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Infrared divergences in quark potential scattering
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We reexamine the cancellation of infrared divergences in massive quark potential scattering in a non-Abelian gauge

theory. We improve on previous arguments and extend the proof of cancellation to cases of gauge-nonsinglet

potentials and quarks of specific color. We also observe that cancellation fails in the case of the scattering of quarks

of specific color by a nonsinglet potential.

I. INTRODUCTION

The work of Doria, Frenkel, and Taylor' on
infrared (IR) noncancellation in Dreli-Yan pro-
cesses dressed by quantum chromodynamics (QCD)
has led to renewed interest in the perturbative
IR structure of this theory. Some time ago, an
argument was presented that IR divergences can-
cel to all orders in the scattering of massive
quirks from a gauge singlet potential. ' It is the
purpose of this paper to reexamine that problem,
correct a technical difficulty in the argument of
Ref. 2, and extend the proof of cancellation to
cases where either (i) the potential is not a gauge
singlet or (ii) the color of the incoming quark is
not averaged over. We also find by an explicit
example from the one-loop level that if both (i)
and (ii) are taken to be the case, IR cancellation
fails in general.

The paper is organized as follows. In Sec. II
we deal with preliminaries which enable us to
identify the origin of IR divergences in the mo-
mentum-space integrals from which we calculate
cross sections for massive quark potential scat-
tering. Most of this is a review of arguments
already given in Ref. 2. In Sec. III, we give the
modified argument for cancellation in the singlet
potential case with non-color-averaged quarks.
In Sec. IV we examine the cases of nonsinglet
potentials and nonaveraged quark color.

II. PRELIMINARIES

We will deal with a cross section in which a
massive fermion p,. scatters once from a poten-
tial which supplies momentum q. We sum over
all final states which include gl.uons whose total
energy is less than some value 8 . The argu-
ment is unaffected by the production of massive
fermion pairs by the potential.

Our strategy for demonstrating the cancellation
of IR divergences is the following.

(1) We begin by identifying those points in mo-
mentum space which give rise to divergences in

the contribution of individual graphs to cross
sections. At these "pinch singular points" loop-
momentum contour integrals must be trapped
between singularities. These will include "col-
linear" as well as IR divergences.

(2) We combine graphical contributions of the
same topology (i.e., sum over cuts) and observe
that this results in the- cancellation of all collinear
divergences.

(3) Finally, we combine graphical contributions
differing only in terms of the attachments of glu-
ons to the incoming quark line to effect the can-
cellation of IR divergences.

Before going on, we should indicate how we rec-
ognize when divergences associated with any given
point in momentum space cancel. There are two

ways, one illustrated by step (2) above, and one
by step (3). In the former case we find, after
summing over cuts, a contour integral which is
not pinched between singularities at the point in
question. The divergences associated with this
point in each of the individual contributions may
thus be interpreted as having canceled because
the resulting integral gets no divergence from
that point. In the latter case, the cancellation is
more direct, consisting in combining a set of
integrals in which the integrands cancel at the
point in question. If, as is the case in potential
scattering, the individual integrals are logarith-
mically divergent, their sum will be finite.

I.et us begin with step (1). Graphical contribu-
tions to quark scattering cross sections may be
represented schematically as in Fig. 1. I'~ is
the graphical contribution to the amplitude, and
I'„* to its complex conjugate. Each pinch singular
point in the integral is associated with a reduced
diagram which includes only the lines which are
on-shell at that point. Figure 2 shows the most
general of such reduced diagrams. According
to the theorem of Coleman and Norton, ' the on-
shell propagation of its lines between vertices
must represent a physical process in both 1"~ and

V~ and V~ are contracted vertices describing
the nontrivial momentum transfer in I'~ and I'~,
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FIG. 1. Graphical contribution to potential scattering.

respectively, from which the final quark p& and
some number of gluon jets (in this case one, rep-
resented by J and the heavy lines) emerge. All
nonjet uncontracted gluon lines, represented by
S~ and S„*, carry zero momentum at the pinch
singular point. C is the final state connecting the
two graphs.

We can now sum over final states C (step 2),
grouping together contributions Mth different I'~
and I'~~ but the same over-all topology. Unitarity
requires that the sum of all -such contributions
integrated over all loop momenta gives the imag-
inary part of the uncut diagram. We can, in fact,
use a much stronger result. ' Consider a pinch
singular point such as the one represented by Fig.
2. Fix the three-momenta of all lines in Fig. 2
and integrate only over energies, then sum over
cuts. The result is the imaginary part of the un-
cut Feynman integral integrated over all energies
of its loops, but still with all fixed three-momenta.
We can thus apply unitarity in the neighborhood
of any point. We can now reexamine the resulting
integral to see whether the point, which is a pinch
singular point in each cut graph, is still one in
the uncut graph.

Suppose for the moment that the momentum
transfer is above threshold in the final state, i.e.,
(q+P,.)'& m'. Then the possible pinch singular
points of the resulting integral are quite simple,

FIG. 3. Most general pinch singular point after the
sum over cuts.

much simpler than in the individual terms. ' The
most general reduced diagram is' shown in Fig. 3.
There are now no jets, only zero-momentum
gluons attached to the initial fermion line p,. or to
the contracted vertex V, and to each other in S.
The final fermion has also disappeared into V.
Evidently all divergences associated with gluon
jets or the attachment of soft lines to the final
quark must cancel in the sum because there are
no pinch singular points corresponding to such
processes left, at least when we are above thresh-
old. We will deal with the special case of thresh-
old scattering, (q+ p,. )'-m' below, but for now we
note that step 2 has eliminated much of the com-
plications in the problem, and has left us with
only true IB divergences with which to deal.

In fact, above threshold, the situation is even
simpler than indicated by Fig. 3. If we count pow-
ers in the neighborhood of such points we find that
actual divergence is possible only when no gluon
lines are attached to V. Thus we are reduced to
examining the graphs of Fig. 4. We also note that
the soft gluons attach to p,. only at three-point
vertices. ' Above threshold, vertex V is a smooth
function of the momenta(k) of the gluons in Fig.
4 so that if we can exhibit cancellation between
some set of terms which are singular in the k's
we will have demonstrated cancellation without
having to worry about the details of V above
threshold.

When q+ p actually reaches threshold there is
a bit more of a problem. The subgraph involving
the two vertices at which the potential acts can

FIG. 2. Reduced diagram representing most general
pinch singular point in a graphical contribution.

FIG. 4. Pinch singular point associated wraith diver-
gence above threshold.
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show —not that V is independent of k—but rather
that it i.s a smooth function of k once q is averaged
over a neighborhood of the threshold. Taking the
lowest-order example, we choose

FIG. 5. Graph with extra divergence at threshold.

no longer be considered a smooth function of the
k's. This, of course, is the case in the lowest-
order exampI. e, Fig. 5. But there again we can

p -((p 2~ m2 g2)1/2 () 0 p )

q =q.2'+q Iq" I"Iq. l p, =0, 1, 2

g«g«jp [.
Then, defining V as an average over q,

(2.1)

P+ ((t —k+ m
V(P &) = d'q V, (q)

( ). . V2(q)

~g max
d'q dqzVi q + — +m 2p k+2 -k q —2 P, -k, q, -q, ' —5'+i» 'V~ q . (2.2)

Here, as in the two-particle irreducible case, the relevant q, pole is in the lower half-plane, at least for
Ik, I&Ip, I. [Note (q, ) &0.] So everywhere in the neighborhood of )'2=0 we can deform the q, integral as in
Fig; 6 so that

V(p, )qfd'q =dq.q,(q), , : V„'(q)+0-
2p q-. 2p, q, -q, ' —52+is " (2.3)

One way to look at this result is to observe that
the discontinuity in V, which is all that contributes
to the cross section, comes from the 6-function
part of (p+ g —0 —m) '. Small changes in k near
k = 0 only shift the position of the 5 function slight-
ly; they do not change its value in the q, integral
much.

It is easy to generalize this argument to an
arbitrary graph. This is done by applying the
Coleman-Norton theorem' again —now at threshold
(q+p)2=m2. The only pinch singular points that
are two-particle irreducible in the vertical chan-
nel have reduced diagrams of the form of Fig. 7,
where all the l,. =0 at the pinch singular point.
Now in the q, integral there are ~+ I poles, all in
the lower half-plane near q, = —2p, . So the same
argument as above shows that V(p, k) is still a
smooth function of k near k = 0.

t

Before turning to the cancellation of IR diver-
gences in the next section we should add a few
words on the nature of the integral near the pinch
singular point. The general reduced diagram. of
Fig. 4 can be decomposed as in Fig. 8, where all
two-particle cuts in the vertical channel are ex-
hibited explicitly. The number of (not necessarily
connected) gluon Green's functions S,. gives the
number of logarithmic divergences associated with
each such reduced diagram. We can see this by
counting powers: Within each S, , all components
of all momenta must vanish together to get di-
vergence, but the momenta in S~ may vanish in-
dependently of S~ for j&k. There are only n in-
dependent ways of scaling momenta to zero while
retaining logarithmic divergence, and thus there
are only n such logarithms. This pattern is al-
ready present in QED. ' There is one apparent
exception to this rule however, having to do with

x
-2p —g -2p +0&k)

Z Z

& Z~maX
0

FIG. 6. Deformation of q integral. FIG. 7. Higher-order example.
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plex plane. The direction of deformation is speci-
fied by the ie on the fermion line. Thus the po-
tential extra logarithms associated with noneikonal
quarks never actually develop, and we can, if we
mant to, do all the integrations in such a may that
the eikonal approximation is always valid. How-
ever, in comparing different integrals for pos-
sible cancellation between their integrands (step
3), we must verify that the A, integral has been
deformed in the same way in each. This pos-
sible source of difficulty, which was not discussed
in Ref. 2, is dealt mith in the next section.

FIG. 8. Decomposition of Fig. 4 by two-fermion states.

the quark lines. Consider Fig. 9, in which a par-
ticular quark propagator p+ k is isolated. We
choose for definiteness the rest frame of p. The
relevant denominator is thus

2Poko+ k2+ 2 (2.4)

If all components of k are of the same order, only
the first term in (2.4) need be kept. This is the
eikonal approximation. But suppose k, is allowed
to decrease independently of the other components
of k. The order of magnitude of none of the de-
nominators in 5 mill be affected because they are
all quadratic in all components of the k's. Local-
ly, the k, integral mill look like

f O((k))

~o&[u ~y~ 2p,k, +s

which seems to give another logarithmic diver-
gence, this time associated with the independent
vanishing of k, for fixed k. When k, is literally
zero we no longer have

(2.5)

2p k»k' (2.6)

and the eikonal approximation fails. What are we
to do with such noneikonal contributions' The
thing is to notice that the k, integral is not trapped
at k, = 0 for k fixed, even cohen me make the eiko-
nal aPPxoximation. Thus the k, integration can be
performed without ever coming nearer than 0(~k~)
of k, =0 by deforming the k integral into the com-

III. CANCELLATION FOR GAUGE-SINGLET
POTENTIALS

We are now ready to implement step 3 of the
procedure outlined above, and demonstrate can-
cellation of integrands between singular contribu-
tions from various graphs. We have already re-
duced the possible sources of trouble to points
corresponding to reduced diagrams such as Fig.
8. All momenta are nearly zero near the pinch
singular point and, in accordance with the com-
ments made at the end of Sec. II, we must pay
attention to the possibility that not all quark de-
nominators are eikonal before contours are de-
formed. We must also be careful that our de-
formations do not ruin the cancellation mhich me
exhibit.

In this section our potential is taken to be a
gauge singlet. We need not average over the color
of the incoming quark.

The set of graphs to be combined is exhibited in
Fig. 10, with momenta labeled as shown. The
Green's function S is the same in each graph, as
are the loop momenta k„.. . , k„. 8 need not be
connected, and the whole graph may be two-parti-
cle reducible in the vertical channel. We notice
that the first and last terms in the sum are self-

-gk;
i=I

FIG. 9. Graph for discussion of eikonal approximation. FIG. 10. Contributions added to derive cancellation.
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energies, so that the top-most quark propagators
are formally on-shell. We know that these poles
are canceled by zeros of the self-energy on-shell
after mass renormalization. Also, only one of
the two self-energies is actually counted in the
cross section. As in Ref. 2, we have introduced
a "fake" momentum 6 (attached to k, in Fig. 10)
to solve these problems. We will exhibit cancel-
lation at finite 5, which is defined to be real and
positive semidefinite. The physical result is re-
covered in the 5-0 limit if we use the fact that

where g, ,(p) is the quark wave function of spin i
and color a. p„contracts into the ith vector in-"1.
dex of S, and T, into the ith color index. Notice
that the spin factors 2p„, which follow from the
Dirac equation, are the same as in QED. The
group factors are the same in each graph of Fig.
10 because the potential is assumed to be a sin-
glet.

In the cross section, (3.1) is multiplied by the

product of eikonal denominators. For n = 1, their
sum over the three terms in Fig. 10 is

u(p)Z(p)
~

=0, p'=m2. (3.1)

Equation (3.1) shows that there are internal can-
-cellations in the first graph of Fig. 10. Thus,
showing cancellation for an arbitrary S in Fig. 10
is enough to demonstrate cancellation for every
possible source of divergence in the physical cross
section.

With the choice of loop-momentum flow shown
in Fig. 10, the problem of noneikonal quarks is
trivial. In each graph the orientation of each loop
momentum k relative to the quark momentum p is-
fixed. Poles due to the quark lines are always in
the upper half-plane in the k, integrals. As a re-
sult we can deform all the k, integrals into the
lower half-plane in the same way in all the terms
in Fig. 10. The k, integrals will encounter sin-
gularities in the lower half-plane only from de-
nominators in S, at a scale O(~%~). Thus we may
take (k, ), to be of the order of ~k, ~

for all i, so
that (2.6) is satisfied by all the k, , and the eikonal
approximation is justified. Since k, contours are
deformed the same way in the different terms,
we can cancel them algebraically between cor-
responding contributions.

The logarithmically divergent part of the integral
comes only from the factor P+m in each quark
numerator. The complete numerator contributing
to the divergent part is then independent of rn,
and is given by

El= 1
(2p ~ 6)(-2p k2+ ie)

1
+ (-2p ~ k, + ie )[-2p ~ (k, + 6) + ie ]

+
1 =0.

(-2p 6)[-2p (k, + 6)+ ic] (3.3)

E„=I„+S„+8„, (3.4)

with

=' -2+p k, +ie

s„=g
s=l '"=' -2+p ~ k,. +is "=' -22 g 2,. Il) +s'c

i=1

(3.5)

Notice that since 6 is positive semidefinite we
can drop the ie in the denominators with only p ~ 5.
We can verify the cancellation for n& 1 iteratively.
We write the sum of eikonal terms for arbitrary
'fI, as

n

yI (p)xZ', xZ', x ~ xT xy, ,(p) '[ (2p„), (3.2) I.„ is the contribution of the first term in Fig. 9,
and 8„is of the last term. Now we also have

-22 Qk,. +2)+$2
i=1

1 2P ~ 6

Z2'2, . +is —22 P2,. +2)+is
i=1 i=1

(3.6)

Substituting R„,= —I„,—S„,into (3.6) shows that E„=0. So, as claimed, the sum of eikonal contribu-
tions vanishes identically and the cancellation of IB divergences is demonstrated. Note that the identity
here properly incorporates the ie terms in the denominators, unlike the corresponding identity of Ref. 2.
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FIG. 11. Group identity relating gluon coupling to
quark color flow.

FIG. 13. Decomposition of group factors in multi-
gluon Green's function.

IV. CANCELLATION FOR GAUGE-NONSINGLET
POTENTIALS

In the previous section the cancellation of in-
frared divergences for gauge-singlet potentials
was shown. For the gauge-nonsinglet case the
only difference for the graphs is the color factors
contained in Eq. (3.1). For the (m+1)st term of
Fig. 10, after averaging over quark color it is
now given by

Tr(T, xT,x ~ ~ xT„yZ' „x ~ ~ xT ), (4.1)

iC))~ = ~ Tr(A)A)Aq —A)A.;Aq),

which is shown in Fig. 11, and

ab cd ad bc 3 ~ab ~cd ~

(4 3)

(4 4)

shown in Fig. 12. The solid lines give us the flow
of color only. Thus as far as color is concerned
we can replace gluon lines by quark lines.

If we make the above replacements, the color

where V refers to the color matrix for the vertex
V in Fig. 4. Our aim now is to find the cases
where this factor is independent of rn, so the
various graphs can still be added, as in Sec. III,
to give cancellation.

To be specific we consider the quarks to belong
to the fundamental representation of the gauge
group. For the argument we consider SU(3). Let
the color factor of the blob S be S"" """in
which case the overall color factor is

Tr(X A. A. PA. g ISly2g ~ ~ ~ pm/m+1 j ~ ~ ~ sn
1 2''' m m+1''' nj

(4.2)

the trace being taken for color-averaged quarks.
To proceed with the argument we need to de-

compose the gluon color factors into the funda-
mental representation. This is done for instance
in Ref. 6, and two useful results are

Tr(A. A. V) (4.5)

and we get the same results in either case as it
does not matter whether the ~ is located before
or after the V. The argument of Sec. II now ap-
plies.

This leaves us only with the case when the color
of the incoming quark is not averaged over and
the potential is not a singlet. We choose an octet
potential. There we see that there is no cancel-

factors of the gluon n-point function S can be de-
composed into the n gluons attaching to fermion
loops, with no internal gluons remaining (Fig. 13).
This is because the internal gluons can all be
replaced by quark-antiquark lines. The gluons
which attach to a particular fermion line are de-
termined then by the topology of the graph. In
general there will be many such terms for each
S.

The gluon n-point function couples to the ex-
ternal quark line. If we move the gluon line m
across V then the color factor is changed to

Tr(g g g yg g y 'IS&,2, ... ,m-&, m, m+1, ..., n
1 2' '' m-1 m m+1' '' n~

(4.5)

and we must show the equality of Eqs. (4.2) and

(4.5).
The color factor for one particular term is

shown in Fig. 14. In general there will be more
terms but we can treat each separately. Now we
once again replace all the other gluon lines by
quark-antiquark lines and we arrive at the case
where the gluon m now attaches itself to only
one remaining quark line or to a quark line and a
loop (Fig. 15). The latter is zero as Trk,. = 0.
Thus the trace reduces to the form

FIG. 12. Group identity relating gluon to quark color
flow. FIG. 14. Result of applying Fig. 13 and Fig. 4.
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FIG. 15. Reduction of Fig. 14 using Fig. 12. FIG. 16. One-loop contributions to scattering.

lation even at the one-loop level. For instance,
the color factors associated with the diagrams of
Fig. 16 are A.,-X X„X, and X X„X,.A.,- whose diagonal
terms are simply not the same. With equal
weights these two contributions cancel identically
in the soft region; with unequal weights they can-
not cancel. Thus the noncancellation found in the
color-averaged Drell-Yan process in Ref. 1 at the
two-loop level occurs in single quark scattering

if color is not averaged over and the potential is
not a singlet.
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