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Restoration of symmetry by radiative corrections
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It is shown using an explicit model that radiative corrections can restore the symmetry of a system which may
appear to be broken at the classical level. This is the reverse of the phenomenon demonstrated by Coleman and
Weinberg. Our model is difFerent from theirs, but the techniques are the same. The calculations are done up to the
two-loop level and it is shown that the two-loop contribution is much smaller than the one-loop contribution,
indicating good convergence of the loop expansion.

I. INTRODUCTION

In a very interesting article written some years
ago, Coleman and Weinberg gave explicit exam-
ples demonstrating spontaneous symmetry break-
ing through radiative corrections in relativistic
quantum field theories. That is to say, the clas-
sical potential in the Lagrangians of these exam-
ples had an absolute minimum in field space
which was symmetric under the action of some
invariance group of the I.agrangian. %hen the ef-
fect of quantum corrections was included up to
leading order in a loop expansion, the vacuum
shifted to one of a set of asymmetric points, giving
rise to spontaneous breaking of the symmetry. In
the process, Coleman and Weinberg also developed
the technical machinery for systematically study-
ing the effect of radiative (i.e. , quantum) correc-
tions on the location of the vacuum. These techni-
ques have been further discussed in other pa-
pers. '3

In the examples studied in the Coleman-Wein-
berg work, the effect of the corrections was to-
wards the direction of breaking a symmetry. But
the basic lesson we learn from that work is that
quantum corrections can, in suitably chosen mod-
els, significantly alter the location of the vacuum
as compared to what the classical potential would
indicate. Roughly speaking, the differences in
zero-point energy can more than offset the dif-
ferences in classical potentials. Given this under-
lying physics, there is no reason why the pheno-
menon cannot go in the reverse direction. That is,
one may be able to find other examples, where the
classical potential indicates an asymmetric vacu-
um, whereas when quantum corrections are added
on, the vacuum shifts to a symmetric point. If
such examples were found, they would correspond
to "restoration of symmetry" due to radiative cor-
rections, rather than breaking of symmetry. This
paper is devoted-to explicitly demonstrating this

possibility with a simple example.
Our model consists of a real, scalar field

@(x,t) in (1+1) dimensions, described by the La-
gragian density

&(x t) =~2(~,4')' —U(4)

where

2 Q2

U(0) = (0 + & )(0 —m
C C

where

v'0(4) =(0"+~')(0' —1)' -n '

and

~6 2 y2~2

(4)

We will work with the simplified form (3) of the
Lagrangian, where a "major coupling constant" g

has been factored out. We will also restrict our-
selves to the range 0& a2 & &. In this range, the
classicaL potential Vo(p) has three minima (Fig. 1).
Two of them at Q =+1 are absolute minima, while
the third, at Q =0, is a higher local minimum. ln
the absence of radiative corrections, we would
expect the vacuum to be near Q =+1 or Q =-1. The
Lagrangian enjoys Q -Q symmetry, so that a
vacuum around P =+1 would correspond to spon-
taneous symmetry breaking. We proceed to study
the effect of quantum fluctuations on this result by
the standard procedure' of evaluating the so-called
"effective potential, " first to the one-loop level and
then to the two-loop level. 'The evaluation up to

-=a
ax

By changing variables to Q =cQ, x„=(l/c )x„', one
can rewrite this in terms of P(x, t) as

z(», t) = -[-.'(~„y)' —~,(y)], (3)
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FIG. 1.: Schematic plot of the classical potential Vo vs
g for 0&g &2 (a) fora slightly greater than 0, Q) for
a slightly less than 2.

these two orders is done exactly. We find that for
a certain range of the parameters a' and X, the
classical result is reversed by the radiative cor-
rections, which restore the symmetry. The ef-
fective potential develops an absolute minimum
at Q =0. This phenomenon already happens at the
one-loop level (Sec. II) for X greater than some
X„ for a given a' in this range. Recall that since
I/X factors out of the whole Lagrangian in (3), the
loop expansion will be a power series in X. Thus,
it is reasonable that the one-loop term may sig-
nificantly alter the result from the zero-loop
(classical) term only for X larger than some mini-
mal X,. This, however, raises an important ques-
tion, anticipated and discussed by Coleman and
Weinberg in the context of their models. If the
one-loop contribution is comparable to or larger
than the zero-loop term, will the two-loop and
higher effects be even larger, rendering the loop
expansion divergent, or, at the very least, a poor
approximation scheme? To overcome this prob-
lem, these authors consider a model with two
coupling constants. They show that by suitably
choosing the relative strengths of the two coup-
lings, it may be possible to have a significant ef-
fect from one-loop terms, without ruining the ra-
pid convergence of the loop expansion. Notice that
our Lagrangian also has two couplings X and a'.
We calculate in Sec. HI the exact and full two-loop

contribution to the effective potential. We show
that, for a range of X and a', (i) the two-loop con-
tribution preserves and enhances the one-loop ef-
fect of restoring symmetry while (ii) at the same
time it is much smaller than the one-loop term
indicating that the loop expansion may well be a
good approximation. This still leaves the conclu-
sion far from being rigorous. We do not know how
to evaluate or even estimate arbitrary n-loop con-
tributions, let alone obtain a closed expression
for the effective potential free of loop expansions.
But we feel that verification up to the two-loop
order is a good indication, given the present state
of the art.

A word about what motivated us to choose the
model (3) to illustrate this phenomenon. This is
not a pathological model —just a familiar Q' field
theory. It is the simplest example which has (i) a
symmetry, in this case under Q —-Q; (ii) abso-
lute minima at asymmetrical points, in this case
at P =+I; and (iii) a higher local minimum at the
symmetric point Q =0. Classically, the energy at
P =+1 is lower than at Q =0. But note that the
curvature of the potential Vo" —= d Vo/dP' is higher
at Q =+I than at Q =0. Thus, the quantum correc-
tion to the energy (zero-point energy), which typi-
cally increases with the curvature, will be higher
for a trial vacuum state centered at P =+1 than at
/=0. This may, for a range of a and X, more
than offset the difference in classical energy and
thus restore the minimum to Q =0. Of course,
strictly speaking, in a relativistic quantum field
theory requiring divergent counterterms, the
notion of the classical ("bare" ) potential is not
very meaningful. For a given renormalized theo-
ry, the bare parameters vary with the choice of
the renormalization prescription. Therefore, the
argument given above is intended at best to be a
qualitative motivation for studying the model (3).
As it turns out, careful calculations given below
with divergences canceled through a proper re-
normalization prescription do indeed reveal the
anticipated result for a range of a' and A..

The nature of the symmetry restoration illus-
trated by this model is quite different from a more
familiar class of symmetry restoration due to
quantum (or statistical) fluctuations. The latter
class comes under the well-known category of
"absence of spontaneous symmetry breaking in
low dimensions. " Consider, for instance, the
prototype case of a complex field P = ~Q ~e'~ with
a Lagrangian

This model enjoys U(1) symmetry. At the zero-
loop level, one would expect the vacuum to be at
Q =1 and at some phase angle 8 chosen spontan-
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eously. However, if the theory were in 1 space
dimension, there are theorems" which prohibit
spontaneous breaking of a continuous symmetry
such as U(1). In physical terms, what will happen
is that' quantum Quctuations will spread the ground
state to all values of 8, so that there will be no
preferred direction 8 any longer and U(1) sym-
metry will be restored. However, this spread is
still in the vicinity of

~
Q

~

=1, although all phase
angles may be equally sampled by the vacuum.
The vacuum will not shift to the vicinity of the
symmetric point P =0. In other words, in this
example, although (4)„,=0, (~4 ~')„,-I, where 4
is the field operator and (4') is understood to be
properly regularized. By contrast, in the type of
symmetry restoration we will illustrate with the
model in Eq. (3), the vacuum will shift from the
asymmetrical point P =+1 or Q =-1 to the sym-
metric point P =0. Not only will (4), =0, but also
(4 )„,-0.

Also, whereas the restoration of symmetry in
models such as (5) relies strongly on the small-
ness of space dimensionality, our phenomenon
does not. There is no a priori reason why the
type of symmetry restoration we will discuss can-
not happen in, say, (3+1) dimensions. True, our
model [Eq. (1)j was stated to be in (1+1)dimen-
sions. But that was only for ensuring that, unlike
in (3+1) dimensions, the Q' theory remains renor-
malizable. Renormalizability is important, to en-
sure that the model is sensible. But it is of only
secondary importance to our physical question.
Whereas renormalizability is an ultraviolet prob-
lem, the existence or absence of symmetry break-
ing is an infrared phenomenon; related to the in-
finiteness of volume. Therefore, if models such
as (1}were extended to (3+1) dimensions, by put-
ting them on a lattice to avoid ultraviolet prob-
lems, the type of symmetry restoration we are
discussing may well happen in suitable cases. We
do not present a lattice calculation here and this
statement is only a conjecture based on the de-
tailed nature of the calculation below.

It is well known that upon continuation to Eucli-
dean metric, , the effective potential is analogous
to the free energy in statistical mechanics. Our
phenomenon, with quantum fluctuations replaced
by statistical Quctuations, should have its analog
in phase transitions as well. In particular, first-
order transitions are typically described by Q'
theories as in (1). The analog of our phenomenon
should alter the critical temperature as compared
to its mean-field value.

Finally, the phenomenon we will demonstrate
will be the reverse of what is named by Coleman
and Callan' as the "fate of the false vacuum. " They
describe in detail how a false vacuum, i.e., one

We now proceed to evaluate the effect of quantum
corrections on the location of the vacuum for the
model in Eq. (3) by using the Coleman-Weinberg
method. ' Let us recall the salient features of
their method. It involves calculating the so-called
effective potential V,«(f&), which may be defined
by its Taylor expansion

v.„(y)= g —,G"(o, o, . . . , o), (6)

where G"(0, 0, . . . , 0) is the sum of all amputated,
one-particle irreducible (IPI) graphs with n ex-
ternal legs, all at zero energy-momentum. It has
been shown'4 that the absolute minimum of the
V,«(P) so defined will give (Q), the vacuum ex-
pectation value of the. field operator. Each
6"(0, 0, . . . , 0) may be expanded in a loop expan-
sion, in powers of the number of loops in the cor-
responding 1PI graphs. This will also be a power
series in the coupling A. which factors out of the
Lagrangian (3}, as per the counting argument in
Ref. 1. Thus V,«(P) can also be written as a loop-
expansion series:
i

V.„(e)= ~-'V.(y)+~'V, (y)

+ xV,(y)+ ~'V, (y)+ ~ ~ ~ . (7)

In this section we will evaluate V,«(P) up to one-
loop order, i.e., the first two terms of (7).

The leading term in (7) is obtained by inserting
just the zero-loop (tree) graphs into the Taylor
series (6). This will give, as is well known, just
the classical potential in the Lagrangian, viz. ,

(6)

The V, in (7) is therefore the same as the V, in

(4). The next step is to evaluate the one-loop term
V, (Q) by inserting all one-loop graphs into (6).
There are infinitely many one-loop graphs which

can, however, be compactly depicted as in Fig. 2.
There the solid circle stands for a sum of vertices
with zero, two, and four external lines arising
from terms in Vp of second, fourth, and sixth or-
der in Q, respectively. Each external line carries

constructed about a higher minimum of the clas-
sical potential Vp will decay into the correct
vacuum around the absolute minimum. Our work
shows that in models such as (3), for suitable
choices of the parameters, the opposite happens.
The so-called false vacuum, as for instance con-
structed around P =0 in our model, is in fact the
real one even though P =0 is not the absolute min-
imum of V,.

II. THE EFFECTIVE POTENTIAL TO
ONE-LOOP ORDER
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where
II

Vo

+

= 2(1-2a ) + 12(a -2)P + 30 It!

A-=A +M +X'A +. .
and similarly for B and C. The constants A, B,
and C are so designed as to cancel, order by or-
der, the divergences produced by the loop inte-
gration and leave behind a finite part which is fixed
by specific renormalization conditions. The con-
ditions we will use are

FIG. 2. The one-loop approximation for the effective
potential.

v.„(y)I, ,=0=v, (y)I, „ (12a)
zero energy-momentum and a factor of ft). The
weightage of each of these terms is such that a
vertex in Fig. 2 can be represented by V,"((t)),
where V,"=- d'V, /d(t)'.

'The contribution from the one-loop graphs to
V,(@) is

d'n ~ 1 Iv; (y)""
~ ~

(2ff)' „, 2n k'+i4: '

1/2n is a combinatoric factor. A cyclic permuta-
tion or a reversal of the order of the n vertices in
the one-loop graphs does not lead to a new con-
traction in the Wick expansion, therefore, the 1/
n. I in Dyson's formula is not completely canceled. '

Rotating the integral (9) to Euclidean space and

dropping the i4 gives

2 2~2ln 1+
k

%e have used a cutoff at k'=&', since the integral
is otherwise ultraviolet divergent. The value of
the integral is

(lo)

where terms that vanish as 4'- have not been
kept.

The contribution (10) diverges and this divergence
has to be canceled by adding counterterms to the
Lagrangian (8). This is a trivial example of re-
normalization in the sense that the divergence in
(10) arises, for this example of a scalar field in
(1+1)dimensions, solely from the lack of normal
ordering of the Lagrangian (8). For a Q' theory,
normal-ordering counterterms will have the form

B 2 c
V, , (e) =& —2e"—„e',

where one can again expand in powers of X,

d V„f($) 4! (, )
d4V0

dQ 4 X dQ

To one-loop order, we add counterterms A, + (B,/
2)Q'+ (Ci/4! )(t)' to the loop contribution (10) and
set

(12c)

v; (y))', (4)= '8 )n „( ) +1}8)f (Vo'

+& + ~p'+ ~y4 .B C
4&

The constants A„B„and C, are so chosen that
the renormalization conditions (12) are satisfied.
Notice that these conditions are so prescribed
that they are already satisfied by the leading term
(1/X)v, (&f&). Hence the radiative corrections must
contribute zero to each equation in (12). To one-
loop order,

o=v.(e) I.=v"(e) I.=v;- (e)I' (14)

These three conditions fix A„B„and C,. Some
trivial algebra yieMs

[ln(2 - 4a') —ln A'- 1],
1 —2a'

B,= —(2 —a')[lnA'- ln(2 —4a')],-3 (15b)

+ —[ln(2 —4a') —lnA'] . (15c)
108 (2-a2) 90

g 1-2g m

Qn inserting this into (18), one gets a finite ex-
pression for Vi(p) satisfying (14). This expression
along with the zero-loop term (8) gives the follow-
ing result for V,ff(p) up to one-loop order:

) „(4)=—4'+4') +—,+4 )1+)n(2 —4n*)1), (a' —2 9 (a'-a)'

1 —2g 3+p2 ——(2 —a')[1+in(2-4a')]I- —Vo" (P) inv"((t)) +
4 ln(2 —4a')+P(g). (16)
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Thus we have a closed analytic expression for the
effective potential to 0(X'}. Notice that it becomes
complex in the region where p," is negative. Such
problems did not arise in Ref. 1, because the
classical potential in their model was nowhere
concave. When &0 is not convex everywhere, this
problem is to be expected. Its existence may be
physically interpreted as follows. In physical
terms V,ff(p) is essentially the energy of the low-
est state subject to the constraint (@)= p. If we

try to construct a ground-state wave functional in
a region where the potential is concave, it will be
unstable. The imaginary part of the value of

ff (p) reflects this instability. Also, it is well
known that the leading quantum correction to the
energy is related to the curvature of the potential.
Now, it is possible that V,«(Q), when calculated
exactly to all orders, may become real everywhere
and convex. ' As we have remarked earlier V,ff ((j5},
when continued to Euclidean metric, is formally
akin to the Gibbs free energy used in statistical
mechanics, and there are theorems which require
the latter to be everywhere real and convex. "
Hence, this unpleasant feature of V' «(p) in Eg.
(16) may be an artifact of the loop expansion. In

this work, however, we are basically interested
in whether the vacuum lies near p = el, or near

p = 0. We will therefore confine ourselves to com-
paring the values of V,«(p) in the vicinity of these
points, where it is certainly real. Up to any given
order in the loop expansion, which is the only
available technique for studying this question, one

can do no better.
Even though (16) is an analytic expression, it is

quite complicated, and the functional dependence
of V ff on Q, a', and A. is not transparent. Our
conclusions which follow are based on a numeri-
cal evaluation of this function for a grid of points
in P, a', and x space. The reader can indepen-
dently verify these statements starting from the
result (16). Consider, for example, the case a'
=0.05 and A, =0.007. The sum [(I/z)V, +V,] is
plotted in Fig. 3, curve II. We see that there are
two potential wells, near p = 0 and p =1, in V,«.
The effect of V, is to raise the minimum near p
=1 as compared to what existed in (I/A, )VD. Thus
the leading quantum correction tends to restore
symmetry. The precise location of this minimum
is also shifted by P,. Nevertheless, the minimum
near p = 1 is still lower than the one at p = 0, and
symmetry breaking will persist to this order for
the values a = 0.05, A. = 0.007. This is because this
value of A, is too small for V, to significantly alter
the classical term V,/A. . However, as g is in-
creased, keeping a' at 0.05, there comes a critical
value A., beyond which the minimum near Q =1 is
raised higher than that at P =0. Figure 3, curve
III, gives (VJX+V,) for the cases a'= 0.05 and
A, =0.01. We see that p =0 is the absolute mini-
mum of V,«(p) in the regions where the latter is
real. From this we would conclude that up to one-
loop order, and for this pair of values of a' and ~,
the vacuum lies at the symmetric point P = 0, and
that the symmetry is therefore restored by the
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FIG. 3. Plots of Veff vs p for a =0.05. Curves I, III, and IV show the profile of the effective potential calculated to

the zero-, one-, and two-loop orders, respectively, all for A, = 0.01 (which is greater than A.c= 0.009). Curve II shows
the effective potential to the one-loop order for X= 0.007 (&A~). Curves II, III, and IV are drawn only on regions where

Veff is real. For small values of p (i.e., before V,ff turns complex), the effective potentials to the zero-, one-, and

bvo loop orders are almost the same; curves I, DI, and IV are therefore shown by a single line for small values of p2.



2404 R. RAJARAMAN AND M. RAJ LAKSHMI

radiative term P,. Our numerical estimate is
that for g'=0. 05, the critical value of A, is around
0.009. It is evident that V,«(p) is a smooth func-
tion of g' and A, , and therefore this phenomenon
will happen for a dense range of values of g' and

In Fig. 4, we give another example where g'
= 0.20 and A, = 0.025 and 0.037. For the sma, lier X,
symmetry is still broken, but for A. =0.037 the
minimum of the outer well in p,« is higher than
the minimum at P =0, indicating restoration of
symmetry. Table I gives, for a set of values of
a2, the approximate minimal values A., beyond
which symmetry restoration happens. We have
restricted the discussion to the positive p region
since V «( Q) V «(Q).

Two qualifying remarks should be made about
this conclusion. The first is the existence of the
embarrassing region in between the two potential
wells in P,«, where P,« is complex. This diffi-
ficulty is unavoidable in any given order of the
loop expansion. We can only hope, guided by the
theorem quoted, that in the exact result to all or-
ders the potential will become real and convex in
this region as well, along a line connecting the
two minima. In that case, the lowest minimum,
in this case P =0, will support the vacuum.

The second remark regards the convergence of
the loop expansion even within the range where

ff ls real. Note that symmetry is re stored only
for A. & some A.,(a'). One can ask whether, for such
~, the higher-loop contributions will be small
enough for the loop expansion to converge rapidly.

TABLE I. Variation of A, with a2.

0.05
0.1
0.2
0.25
0.3

0.009
0.018
0.033
0.038
0.044

III. THE EFFECTIVE POTENTIAL TO TWO-LOOP
ORDER

In this section, we calculate the O(y) contribu-
tion to V,«. These come from three sources: (i)
the insertion of the earlier counterterms (g,/2)y'
+ (C,/4! )p into the one-loop diagrams, ' (ii) genu-
ine two-loop graphs, and (iii) new counterterms
A, + (B,/2)P'+ (C+4!)P' needed for renormaljzing
the net result. The first contribution is easy to
obtain. We merely replace Vo" (p) by Vo" (p)
+X[(8,$2)/2)+ (C,/4! )p']" in Eg. (10). This gives
a contribution to y2 of the form

. Otherwise, our conclusions based on one-loop or-
der will be meaningless. We can partially answer
this question by computing the two-loop contribu-
tion to V,~, explicitly for our model. This we do
in Sec. IO.
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FIG. 4. Plots of Veff vs p for g =0.2. Curves I, III, and IV show the profile of the effective potential calculated to

2 2

the zero-, one-, and two-loop orders, respectively, for A. = 0.087 (which is greater than Xc= 0.033). Curve II shows
the effective potential to the one-loop order for X= 0.025 (&X ). Curves II, III, and IV are drawn only in regions where
V,& is real. For small values of p (i.e., before V~f turns complex), the effective potentials to the zero-, one-, and
two-loop orders are almost the same; curves I, III, and IV are therefore shown by a single line for small values of @ .
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~v,'"(y)= —v,"+xa,+' 2' y')
1 „ zC,

2405

x lnA'+1-ln Vo'+KB, +
laa

V,"(InA'- InVO'+1) .

Retaining only order ~ terms consistent with two-
loop order, this reduces to

where

(0)

+ ~ + w m +

Vo ($)

A.V,'"(Q) = B,+ ' p'~(inA'- lnV,")+0(A, ') .C,

(18)
On substituting the expressions (15) for B, and

C, which themselves contain InA' terms, we
see that there are two cutoff-dependent terms
that are nonpolynomial in Q. These are of the form
a lnA' lnVO'(p) and pp'InA'InVO'(p), where a and

P are functions of a'. Unlike the other cutoff-de-
pendent terms that are either of second or fourth
order in p, these two terms cannot be canceled
by the renormalization counterterms. However,
as we shall soon see, this need not cause worry
because these terms will be annulled by similar
ones arising from the two-loop graphs.

The genuine two-loop graphs, in a compact no-
tation, are shown in Fig. 5. Each of the two
graphs stands for an infinite number of graphs ob-
tained by inserting an arbitrary number of ver-
tices that are represented by V," (such vertices

. have been discussed in Sec. II), into all the inter-
nal lines. The sum of aQ such insertions just
leads to an independent geometric series for each

FIG. 5. The two-loop approximation for the effective
potential.

internal line. The thick internal lines in Fig. 5
represent these sums. Computationally, the ef-
fect of these insertions can be taken into account
by makingthe su bstit uti oni /(k' +is)- i/(k' —Vo +i@)
for every internal propagator. Furthermore, the
vertex in Fig. 5(a) marked by a solid square stands
for the sum of two vertices, both having four in-
ternal lines, but differing in the number of exter-
nal lines; one has two and the other no external
lines. It can be shown by explicitly working out
the combinatorics to obtain the weights of the two
vertices that these can be collectively represented
by V,""(p)-=d4VJdp'. A'll this holds true for the
graph in Fig. 5(b) except that here the vertex
marked by a solid triangle represents a sum of
vertices each with three internal lines. This can
be represented by V,'"(p)-=d'Vip' and has been
so done in the figure.

Taking proper note of all the combinatorics, the
two-loop graph in Fig. 5(a) gives a contribution

y~'~(e) =

Figure 5(b) gives

V(&) )—(V."')' d'k, d'kg'k, (-i)(2w)25'(k, +k, +k,)
12 (2m) "(k,'- V,

" is+)(k,'- V,"+is)(k,' —V,"+i&)

(VIII)2
12

The integral in p~ is ultraviolet divergent. So, we use a cutoff at k'.=A'. Rotating the integral into
Euclidean space and dropping the i& gives

y(P 0
V"" t' ~d(k')

V =
8(2.) ~ k"V-

IIII
= 1'8, (lnA' —lnV")',

(20)

(21)

where terms that vanish as A ~ have been dropped.
The integral in I is not ultraviolet divergent as can be seen by a simple power counting of k. It can be

simplified by making use of the 5 function to integrate away one of the variables k„k~, k~. This gives,
after rotation into Euclidean space,
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1 2 2 1
(2v)' ' '

(O '+V,")(a '+V")[(O +u )'+V"]
This can now be evaluated using Feynman parameters. " Introducing these, we get

j.
6(&2, +a, +&2, -1}

(2&)4 1 2 2 4 3 f(g 2+ V &t)& + (P 2+ V it)& +[(P +I $2+ V &I]&$2

(22)

(23)

The integrations over k, and k, can be done by
using the known integral

&2&
V2 (4')= 192 2V (27)

f (p'+ 2pq + m2) (m2 -q') ~2 I'(n)
(24)

In addition to these contributions V2", V2 ',
and V&3', we need to add fresh counterterms
Z[A2+ (82/2) Q'+ (C 2/4! )p ] to remove the diver-
gences to this order. The net sum of all these
terms is

to give

1 6(a, +&2, +a, -l)(-v2) 1

{25)

V2(&p) =—
~
84 + (ln A —InV2)—

1 ( C&g' 2 „K(V2")'
8m& 2 1927[ Vo

IIII
2 (h A2 1 V&/)2 ~ y2 ~ Q4

128m' " ' 2 4~

(28)
A simple transformation of the integration vari-
ables 0.

&
——px, ~2=p-px, o.3=1-p gets rid of

the 6 function and reduces the integral to

16v2V" ~ „p[I+p(~-x' - l)1
'pdp

The integral over p can be easily evaluated, and
then the integration over x gives'2 for the doubl. e
integral a value & ~ 2.34.

Therefore,

Notice that B& and C& contain lnA', so that the first
term in (?8) contains terms of the nonpolynomial
divergent form lnA' ln V0 referred to earlier. These
are precisely canceled by the lnA' lnV0 pieces of the
third term in (28). The remaining divergences are
polynomial in Q and are canceled by a suitable choice
of X[A, + (B2/2) Q2 + (C2/4! ) &&& ']. To pick A„B„dan
C„recall the renormalization conditions, which re-
quire that

V2(4 0) V2 (0 0) V2'(P =o) =o (29)

and thus

E
16+2V'

0

(26)
Imposing (29) on (28) fixes A2, 8» and C2. Omit-
ting trivial algebra, the net finite resu!t for V2(&t&)

ls

75K
V.(y) =-,.

+ $2

30K, 1 15K 2 -a'
V" ~ m2 Vr s2 (1 -2422)

3K, 1 45, y," 't""-"'V. ' 16" '"'
2 4' )

- 4"0

27 (2 -a2)' 9K (2.-&22)'

8w' (1 —2&2')' v' (1 —2&2')'

(2 —a')' V," l 3K (2 —a')'"
(I -2a') 2-4a') 2v' (1 —2&2 )

This is an exact renormalized expression for the
. two-loop contribution to V„,. We notice again that,

similar to V,(p) and for the same reasons, V2(p)
also becomes complex in the region where
V'0($}&0. In fact, as we approach this region
from either side, V2(p), while real, diverges
at the boundary of this region, owing to 1/V",
factors in. K&I. (30). This is an infrared diver-
gence and is to be expected. Recall that V'0(p) is
something like a mass-squared term for states
built around &P, and its vanishing can lead to in-
frared divergences. Such divergences did not
exist in the Coleman-Weinberg calculation of V,«

even though V", did vanish in their model at &p =0.
The reason was that their calculation was up to
one loop in (3+1) dimensions. Our calculation
is in (1+1) dimensions and goes up to two loops.
These differences enhance infrared divergences
and hence the 1/V", terms are only to be expected.
Our attitude with respect to these problems will
be the same as in the preceding section. Assuming
that these pathologies will go away in the exact
V,«(Q), we confine ourselves to the neighborhood
of the two minima at p =0 and Q =1, where V, {&p)
is real and sensible.
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IV. CONCLUSIONS

Our purpose in computing the two-loop contribu-
tion was to check if it is smal. 1. compared to the
one-loop term, for the range of a' and X for which
symmetry restoration was indicated at the one-
loop order. The expression (30} leads to the con-
clusion that it is small, when @ is in the neighbor-
hood of either minimum. Since (30) is a compli-
cated expression, the simplest way to verify this
is by numerically evaluating this function for
sample values of cP and A. . For instance, for a'
=0.05 and X =0.01, we have plotted V,s = (1/X}V,
+ V, +A.V, in curve IV of Fig. 3. It can be seen
that the additional contribution of AV, (Q) is quite
small as compared to V, (Q) (curve III minus
curve I}, in both potential wells near Q =0 and

Q =1. For example, A.V2($)/V, ($) I ~, ,m. o 0, ~ 0 0,
is about 0.01. Similarly, for a'=0. 2 and A.

=0.037, curve IV in Fig. 4, gives V,~ up to two-
loop order. Once again, the contribution of
A, V, (P) is small compared to V, (Q). In both Figs.
3 and 4, the contribution of V, (Q) is to raise the
minimum near /=1 even higher and further en-
hance symmetry restoration. This is just a for-
tuitous agreement of signs between V, ($) and

V, (Q). We do not draw much satisfaction from
this since the signs of the higher-loop contribu-
tions may well have the opposite sign. The more
important point is that the magnitude of &V, (P) is
much smaller than that of V, (Q) in the regions of
interest, encouraging us to hope that the higher-
loop terms will be even smaller and that our con-
clusion will hold.

The examples discussed above are typical in the
range 0&,a &0.3, A. & x, (a ) (X, is the critical
value of X, discussed in Sec. II). When X &A.„the
radiative corrections will not be strong enough to
overturn the symmetry breaking implied at the
tree level. When A. & X, , Q =0 becomes the abso-
lute minimum, and symmetry will be restored.
Of course, if X is very large, although this phe-
nomenon will happen at the one- or two-loop level, -

the convergence of the loop expansion will be de-
stroyed.
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