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Axial-vector anomaly in lattice gauge theory

15 MAY 1981

Werner Kerler*
Stanford Linear Accelerator Center, Stanford University, Stanford, California 94305

(Received 3 November 1980j

An exact derivation of the anomalous Ward-Takahashi identities on a finite lattice is given. It is shovvn in a general
way that the contribution from the fermion-degeneracy regularization in the limit leads to the continuum form of
the anomaly term. Thus the interconnection is established independently of perturbation theory.

I. INTRODUCTION AND SUMMARY

For the nonperturbative analysis of gauge fields,
the introduction of a lattice' turned out to be most
promising. A better understanding of the ferm-
ion-degeneracy problem, ' ' however, is impor-
tant for the inclusion of fermions in the numerical
calculations6 of fundamental features of quantum
chromodynamics (QCD), and a prerequisite for
the extension of lattice methods to electroweak
theories. The latter is desirable because dynam-
ical symmetry breaking, ' as an alternative to the
difficulties with elementary scalars, ' basically
requires nonperturbative methods. Recently
Karsten and Smit" showed in weak-coupling
perturbation theory at the one-loop level that
Wilson's fermion-degeneracy regularization'
gives rise to the triangle anomaly. " This sug-
gests that one should investigate whether such an in-
terconnection can be established independently of
perturbation theory, which would be a step forward
with respect to the nonperturbative analysis.

In the present paper I give an exact derivation
of the anomalous %'ard-Takahashi identities on a
finite lattice. Then I show in a general way that
the contribution from Wilson's degeneracy regu-
larization' in the limit leads to the continuum
form of the anomaly term. Further, I point out
that the alternative regularization of Osterwalder
and Seiler gives the same limit. The intercon-
nection of interest is thus established independent-
ly of perturbation theory.

The crucial property of degeneracy regulariza-
tions so far was to ensure the correct limit for
fermion loops in perturbation theory. A nonper-
turbative criterion, is now that they must give the
anomaly term correctly.

The limit of the exact identity derived here can
be considered as the proper definition of the cor-
responding path- integral relations in continuum
theory. Then one has a mell-defined formulation
with a y,-invariant measure of the integrals, the
anomaly arising from the degeneracy regulariza-
tion. This appears to be more satisfactory than
the alternative approach of Fujikawa'g who starts

from an ill-defined theory and then regulates the
measure to get the desired result.

The anomaly term in the following emerges in
a form which may be viewed as a generalization
of the representation ptr(y, G,) of Schwinger" and
of Brown, Carlitz, and Lee,"in which G, is the
continuum fermion propagator and p. its mass.
The role of p, is in the present context taken by
the degeneracy regularization.

In Sec. II, after defining the formulation, the
anomalous %ard- Takahashi identities are derived.
Section III is devoted to the investigation of the
continuum limit.

(2.1)S=g) „, —W+M ~„„+SG,
n', n

where S~ is the pure gauge field part, g =a,a,a,a„
and M„„=m5„„.8 =Q„y~D~ and W=g~~~ are
given by

D~„,„=(Uxn' ~n'+x, n Uxn fn , n+xV(2ax') t (2.2)

&,„,„=(U~„,&„,.„„+U,„&„, „„-2&„,„)i(2a,), (2.2)

where U, „=exp(i@a~A„„), with A,„=Q,T'A„'„ in the
non- Abe lian case.

W in (2.1) is the degeneracy regularization term
introduced by %ilson2 to overcome the problems
related to the doubling of the fermion spectrum on
the lattice. In particular, it guarantees the cor-
rect continuum limit of perturbation theory. Clas-
sically W vanishes in the limit. Qsterwalder and
Seller' use A =-iy, R' instead of W, which enables
them to construct a Hilbert space with positive
metric.

A general correlation function has the form
fe ~g/fe ~, where .f means f~f„, with f„
standing for the Grassmann-variable integrations
g„~fdg„~dP~ and f ~ similarly for the invariant

II. ANOMALOUS WARD-TAKAHASHI IDENTITIES

The finite lattice to be used here has 3t
= 16K,N,X3NQ sites in four-dimensional Euclidean
space. Periodicity for n~ -n„+2N~ in the number-
ing of the variables is imposed as a "boundary
condition. " The action is
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integrations over the gauge group. The approp-
riate gauge-fixing factors are to be included in Q
to correspond to the usual continuum forms. In
the following it suffices to consider f ~e P, which
can be obviously supplemented to fe ~Q. /f e ~ at
any stage. A simple example for a choice of P is
0'g 4.g.

After the transformation to variables g'„

=exp(in„y, )g„and P'„=g„exp(io.„y,) in f~e ~P, it
follows that

~ gn 2.(ln~yg nU yn 4n+g+ 4n+g y0 5 gnawn) s (2.6)

X„= e s „,S"~„,„iy, „+ „iy,S'~„„, „, P
n'~It

(2.7)

where left derivatives with respect to-the Grass-
mann variables are understood and the abbrevi-
ations

e sP= es P- =0

(2.4)

have been introduced. To proceed further, by
exploiting the general property f„(S/Bg„~)Q=0 of

f ~ for the case Q =e ~g„,~, P, the relation

Performing the derivatives, and then going back
to the variables g„, g„, (2.4) can readily be cast in-
to the form

~ g (Z,'„-Z', „„)/n, -2m/„iy, („,~P

+ —
~

— (6...iy,(.),1 ( eP
n', g k s n'fl

1 1 s BP
6n'n58 g e P e 0 gv

(2.8)

is derived. It is to be noted that from P only even
Grassmann elements contribute to the integrals
in (2.8). With G = (P —W+M) ' one obtains from
(2.8)

1 -s 1 ~ -se 'Inguen g
P= —Gn g

-
ng Gn g nylon g -.

V v ~- g., 8(P ff n g-
(2.9)

It is understood here that G ' either has no zero modes or that they are appropriately handled to keep G

well defined. Using (2.9) and an analogous relation involving 8/Bg„~, (2.7) can be written

X„=-—t [y, (GW+ WG)„„] 'P+ ' —
~

— [(GW)„,„y,g„],+ P'„'y, (WG)„.], — )I, (2.10)Z

v V n' g ~ n'8 nag

where tr refers to y matr'ices as well as to inter-
nal-symmetry indices, while Tr (to be used below)

applies only to the latter.
Now (2.5) combined with (2.10) gives the exact

anomalous Ward-Takahashi identities ori the finite
lattice. The current (2.6) is associated to the link
from n to n+ &, thus having a structure remini-
scent of the point-separation forms of continuum

heory

(3.1)

—[6„,„+(GW)„, „]—6'(x'- x) . (3.2)

This will be shown in the following.
For the evaluation of the left-hand side of (3.1),

the expansion

l

1—tr[y, (GW+WG)„„]-,Tr Q e„„~E„„(x)E~(x),g 2

v 7T l.p

III. CONTINUUM LIMIT

From (2.5) with (2.10) it becomes obvious that
the usual continuum result is obtairied if in the
limit

G =(0+w- ~}(9-svs+ 9vsv9+ )

with 9= [D' —(W-M)'] ' and V=K+I' is used,
.where Z.= (i/2)g„, ,o, , „[D, , D„] and I'
=6 ~, 0'~ [Di W)J with

(3.3)

[Dg D)Jn n --&g(Pi g, n 6n +g, g, gn+j,~n g6n+g -g, n + pe, n -)e -"n -1'+x, n v 1, n -k -x (3.4)
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and [D, , W„]„,„differing from (3.4) only by having
minus signs in front of E"and E'v. In (3.4) one
has

F,', , „=(U,„U,', „„-U, gI „' „„,)/(i@a, , a,),
Ei"i,.= (U i, ;~Ui, ;~ —U~.U i')/(&a&i &i)

Ez )(, n=(Ui nU)tn —U), n ) U)(, n )))/(~R&) &))) )

The F', . . . , F' are related to the four plaquettes
having the point n in common, and in the limit
all give E~, ~(x). In the strict mathematical sense
it is to be assumed that either (3.3) converges or
that the formal expansion already suffices for the
present purpose. When inserting (3.3) into (3.1)
only terms of third and higher. order in 9 contri-
bute. If the higher-order ones as well as those
with I" vanish in the limit, as will turp out later,
the relevant contribution to tr[y, (GW) „„]is

(3.5)

Tr Q e„„~((W—N)9[D, D„]9[D„D,]QW)„„.

([D,D„](W0—M) 903Wo[D~, D ])„„ (3.7)

may be considered instead of the matrix element
in (3.6).

Inserting (3.4) into (3.7) one gets 16 terms; for
example,

-g 'E'„„„((W,- iaaf) 9,'W, )„,„,„„„,E" „,/16.

(3.8)

By using tbe transformation X "'exp(-migs, n, /
N~), for the matrix element in (3.8) the represen-
tation

((W, —m) 9,'W, )„,„,„„„=st-'ps„(0) (3.9)

is obtained, where for later convenience the ab-
breviation

(eu —n —m) (zo —n)s (o.) =—
7 ( 3

Sg + ZU —Q —Vl

xexpivj "+ " +
)t p

(3.10)

with s~ = sin(m ~/N )/a„)dear n=Z), [cos(vt „/N), ) —1]/

(3.6)

Now, commuting [D~, , D,] with 9 as well as replac-
ing 9 by 90 without gauge fields amounts to omitting
higher orders. Similarly, the commutation with
TV and the replacement of 8' by W, corresponds to
the omission of terms, which will be seen to van-
ish in the limit. Thus

g~, has been introduced. So far the summation
over y~ in (3.9) is from N-, +1+q~ to N, +q„
where q~ is some integer. By an appropriate
choice of g„and a shift of the summation indices
in one half of the intervals by N~, Q„can be re-
placed by Q„ for which the summations are re-
stricted to -N~/2 &x, hN~/2. This gives

g s„(0)= g' s„(0)—g s „(m,) + g s„(m,. + m„)
r r )e& x

X" &)t'& X

mget+ Rlgt+ Sl)t

+y, (m, + I, + m, +I,)), (3.11)

where m, =2cos(m', /N, )/a, . The crucial point is
now that for Q„, in which k~ =)Tr„/(a~N„) and s),
= sin(k~a, )/a„are uniquely related, the continuum
limit can safely be obtained. Thereby
(ate) 'Q„s„(0) vanishes while for the seven positive
and eight negative contributions to (3.11)with s„
depending on the m~, for N, -~ and a~ small,
—(3tp) 'Q„s„ tends versus

(2w) f d'). n'(k'+a*) ' (3.12)

where o( is a constant of order I/az. Since the in-
tegral (3.12) independently of o. equals (32)T') ',
this gives the limit. A further consequence of the
o. independence of (3.12) is that a replacement of
W by cW in (2.1), where c is a finite constant,
does not change the result. Because with a de-
nominator (k'+ ().')"" the integral is proportional
to I/e('", the higher orders vanish indeed. The
I" terms involving [D, , W~], those with

[W„[D„,, D„]]arising from the interchange, and
the ones with TV —Wo from omitting gauge fields
do not contribute because (due to forming commu-
tators and a difference, respectively) they have one
driving factor less in the numerator.

It can now be seen that the matrix elements of
(W, —M)9 'Wo of the 16 terms in (3.7) all become
(32m') ', and thus with (3.6) one gets in fact (3.1).
One has, however, to realize that E,„(x) and

E„,(x) arise as the limits of (E'„„„+E'„'„„+E"„'„

+ E&v „)/4, respectively (with x~=a~n~). While for
classical gauge fields the interpretation of these
limits would be the naive one, in the full quantum
case one has to note that the F', . . . , F'~ are func-
tions of the gauge variables.

To show (3.2) one proceeds similarly as for
(3.1). The left-hand side of (3.2), omitting gauge
fields, can be represented as
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(gtv) '
+exp xi+ r„"~[1+K„(1,0)],

r

(3.13)

where

~ iQ h„,y, , s,, +u —o. -m ~(u —.c.}
K„(h, o.) =- ]

Sg + (gg —Q —m)

(3.14)

with h defined such that h„=+1 in an appropriate~l
way. When turning over to Q„, in addition to
[1+K,(1,0)] terms of type (-1)"~ &jl
+K„[h(X),m, ]], (-1) &

"&'"' &(1+K,[h(X, cr), m„
+m, ]), etc. , occur. In the limit the 1 of the first
term gives 54(x' —x) in the Fourier representation,
while 3C„(1,0) vanishes. The other terms, because
of (-1)"i "x = exp[i(m/a„)(x~ -x~)] are oscillated
away (also without the K„). In addition, theK„depend-
ing on the m„ tend to -1. The terms arising from
the omission of gauge fields are seen to vanish
a fortiori.

Finally the alternative regularization of Oster-

walder and Seiler is considered, which is obtained
by replacing & by A =-i&,W. The only essential
change in the presented derivation is that instead
of (3.3) the expansion

G=(&-R-M)(4- BRV54+BBV54V54+ ' )

(3.15)

with B„=(D'+R'- M') ' and V, = Z —iy, I' is to be
used. From (3.15) one then obtains

tr(y, GR) =tr[y, (P- R- M)(B„V,B+V,B~+ ~ ~ )R],

(3.16)

which shows that one gets the same limit as be-
fore.
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