potential C which can describe
the magnetic field of the monopole with a regular
timelike potential, and at the same time, by in-
troducing a complex scalar field Q for the mono-
pole. Thus one may obtain the foll. owing pheno-
menological Lagrangian" for BCD,

Z(„)=)i)'"IB„+ . (4 (C„I)'E~ 2i

yn S' —S2=SU(2)/U(1), (4)

where S2~ is the two-dimensional sphere of the
three-dimensional space and S' is the group coset
space fixed by m. So a topological singularity of
m may be identified as a pointlike monopole of
non-Abelian symmetry. Then it becomes clear
that by imposing magnetic symmetry on the poten-
tial one may bring the topological structure into
the dynamics explicitly. To illustrate this point
let us make a gauge transformation and go to the
magnetic gauge by rotating ~ to the space-time
independent g„

. 4m+ 8~ +i —A„*+C„)

where x and 5 are the red and the blue quarks,
g, and C„are the regular potentials that describe
the electric and the magnetic charges with the or-
dinary timelike potentials

E „=&~A„—„A„, (9)

g„* and C„* are the singular "dual potentials'" '
of the fields E~„and H„„. Classically these dual
potentials could be identified as the singular po-
tentials which describe the corresponding charges
with a spacelike potential with the weil-known
string singularity,

in this gauge the potential (3) may be written as

5~ = (A„+c~)$, ,

where C,* is the magnetic potential of the mono-

(6)

In spite of the well-known fact that in field-the-
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oretic formulation such naive identification may
raise a serious difficulty, "we have used the
singular potentials in the above Lagrangian as a
mnemonic means to represent the dual interaction
that exists between the quarks and the monopoles.
The Lagrangian may then be viewed as an effective
Lagrangian that can describe the dual dynamics of
BCD at the phenomenological level, just as the
Ginsburg-Landau Lagrangian is regarded as an
effective Lagrangian for the theory of a supercon-
ductor. With the Lagrangian (8) at hand one may
now pursue its far-reaching consequences.

III. QUARK CONFINEMENT AND MAGNETK
GLUEBALLS

One of the virtues of the Lagrangian (8) is that
the theory could be argued to have two phases, '
the normal phase in which both the quarks and the
monopoles appear as physical particles and the
confinement phase in which both disappear from
the physical spectrum. Furthermore, in the con-
finement phase the theory contains two magnetic
glueballs, a scalar mode and an axial-vector
mode, whose masses could be estimated to be of
the order of a few GeV. In this section we briefly
review the confinement mechanism and show how

one can estimate the masses of the predicted gt.ue-
balls.

The confinement mechanism of HCD can easily
be understood. ' In the absence of quarks the Lag-
rangian (8) may be reduced to

&(0'4) = 2' (4'*4')'.

Then„by requiring infrared instability by keeping
the renormalized mass of the Q field vanishing,
one map indeed show that the effective potential

f f of the theory obtained by the loop- expansion
technique could break the magnetic symmetry dy-
namically in the strong-coupling limit, as has
been argued by Coleman and %einberg. ' In one-
loop approximation they found that

i.gg =, Qo'+(P*Q)'I 2 ln, —1 ~, (12)
la 0

where P, is the vacuum expectation value of the

Q field,

Once the magnetic condensation of the vacuum is
established, the confinement of any colored Qux
becomes unavoidable.

An immediate consequence of the magnetic
condensation is the existence of two massive
modes, a scalar and an axial vector, that
characterize the vacuum. The mass of the scalar
mode p, determines how fast the perturbative vac-
uum around a colored source reaches the conden-
sation, whereas that of the vector mode m deter
mines the penetration length of the colored flux.
The effective potential (12) fixes the ratio of these
mass scales ~,

2

g~~)'=-gH*„„+ & +i —C —V

(10)

Now' one immediately notices that the above Lag-
rangian looks exactly like the Ginsburg-Landau
Lagrangian of the theory of superconductivity,
except that here the role of the order parameter
is played by the monopol. e field and the role of the
electric potential by the magnetic one. Thus, so
far as the effective potential V,«(P*P) of the the-
ory could be shown to break the magnetic sym-
metry dynamically, the theory will obviously ex-
plain the phenomenon of electric flux confinement,
i.e., the dual Meissner effect. In other words,
color confinement in HCD wilt be enforced by the
dynamical breaking of magnetic symmetry. Now
to obtain the desired dynamical symmetry break-
ing, notice that it is natural for us to require that
the Lagrangian (10) must be both ultraviolet finite
and infrared unstable since the QCD Lagrangian
(7) bears the same feature. This fixes the form
of the potential in (10) a.s

(14)

~ 1 ~ 3 1, 1 E~
R+ .

—R- R lnR=-
2z n, 2

(16}
~ ~

Z+]- -2—[Z-R E=o.R]

Of course any acceptabl. e solution must satisfy
the following boundary condition:

where n, =g'j4p is the fine-structure constant of
HCD. The masses of the glueballs can be estim-
ated by evaluating the string tension of the clas-
sical string solutions of the quark pair. Let us
denote by p, y, and z the cylindrical coordinates
of the space and choose the string axis as the z
axis. Then, with the string ansatz

&f&
= Q, R(g)e'"

(g =mp)

E =2m/, E(g),
one obtains, using the effective potential (12), the
following equations of motion:
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R(~) =1,
E(~) =0.

Furthermore, for the string made of the quark
pair the solution must satisfy the electric flux
quantization condition

~t ZdtE(v) =1
0

(18)

Now one can easily calculate the string tension k

of the solution, which is nothing more than the en-
ergy per unit length carried by the string. One
finds 1, a,u=, =yy, '= " ym',

2m+' ' Sg
(19)

where o. ' is the Regge slope parameter (o.' =0.9
GeV ') and y is a dimensionless parameter given

by

1 E'
y= II 2rl.

~

—E'+R'+-
&2 2 A

+ [1+8'(4 lnB 1)]) gd-
16gu,

»C~ - E'+ [1-&'(41»+1)j ~

@.(1, 8

)(2 16gn,

(20)

Then the masses p, and m can be evaluated from
(14) and (19) as functions of n, . The numerical
results of the masses p, and m obtained by com-
puter' are shown in Table I. Of course, to deter-
mine the masses one must further know the right
value of o.', of the theory. Remember that the the-
ory has two parameters n, and Qo, so that the ex-
perimental input n' =0.9 GeV ' alone cannot fix
the theory completely. We need one more experi-
mental input. In principle the additional inform
ation should be provided by a direct measurement
of n, which is fixed by the coupling strength be-
tween the two magnetic glueballs as shown in Fig.
1. In practice, however, one has to find out a way

r

()
+ +

FIG. 1. The Feynman graph that determines the fine-
structure constant n~ of the theory. The coupling
strength bebveen the two massive magnetic glueballs
fixes e~.

05— nberg potential

ial

to estimate ~, from the existing experimental
data. A natural way to do so se.ems to be to as-
sume that the n, of the theory is given by the run-
ning coupling constant o.(s) of QCD fixed by the
renormalization-group equation at s = pm. This
assumption leads us to +, =0.22 as shown in Fig.
2(I). From this we obtain p =2.5 GeV and m

=1.7 GeV.
At thxs point one may re~ect the estimate as self-

inconsistent. Indeed, the validity of the effective
potential (12) obtained from one-loop approxi-
mation may be questionable when o.,= 0.22 since
the one-loop approximation may be taken seri-
ously' only in the strong-coupling limit when a,
»1. As a matter of fact, the significance of the
potential (12) consists in its ability to demonstrate
the desired dynamical symmetry breaking rather
than in its practical usefulness as a good effective
potential. Thus it may be worthwhile for us to
take a more phenomenological point of view and to
repeat the calculation using the following familiar

TABLE I. The masses p and m of the magnetic gjue-
balls as functions of 0. . The result is obtained using
the Coleman-Weinberg potential (12).

N

= a(s)
g2(= 3/2x(y ) p, (GeV) m (GeV)

10
4
2
1
0.5
0.25
0.1

0.048 9.75
0.119 7.80
0.239 6.75
0.477 5.90
0.955 5.05
1.910 4.30
4.775 3.04

9.745
4.376
2.347
1.256
0.679
0.368
0.175

3.082
2.188
1.659
1,256
0.960
0.736
0.553

I g I i a s s l s I

5 )0 20 s = p, m(GeV~)

FIG. 2. An estimate of e . The solid curves I and II
show o.~ as functions of pm. The dashed curves repre-
sent the running coupling constant e(s). The reference
point is chosen as n = 0.2 at s =10 GeV, and the number
of the flavors is denoted by Nz.
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effective potential:

48 '
V„,=, X(P*&f& —Q ')' (21)

The advantage of the above potential is that we no
longer have to satisfy the mass ratio (14) obtained
by the one-loop approximation. From the pheno-
menological point of view this is important because
a priori one does not know how good the strong-
coupling assumption will be in reality. From the
potential (21) one obtains

(22)

R+ —A — ~(R'- 1)R =—1 3 1 E
4~~,

(23)

RE+ ——2 —E-A'E =0.8
In this case y is given by

y= 2vg~ —E +R + —
2 + X(R —1) dg

(1, ~, 1 E' 3

Notice that when X=1 the above mass ratio reduces
to (14). Now, the potential (21) yields the following
equations af motion for the string:

have predicted different values of ~', using the
same values of the masses and o., as the experi-
mental inputs. In practice, however, this is not
feasible, so we have used the same input n' to
predict the masses. This explains the small nu-
merical discrepancy. Now that we have completed
our estimate of the masses of the magnetic glue-
balls, in Sec. IV we will. discuss how one may ob-
tain the hadron spectrum of HCD.

IV. COLOR REFLECTION INVARIANCE
AND HADRON SPECTRUM

In this section we will show how one can obtain
the hadron spectrum of RCD. For this purpose
first notice that the dual dynamics actually does
not guarantee us color confinement, since it
merely tells us that any physical state has to be
color neutral. To clarify the situation, let us
consider color-neutral qq mesons and qq baryons.
There are four such states, with the following
color quantum numbers C and C3 in the magnetic
gauge:

Irr&+ ( bb)

(25)

ic, c,)= io, o)=
1 2 3

2zg —E'+ X(1 —R') df.
2 8m&,

(24)
and

TABLE II. The masses of the magnetic glueballs as
functions .of n . The result is obtained with the quarticS
potential (21).

~' (= 3~/2mo. ,) n, /X 7 p(GeV), X=1 m (GeV), 1=1

10
4
2
1
0.5
0.25
0.1

0.048
0.119
0.239
0.477
0.955
1.910
4.775

10.20
8.30
7.20
6.28
5.40
4.60
3.35

9.530
4.205
2.273
1.218
0.656
0.355
0.167

3.013
2.102
1.607
1.218
0.929
0.711
0.527

Then from (14) and (19) p and m may be deter-
mined as functions of +,. The numerical results'
are listed in Table II.

If we make the same assumption as before that
n, is fixed by the running coupling constant K(s)
at s = pm, we find again z, = 0.22 as shown in Fig.
2(II). From this we obtain p =2.4 GeV, m = 1.6
GeV when A. =1, and p. = 3.2 GeV, m = 1.6 GeV when

At this point one may have noticed that while
the two potentials (12) and (21) should have yielded
the same masses by construction when X =1, this
does not appear to be exactly the case in our nu-
merical results. Indeed in principle one should

~c,c,&
= I1, o& = '

(26)

among which only the first two are color singlets.
Clearly the issue then is how, if possible, one can
get rid of the other two color-neutral states from
the physical spectrum. To show how, it is crucial
to observe that even after one has chosen one' s
own magnetic gauge one can uniquely assign the
color electric charge of a source only within a
certain reflection degree's offreedom which we
specify in the following. The reflection invariance
originates from the fact that within the framework
of anon-Abel. ian gauge theory there is intrinsically
no way to tell the absolute signature of the non-
Abelian magnetic charge. This can easily be seen
from the fact that if m is a magnetic symmetry
which satisfies the condition (1), so must be also
-m. This, of course, is 'a restatement of a well-
known fact that the non-Abelian magnetic charge
is well defined only up to the Weyl reflection. ' As
a consequence any physical state has to be invari-
ant under the reflection

m ~ m ~ (27)
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1-—-Q m ——
@pe x 8 m .

g
This means that the theory has to be invariant
under the color reflection

(28)

A -A
P P

The effect of the reflection (29) on the quark doub-
let can easily be figured out. Since the reflection
has to be a symmetry within the gauge group SU(2),
the theory must be invariant under the following
four-element reflection group made of matrices:

t1 0) t0 1'I

(0 I&l, I&10
-1 Oi t'0 -1

Notice that the reflection group is neither the
center group Z, nor the Weyl reflection group of
SU(2). It is a generalization of the Weyl reflec-
tion. We will call this symmetry the color reftec-
tion invariance. With the reflection invariance
one can now determine the hadron spectrum uni-

quely. Among the qq mesons and the qq baryons
one may easily find that only the color-singlet
states (2S) satisfy the reflection invariance. In

conclusion, the color reflection invariance of the
magnetic condensation excludes any colored states
from the physical spectrum of the theory.

The color reflection invariance is important
enough that it is worthwhile to rephrase it in a
different way. Applied to the monopole it means
that the theory must be invariant under the Weyl
reflection. Physically speaking this means that
there is no way for us to tell whether the mag-
netic condensation of the vacuum is made of mono-
poles or antimonopoles in our theory. Conse-
quently the magnetic current that confines the
color electric flux has to be made of the symme-
tric combination of the two oppositely charged
monopoles. For the string configuration this
means that the electric flux of the string does
not carry any absolute sense of helicity. Accord-
ingly, only the symmetric combination of two
opposite helical modes of the string must be ac-
ceptable as physical. Translated in terms of
the quarks, this is of course precisely the re-
flection invariance that we have required for the
physical hadron states in the above.

At this point it is perhaps instructive to com-

Now under the reflection (28) the restricted poten-
tial (3) transforms as

1 „8 =Am ——mx8m
V P g tt

pare our confinement mechanism with that of an
ordinary superconductor. Unlike our case, in
ordinary superconductors the magnetic flux line
is accompanied by the surrounding supercurrent
which is exclusively made of the electron pairs
alone. There is no supercurrent made of the posi-
tron pairs in an ordinary superconductor. Ac-
cordingly, the string has one well-defined helical
mode. On the other hand, in our case the "super-
current" is made of the symmetric combination
of two oppositely charged monopoles. In this re-
spect we notice that the two confinement mecha-
nisms are not exactly dual to each other.

Before we close this section let us discuss the
J~~ property of the magnetic glueballs. First
the scalar mode may naturally-be identified as
a 0" object. As for the vector mode, one would
ordinarily identify it as 1' object. However, we
will now argue that the vector mode could be iden-
tified as a 1"object. To show this one has to
determine how the magnetic potential C, should
transform under the charge-conjugation operation.
Now, since the potential C„has been extracted
from m, one might first look for the charge-con-
jugation property of m before one determines that
of Q„. Clearly m must transform to -pyg under
the charge conjugation. Under the reflection,
however, the magnetic part of the potential (3)
should obviously remain invariant. This suggests
that the vector mode must carry a positive charge-
conjugation quantum number. This is not to say
that our Lagrangian (8) should violate the charge-
conjugation invariance. Under the reflection m
to -m the magnetic charge 4w/g of the monopole
automatically changes its signature. This pe-
culiar feature comes from the fact that the mag-
netic charge is topological in its origin. Con-
sequently, the Lagrangian (8) remains invariant
under charge conjugation.

V. EXTENDED GAUGE THEORY

The restricted chromodynamics has been ob-
tained by imposing the magnetic symmetry (1)
which restricts the potential to the form (3). To
construct the unrestricted theory one obviously
has to remove the magnetic symmetry and re-
activate the suppressed dynamical degrees of
freedom. For this purpose let us write the un-
restricted potential as

1.-mx 8 ~+X

where, as before, m. is an arbitrary scalar trip-
let with unit length which forms an adjoint repre-
sentation of the group, A„ is the Abelian compo-
nent of the potential which i.s parallel to 4
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g„=X',(,+X'„g,+ (A + C *)(, . (32)

Obviously had we taken into account only the local
degrees of freedom as one normally does in con-
ventional gauge theory, we would have ended up
with only X'„,X„, and A.„, but not with the mag-
netic potential C„* in (32). Clearly the magnetic
degrees of freedom represent the nontrivial topo-
logical degrees of freedom that the global struc-
ture of the underlying gauge symmetry can ex-
hibit, and contain the information of the gauge
symmetry in the large. For this reason we will
call the potential (31) the extended Potential and
the corresponding dynamics the extended @CD,
or @CD in the large

The reactivated component R„may be interpre-
ted as a gauge-covariant colored vector source
of the theory. To justify this interpretation no-
tice that X„can formally be written as

g =-AxD A1
tt

g
(33)

which tells us that X„ is a gauge-covariant vec-
tor field. Indeed one can easily verify this fact
directly from (31). To do this notice that under
an arbitrary infinitesimal gauge transformation
specified by 8(x), one must have

pj's = ex j$„-—s„f,1

5m=-9 x m,
5A„=5%.5, + m ~ 65„.

From this one can easily deduce that

bX„=8R„—b(A„th--e x s„y),

8 xg„.

A„=A'5~,
and we have expressed the reactivated part by
X . Now let us clarify the physical motivation
behind the decomposition, and the meaning of
each term in the potential. Clearly the first two
terms are just the components needed for the
restricted theory. As has been emphasized in
Sec. II, the introduction of the magnetic multi-
plet A into the potential allows us to include the
topological degrees of freedom into the dynamics
and to deal with both the local and the global
structures of the gauge symmetry on the same
footing at the level of the dynamics. In this re-
spect notice that the potential (31) is not the same
as the one that one has in conventional gauge
theory which contains only the local gauge degrees
of freedom. To understand this, notice that in
the magnetic gauge the potential (31) may be
written as

should carry the unit color charge and form the
valence gluons, whereas &~ and „* make the
binding gluons. In short, the Potential in the
extended gauge theory is made of tavo parts,
the binding gluons that quill confine any colored
source and the valence gluons zvhich zeill behave
as a gauge covarian-t colored source of the bind-
ing gluons.

The effective Lagrangian of the extended QCD
can easily be obtained from the QCD Lagrangian
(7) with the help of the potential (31). In the
magnetic gauge we find

~ =~(z)+ ~(x) (37)

where i'. &s& is the RCD Lagrangian (8), and g&,
is the reactivated piece,

i [8+ + ig(A+ + C )]X

-[s„+ig(A„+C+)]X„~'

+(g AY)(by"~X„*+~~ bX„) (38)

—ig(Fq„+H~„)X~X„*

+ 2 g [X~ X„* —(X X *)2]

Thus, extended QCD may still be described by
the dual dynamics of RCD, but with an additional
colored vector source X~ in it This m.eans, first
of all, that the mechanism of color confinement
in RCD will remain valid in extended QCD. Fur-
thermore, the physical particle spectrum of
BCD, i.e., the meson and baryon trajectories
made of quark pairs as well as the magnetic
glueballs 0" and 1", all will appear unchanged
in the particle spectrum of extended QCD. How-
ever, the extended theory will obviously contain
an additional set of particles made of valence
gluons. Owing to the color-confinement mecha-
nism the valence gluons will have to be confined
in pairs to form color-singlet "electric glue-

This confirms the fact that R„ transforms covari-
antly under the gauge transformation. It is re-
markable that one can single out the gauge-co-
variant piece of the potential so easily by the
decomposition (31). Now it becomes clear that
reactivitating the multiplet X„ from RCD will
merely amount to putting in an additional colored
covariant vector source in the theory. Then it
comes as natural for us to call X„the valence
gluons and the other part of the potential the
binding gluons. 'Thus in the magnetic gauge the
complex vector field X„

(36)



EXTENDED GAUGE THEORY AND ITS MASS SPECTRUM

balls" just as the quarks had to be confined
in pairs to form the mesoqs. So one would
expect a set of linearly rising glueball tra-
jectories made of the valence-gluon pair.
In conclusion, in extended QCD we obtain, in
addition to mesons and baryons, tmo types of
glueballs, i.e., electric and magnetic glueballs.
These two types of glueballs are, however, com-
pletely different in their character and origin.
The magnetic glueballs appear as collective
modes of the condensed vacuum and do not belong
to any trajectory, zehereas the electric glgeballs
appear as bound states of valence gluons and form
a family of linear trajectories of their onion.

The remaining question now is, of course, horn

one can find the full spectrum of the electric glue-
balls. Since the spectrum must form linearly ris-
ing trajectories the general character of the full
spectrum may be described by the number of the
leading trajectories, their slopes, and the mas-
ses of their ground states. In the following sec-
tion we will show how to obtain these character-
istics as far as possible.

VI. ELECTRIC GLUEBALLS

To obtain the glueball spectrum remember that
the meson spectrum made of the spin-& quark
pair has 2 x 2 leading trajectories which may be
specified by their lorn-lying states 'S„'S„'P„
and'P„or w, p, 6, and&„respectively. Now,
since the electric glueballs are made of the spin-1
valence- gluon pair, one mould expect 3 && 3 leading
trajectories' for the glueballs, which may be
listed by their characteristic low-lying states

2t '

Os P2$ Pl y Ppy Dsy D2~ Dls. and Dp'
Of course, each leading trajectory will have its
own daughter trajectories.

The confinement mechanism of the theory un-
ambiguously provides us with the string picture
of the glueballs for higher excited states when

one of the valence gluons is hit with a large mo-
mentum, whereas it will provide the bag model
picture for the low-lying states of the masses
comparable to those of the magnetic glueballs.
So one expects that the glueball trajectories will
rise linearly with a slope fixed by the string ten-
sion kx of the valence-gluon pair. Now one may
easily esti. mate the slope parameter by calcu-
lating the string tension of the gluon pair. If we
assume the effective potential (12), the string
equations of the gluon pair, mill become identical
to (16) with the same boundary condition (17), but
with a different color flux quantization condition

The difference, of course, -is'due to the fact that
the valence gluons carry a unit color charge
while the quarks carry a half-unit charge. The .

string tension Ax and the corresponding slope
parameter +x may now be written as

m
1 Q

x 2++ st ~x~0 6+~x
X

(40)
I

where yr may be evaluated with the help of (20),
but nom with the nem solutions satisfying the
quantization condition (39). The ratio R of the
slopes of the meson and the glueball trajectories

X—O. y
n' yx

may then be calculated as a function of a, . A
computer calculation' of the ratio g is shown
in Fig. 3(I). As before, if we use the value a,
= 0.22, which is fixed by the running coupling
constant o.(s) at s = pm, we obtain

n —0.50. '~ 0.45 GeV '.

(41)

0.470."~0.42 GeV 2,
I

Q

0.45m'- 0.41 GeV ', X=2,
(43)

With the precise numerical results set aside,
however, notice that in spite of the difference
in their exact forms both of the potentials (12)
and (21) predict

8- 0.5 (44)

over a wide range of a, . Thus the slope of the
new trajectories would, in any reasonable circum-
stance, be roughly & smaller than the Regge
slope o. ' of the meson trajectories.

R(= a'„/a')
1—

Coleman -Weinberg potential

Quartic potential

I I I I I I I I I I I I I I I I I I I I

0.5 2.0 2.5 2.0 as

One may carry out a similar calculation using
the potential (21) instead of (12) to fix the value
of the slope parameter o.'x. In Fig. 3(II) we show
the ratio R obtained from the potential (21). Again
with the assumption that o., is given by a(s}at
s= pm, we obtain

fE f dg =2.
0

(39} FIG. 3. The ratio R of the meson and the glueba11
slope parameters 0.' and nx as functions of o~.
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V(r) =kr" (0(v(~) . (46)

In the semiclassical WKB approximation the
energy spectrum of such a system is given by"

To fix the glueball spectrum completely one
must be able to tell the mass spectrum of the
low-lying states of the trajectories. This, of
course, is a very difficult task which requires
knowledge of the detailed dynamics of the confine-
ment. However, if one is willing to make a most
naive approximation, one could obtain a crude
estimate of the masses of the low-lying states of
the trajectories. So let us for the time being
suppose that the low-lying states of both the gluon
and the quark pairs may be described by a nonrela-
tivistic SchrMinger equation with a binding po-
tential of the type

glueballs will be about twice as large (~1.6 GeV) as
the p mass, the typical mass scale of the S-state
quarkpairs. Now in reality, of course, the above
nonrelativistic approximation should not be taken too
seriously. " Nonetheless one may hope that the
above analysis could give an acceptable (if crude)
estimate of the typical mass scale of the low-ly-
ing glueballs. If so, the expected glueball spec-
trum, compared with the meson spectrum, may
be characterized by the following two features:
The low-lying states of the glueballs will be heav-
ier than (about twice as heavy as) the correspond-
ing low-lying states of the mesons. For the higher
excited states the slope of the glueball trajectories
will be smaller than (about half as small as) that
of the meson trajectories.

VII. DISCUSSIONS

~here
x(n, 1 =0, 1,2, ...),

2vv m I"(1/v+p)
1'(1/v)

p, o is the reduced mass, n and l are the principal.
and the orbital angular momentum quantum num-
bers of the two-body system. So if we denote the
constants 4 and p,o of the quark pair and the gluon
pair by p, p, , and 4x, p.x, respectively, the ratio
of their energy spectrum may be written as"

-v/ (2+v)
g

2/ (2+v)
X.nt X X

Now if one assumes

&r,)„=&r )„ (48)

and use the value of the string potentials for k,
and k

&x
k, n' (49)

one would deduce that the typical mass scales of
the low-lying glueballs are twice as heavy as the
corresponding mass scales of the quark pair. So,
for example, the typical mass scale of the S-state

where (r,) and (r )„are the mean radii of the two
systems. The last equality in (47) comes from the
fact that"

~»x ""'"'
(r )„pj,

In this paper we have presented an extended
gauge theory in which not only the local structure
but also the global structure of a non-Abelian
gauge symmetry is taken into account into its
dynamics. The extended theory has many
attractive features. First of all, the theory could
successfully explain color confinement in QCD.
The color reflection invariance of the confinement
mechanism guarantees us the fact that the physi-
cal spectrum of the theory must contain only color
singlets. Besides, the confinement mechanism
unmistakably produces Nambu's string picture"
of hadrons in the high-energy limit. Furthermore
the theory predicts unambiguously the existence
of two typeS of glueballs, the magnetic glueballs
which are the massive collective modes of the
condensed vacuum and the electric glueballs made
of the valence-gluon pair which form a family of
linear trajectories of their own, in its physical
spectrum. Perhaps more importantly it can pre-
dict the slope of these glueball trajectories.

There are a few points to be discussed and clar-
ified on the mass spectrum of the extended the-
ory. First, we notice that with the color reflec-
tion invariance alone one cannot, in general, ex-,
clude possible exotic color- singlet states in one' s
physical spectrum. For example with the group
SU(2) the above criterion may easily rule
out any exotic meson or baryon state made of
more than one quark pair from the physical spec-
trurn. However, this criterion does not exclude
possible exotic glueball states made of more than
one pair of valence gluons. Although one might
attempt to exclude these exotic states with a hith-
erto unknown dynamical selection rule, it seems
unlikely that they can be successfully excluded
from the physical spectrum. Another point is that
although the structure of the physical spectrum,
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in particular the existence of the two types of
glueballs and the linearly rising family of elec-
tric glueballs, seems unavoidable in our theory,
the predicted mass spectrum of these glueball
states presented in the above may not be taken
at their face values for the following reasons.
First, they are evaluated based on the group
SU(2) in this paper T. his defect may be corrected
without much difficulty by considering the realis-
tic SU(3)-symmetric extended QCD.4 However,
there are other technical assumPtions involved in
our predictions. First, all of our numerical pre-
dictions are based on the assumption that n, of
the theory could be fixed by the running coupling
constant o.(s) of QCD at s = pm. Although this as-
sumption seems reasonable, it remains an as-
sumption which has yet to be checked by experi-
ments. Besides, the masses of the magnetic
glueballs are evaluated based on the mass ratio
(14) obtained from the one-loop approximation,
which may be reliable only in the strong-coupling
limit. Also for the ground-state masses of the
electric glueballs the naive nonrelativistic ap-
proximation adopted in the above is undoubtedly
questionable. Accordingly these numerical pre-
dictions should be interpreted with due caution
with these technical assumptions in mind.

The extended theory in its present form con-
sidered in this paper contains a few unsettled
questions. For instance, although so far we were
able to avoid dealing with the singular "dual poten-
tials" ' A, and C,* in this paper, the precise
mathematical meaning of the singular objects and
their dual couplings has to be clarified before one
could perform various higher- order calculations.
Another novel feature of the theory is the fact that
the magnetic condensation of the vacuum intro-
duces a new parameter P, into the theory. Thus
the theory contains two arbitrary parameters, the
coupling constant g and the vacuum expectation
value $,. Consequently the Regge slope n' alone
cannot fix the fine-structure constant n, in our
theory. In fact it was precisely due to this rea-
son that we had to estimate o, from the running
coupling constant o.(s). This feature is in con-
trast with the contemporary belief that the coup-
ling constant alone should fix the theory com-
pletely. At the moment we do not know whether
this is an intrinsic feature of the extended gauge
theory, or merely due to our inability to calculate

the vacuum expectation value in terms of the coup-
ling constant. On this issue it is perhaps illumi-
nating to compare our theory again with the theory
of superconductivity. Within the framework of the
Ginsburg-Landau theory there is no way to calcu-
late the mass gap in a superconductor. It is only
in the microscopic BCS theory where one is able
to calculate the mass gap. Likewise it is an open
possibility that in a more elaborate and micro-
scopic formulation of extended QCD a, alone
(and thus only one universal mass scale n' alone)
could fix the theory completely.

Finally, from the theoretical point of view one
of the most important questions to be settled is
to what extent extended QCD is different from
conventional QCD. The issue here is the precise
nature of the duality ' of the theory Gu.ided by
physical intuition rather than a rigorous mathe-
matical deduction, we have introduced the mag-
netic (i.e., the topological) degrees of freedom
(the magnetic potential and the monopole field)
as fundamental fields to take into account the
topological structure of the underlying gauge
symmetry explicitly. Accordingly the magnetic
degrees appear independent of the electric (i.e.,
the local) degrees of freedom' in our formalism.
On the other hand one could think of the possibil-
ity' that the magnetic degrees, or at least the
magnetic potential, could be obtained from the
electric potential through some kind of dual trans-
formation. In this latter point of view the two de-
grees of freedom appear two opposite sides of one
and the same physical degrees of freedom. Al-
though phenomenologically both points of view
would likely lead us to the same physical spec-
trum, from the theoretical point of view it would
indeed by very interesting to see to what extent,
if at all, the topological degrees could be derived
from the local degrees of freedom.
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