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String tension in (2+1)-dimensional compact lattice QED: Weak- and strong-coupling results; a
variational calculation
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The Hamiltonian and wave functions are written as a function of the gauge-invariant magnetic field only. A
variational calculation with an ansatz, separable in plaquette space, leads to Mathieu s equation for the wave

functions and a self-consistency constraint. This we solve analytically in both the strong- and weak-coupling limit,

and we calculate the string tension. %'e find the electric flux to be confined to a tube of finite radius for all couplings.

I. INTRODUCTION

Quark confinement in the context of quantum
chromodynamics (QCD) is still an unsolved prob-
lem. It is not a perturbative effect. So new, non-
perturbative approaches had to be developed to
deal with gauge theories. One was the formulation
of the theory on a lattice by Wilson' and by Kogut
and Susskind. For large enough coupling it is
easy to see that QED and QCD confine charges and
quarks, 4 respectively. In four space-time dimen-
sions QED has a nonconfining phase for low enough
coupling, 6 a result that was hoped for since in the
continuum limit the lattice coupling constant goes
to zero and lattice QED, a U(1) gauge theory,
should go into continuum QED, which does not
confine charges. On the other hand, QCD, an

SU(n} gauge theory, should stay in the confining
phase all the way down to zero coupling. Quarks,
after all, are supposed to be confined.

Balian, Drouffe, and Itzykson' found, from a
strong-coupling expansion extrapolated to weak
coupling by using Pade approximants, that in high
enough space-time dimensions SU(n) gauge theo-
ries undergo a phase transition to a nonconfining
phase for small couplings. Thi;s suggests that the
Abelian and non-Abelian theories have very simi-
lar confining properties: they show confinement
for-all coupl. ings in few space-time dimensions,
d ( 4 for the U(1) theory, d & 4 in the non-Abelian
case, but they have a phase transition to a noncon. ™
fining phase in higher dimensions.

Compact QED, which because of its Abelian
character is easier to handle than non-Abelian
theories, serves therefore as an interesting model.
for studying confinement. It also arises naturally
as the U(1)-invariant subgroup of a spontaneously
broken non-Abelian theory, such as the unified
models of weak and electromagnetic interactions.

Polyakov' was the first to show that compact
QED confines charges, in three space-time di-
mensions, for all couplings. He sketched it for a
lattice theory and later showed it, working in con-

tinuous space-time, for the spontaneously broken
Georgi-Glashow model, where the mass of the
vector bosons P' serves essentially as a momen-
tum cutoff in the photon sector. Banks and co1.lab-
orators' obtained the same result for a Villain
approximation to the Abeliari theory on a lattice.
Both sets of authors used a path-integral approach
in Euclidean space (imaginary time) and traced
the mechanism of confinement to contributions of
pseudoparticle solutions, monopoles, to the Eu-
clidean action. These monopoles have long-range
Coulomb interactions, but screening occurs that
makes the Green's function of the monopole gas
short range. As a result the monopoles cannot
screen out completely the magnetic field inside
the dipole sheet created by the stationary electric
current of the Wilson loop, thereby causing con-
finement.

Drell and co-workers' approached the problem
of confinement in (2+ 1)-dimensional compact lat-
tice QED at small coupling with a variational cal-
culation in the Hamiltonian formulation. They
make heavy use of the periodicity of the Hamilton-
ian as a function of the magnetic field. For the
trial wave functions they use a separable ansatz in
momentum space, consisting of a product of"per-
iodic Gaussian" wave functions, and find confine-
ment to be a consequence of the tunneling between
neighboring wells.

In this paper we will follow a similar approach.
However, we choose for our ansatz a wave func-
tion that is separable in plaquette space. The
single-plaquette wave functions are determined
variationally. This leads us to a differential equa-
tion of the Mathieu type for these single-plaquette
wave functions, together with a Hartree-Fock-
type self-consistency condition, which incorpor-
ates correlations among nearest-neighbor pla-
quettes. This real-space product ansatz has two
main advantages:

(i} ft allows us to solve the problem from strong
coupling all the way down to weak coupling. .For
two opposite charges, separated by a distance L,

2357 1981 The American Physical Society



2358 URS M. HELLER

we find an energy of the form

E=TJ )

8=—w (B-,) +y (1 —cosB-, ).
P&4 P

(2 1)

where T is the string tension. In the strong-cou-
pling limit we, are able to reproduce the usual
strong-coupling expansion result

The Hamiltonian is written in terms of scaled,
dimensionless variables, introduced by Drell
et al. ,

'0 defined by

T=2g + 1& (1.2)

In the weak-coupling limit we find the exponential-
ly small string tension "

2

ea/ -g,1 /2

eaA -A,
ea B-B,2

1—aE -F.
e

(2.2)

where c is a constant. In our calculation, c =2.
(ii) It gives directly a nice picture of the electric

flux configuration, leading to confinement. The
flux is confined to a tube of finite radius ~ between
the charges. For strong coupling this radius is
only a few lattice spacings, whereas in the weak-
coupling limit it grows exponentially like

e2/e 2 (1.4)

Outside this tube the electric field is screened, a
consequence of the self -interactions of the photon
which reflects itself in the compactness and hence
periodicity of the Hamiltonian. Tunneling between
neighboring potential wells makes the self-con-
sistency condition of the form of a nonlinear Debye
equation, preventing the electric flux from spread-
ing out in a Coulomb-type fashion.

Originally we followed the approach of Drell et
al. ' for writing gauge-invariant states. They sep-
arated out the longitudinal, Coulomb part from the
Hamiltonian and the states. Investigating the peri-
odicity of the remaining Hamiltonian, they found a
Bloch-type behavior with phases e, which in turn
depend on the classical Coulomb electric field.
But at the end of our calculation we found that all
dependence on the Coulomb terms had canceled.
Adam Schwimmer then pointed out to us a simple
way of writing gauge-invariant states and it is this
approach which we will use in this piper.

The outline of the paper is as follows. In Sec.
II we set up the problem and show how to write
gauge-invariant states. In Sec. III we do the vari-
ational calculation that leads to Mathieu's equation
for the single-plaquette wave functions and the
consistency condition. The solution to this is
shown in Sec. IV for strong coupling and in Sec. V
for the weak-coupling limit. Section VI contains
some concluding remarks.

aH H.

The electric field Z-P and the vector potential A-,

are link variables. They are labeled by a site
p=(p„p, ) and a direction a=1, 2. They are lo-
cated on the link between sites p and p+ a, where
a is the unit vector in the direction a. There are
two ways of labeling a link, (p, a) or (p+a, -a).
The corresponding link variables are related by

A- - = -A" E" "= -F-' .@+4 p & p+4 (2.3)

eye=i g2

e,~( A, -Ay,"l). (2.4)

We will call such variables plaquette variables.
The lattice curl and all subsequently introduced
difference operators are defined such that their
relationship to the differential operators in the
continuum limit is given by

(2.5)

where a is the lattice spacing. The electric fiel.d

and the vector potential are canonically conjugate
variables,

A" E-~ )= -z6" - 6 'a
P & P j Pep (2.6)

The Hamiltonian is periodic in the vector poten-
tial with period 2m and it is assumed to operate on
a Hilbert space of wave functions g((A-, )) with the
same periodicity. This periodicity expresses the
compactness of the theory: the trivial U(1) Lie
algebra is realized on a circle, not a line. Con-
finement is intimately related to compactness
since one can now see that the electric field is
quantized. On our Hilbert space 8-P is realized by

8; is the lattice magnetic field, a one-dimensional
axial vector, normal to the plane of the lattice:

2

B~ =(VxA)- =A- +A- " -A- - -A-
p p p+i p+2 p

II. GAUGE-INVARIANT STATES
~4 . 8

8A' '
P

(2.7)

We start with the usual Hamiltonian for compact
QED on a lattice in the temporal gauge, A, =O,

Eigenfunctions of the operator are e ~p"p, where
E p is the eigenvalue of the operator F.-p. Periodic-
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ity implies
a a8-, =n-, , an integer . (2.8)

We can span our Hilbert space with a basis of
eigenvectors of the electric field on each link,

E'-, ~~n }& =n'-, ~{n-',}&.
e'~u are raising and lowering operators:

(2.9)

8'~' l(n-', )& = [4n-'+6-. ,-. 5"k& (2.10)

The canonical equations of motion give the corn-
pact versions of Ampere's and Faraday's laws,
but Coulomb's law does not appear because it con-
tains no time derivatives. On the other hand,

[H, (V E}-,]=0, (2.11}

where the lattice divergence is
i 2 i „2(V ' E)- =E"+E- —Z" " -Z- "

u y o s i y2

(E- E- -) .-a I (2.12)

g f2 ~ a
A-, —(VA}y, (2.13)

where A-, is a time-independent scalar defined on
the site p. The- lattice gradient is

We can therefore seek simultaneous eigenfunc-
tions of H and (V' E);. The eigenvalues p; of
(V E)", are static external charges. Because of
the quantization of the electric fieldE," the exter-
nal charges must be quantized as integers as well.

The statement Ao ——0 is only an incomplete gauge
fixing. The temporal-gauge Hamiltonian is still
invariant under time-independent gauge transfor-
mations

of U, g' E, and H. They form the physical sub-
spaces of our Hilbert space. Such states are lin-
ear combinations of basis states given in (2.9)
which satisfy the restriction

(V 'n); =p .-(2.18)

Each given charge distribution (p-, ) specifies a
different physical subspace of the Hilbert space.
In writing a variational wave function we already
make progress if we can exclude unwanted contri-
butions from the start. This amounts to the task
of removing the remaining gauge dependence in
the temporal-gauge formulation, so that both the
wave function and the Hamiltonian are gauge co-
variant.

Drell and his collaborators have one approach.
Ours is the following.

a - a . ~, p=po
n-, =(Vxp)", with Q-, =

0, otherwise .
(2.19)

Here the curl of a plaquette variable must be dis-
tinguished from the curl of a link variable, (2.4).
It is

(Vxl)y =Z&ss(fy ~y-i)

A. Uncharged sectors

For the vacuum and its excitations (p-, =0) the
electric flux is conserved at each site. The elec-
tric field pattern is therefore an arbitrary super-
position of elementary loops where one unit of flux
runs around the links bounding a single plaquette.
The electric flux of such an elementary loop can
be written as a lattice curl,

a
(VA)- =A".;—A- . (2.14) (2.20}

It is defined such that it obeys the usual law for
the continuum gradient: Vx(VA)-, =0. The gauge
transformation can be written

U((A-, ))A'-, U'(/A;)) =A-,'-(VA)';,

where

(2.15)

U =exp —i (VA)-, E-, (2.16)

We will work on a periodic lattice, so A-, is peri-
odic and, to preserve this for the gauge-trans-
formed potentials, A-, has to be periodic too. Then
we can sum by parts:

~e

U=exp i A~(V E)-, (2.17)

Thus (V ~ E) is the generator of these time-inde-
pendent gauge transformations. We are interested
in gauge-covariant states that are eigenfunctions

—Q-+Q~;, a=2.
The definition is arranged so that V ~ (Vxp) =0.
Then

i 2 2n" —-n" "—-n- —n" "—&

Hence any distribution of the integer-valued pla-
quette field (Q-, ) yields a gauge-invariant state
~(n", )&. We are thankful to Adam Schwimmer for
pointing this out to us.

Not all (Q-,) fields give different states, but the
degeneracy is easily characterized. Two fields
give the same electric field if Vx($ —Q')-, =0,
from which it follows that Q-, —Q-,

' = constant.
Hence if we require

N V N 8 =number of lattice sites
2 - ' 2'

(2.21)

the relation is one to one, and gauge-invariant
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states in the uncharged sector can be written as
The restriction (2.21) allows us to define

these states as orthonormalized:

(2.22)

The operators appearing in the Hamiltonian have
the effects on these states, from the construction

B'-, l{C-,]&=(~ e)-, l{~-,]& (2.23)

and

(2.24)

The second relation follows from the fact that
8-, is an elementary loop of the vector potential
around plaquette p and e""y raises (lowers) the
eigenvalue of the electric field by one unit.

B. Charged sectors

Taboo opposite unit charges. Now we must have a
string of unit flux from the positive to the negative
charge, plus arbitrary closed loops of electric
flux. Such a state can be characterized by a string
of unit flux and an arbitrary {/-,] field that again
satisfies the restriction (2.21). The path of the

(2.25)

(2.26)

A general gauge-invariant state can be written as
a superposition of our gauge-invariant basis
states:

I

l~& = Z ~;,)({~;]}I{-'. ],{~-,)&;
(eq)

the prime indicates that the sum goes only over
Q; fields satisfying the restriction (2.21). H can
now be written as an operator on the wave func-
tions,

(2.27)

string is immaterial since an appropriate {Q-,]
field will reroute it in any allowed way. We will
put the positive and negative charges on sites
p, =(-M/2, 0) and P„=(M(2,0), respectively, and
a string of unit strength n~ running along the x
axis between them.

In genera/. We characterize gauge-invariant
states by the shortest strings n-, between opposite
charges, that satisfy (V 'n ); =p-, , plus an arbi-
trary p-, field, I{no],{$",]&. As before we find the
effects of the relevant operators:

B-, l{ -,'],{~;)&=[.-.
'

(~ ~}'-,]I{ ),{~;]&,

2

H~(-. o)(8;]}='
—, ~ [.;"+(~ O}'-]'~(-.o)({~-,]}

P Q p Q
1+ (2.28)

These wave functions which depend on integer ar-
guments are not very physical. We introduce a
continuous plaquette field B;, -m & B-, & m, via the
generating functional,

Pwitof (g )({ o]} ( )({ o])

(2.32}

4(,o)({B;])=Q +(-.o)({y-.])exp -' 5&.B.
I

~

(2.29)

This corresponds 'to a transformation of basis,
for each plaquette,

I g-,
&
-

I
B,&

with"
(B-, lg;& =e '

&B; IB;&=2.6(B-,' -B-,), (2.30}
-' dB-

The effects of the operators on the wave functions
%are now

(2oaf

Ey@'(ao)({BB)= n; + Vx Q(-o)({B-]),

(2.31)

which shows that the plaquette field B-, is just the
magnetic field. The Hamiltonian operating on 4
becomes

H4(,-o ({B-))= —Z n-+ Vx
g2 ~ ip 2

n~) e
p

I
-) —

2 ~ (1 —cosBy) 4'(,-o)({B-,]) .

4( o)({B~+2)T5o -, ]) 4'( o)({B ])(n- c (2.34)

(2.33)

At this point we see that both the Hamiltonian and
the wave functions are functions only of the gauge-
invariant magnetic field. Note that from the defi-
nition 4 is periodic in B-, with period 2m".
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HI. THE VARIATIONAL WAVE EQUATIONS

We want to find the ground-state energy of the Hamiltonian (2.33), which has no additional gauge free-
dom, in a variational way according to the Rayleigh-Ritz procedure. %e choose an ansatz wave function
that is separable in plaquette space:

(3.1}

According to (2.34) each plaquette wave function is periodic in its magnetic field.
We consider the variational energy

(4)&~4) &' g(-„0)2+1 g 1

82 1(()'. ~ 3 1 g(4..-. ~IS/3B. -. ~4u a) (Vx-„0)» ~ B ~~ )SB 2 . (q- -
I q-;) ' SB; 2@4

(3.2)

We vary it with respect to (()-,
~

and find a single-
plaquette wave equation

~

~

82 iB 1+2s" + cosB" +A- ~g"(B-}=0.
2g4 u u)

n(s-)=s- +A- 6= 1
P 9 P & 2g4

Then ((((; satisfies Mathieu's equation

c
d2

, + a (s ) + I! coex) 0(x( = 0 .
dx

(3.5)

(3.6)

The periodicity of g implies the boundary condition
of

Q(x + 2v) =e2'~'Q(x) . (3.7)

We can solve (3.6) and (3.7} and find the ground-
state eigenvalue n(s) for phase s, as well as the

The eigenvalue A; comes from the variation of the
norm and the coefficient s-, is given by

1 g (g, ((I zB(SB~ ((I g", o")
( x 0)

)=a(,a (4y-8~ 4((-o")
(3.4)

It depends on the solutions of the wave equation on
neighboring plaquettes and therefore is a Hartree-
Fock-type self-consistency constraint.

The wave equation can be converted into
Mathieu's equation with the following definitions:

matrix element

(41 kf/d& I P)
(4 &0)

(3.S)

Having done this, the self-consistency constraint
(3.4) becomes the equation for s-, ,

V2[s +s(s)j; +4m(s;) =(Vxno);, {3.9)

where the lattice I aplacian is

(V2s); = V ~ (Vs)-, = p(s;.;+ s-, ; —2s-, ) . (3.10)

—n(s) = —2~(s) .d
ds

(3.12)

%e next assume the phases s-, are not determined
by condition {3.9) but rather we treat them as ad-
ditional variational parameters. Thus we rewrite
the variational energy as a function of the s-, 's,
using the wave equation (3.11):

We can look at the self-consistency condition in
another way. The periodic wave functions g sat-
isfy

d
2 +2s —-s +5cosx ()((x) =n(s)g(x),

dx dÃ (3 11)

(4~ 0)

First we note that, making a small change s -s
+ rhs in (3.11) and using first-order perturbation
theory, we can find the relation

Z =2g2 Z ~(n-, )2+
4 + n(s-, )+s-,2--,' g s;s-, ;+-2s-, (VX+n);

0

+2s;a(s-, ) —~ g [s-, ;z(s~)+s-, z(s,";)]+~(V&no);v(s-, ) ——,
' g s(s;)v(s-, ;) (3.13)
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Minimizing this with respect to s", , 8E/8s-, =0
gives the condition

0= 1+ ' (-~(V s)-, —~[V [((s)];
p

—2«(s;) + —,'(Vx no),«). (3.14)

Therefore we find that the consistency condition
(3.9) minimizes the energy as a function of the
phases s;.

Making use of the consistency condition we can
simplify the energy. After some resummations
we find

z =5), 2
I

(II ) + — I + n(s-)+s" s(s-)

+ —'In nx[s+s(s)] }. (5.15)

In Sec. II we said that the path of the string n-,

is immaterial. %e will now show that the energy
(3.15) really does not depend on this path. We re-
mark that the s s are phases. Therefore, o, (s-, )

and «(s-, ) must be periodic functions of s-, , since
changing s-, by an integer does not change the
phase. However, a change by integers in the
phases s-, must be accompanied by an appropriate
change of the string in such a way that the consis-
tency equation (3.9) is still satisfied. This is
achieved by

s-, -s;+l;, l-p integers,

n- -n- —(Vx l }-
p p p

(3.16)

because the curl of the plaquette variable (2.20}
satisfies the relation

Vx(Vxl);. =-(V2l); . (3.17)

Thus changing s-, -s-, —1 gives rise to a closed
loop of unit strength on the links counterclockwise
around plaquette p. The string can be deformed in

any possible way compatible with (V ~ n)~ =p;.
[V ~ (Vxl)-, =0.] Under the change (3.16), the en-
ergy (3.15} is unchanged:

n-n), P —,'[n- —(nx)) ]+,-+n(s-, )+(s-, +1;)s(s )+ [n —(nx1);] vx[x+1+x(s)j }.
p

1
E0=2g ~ 4 +n(0)

g2g
(3.18}

After some resummations,

E -E +2g2 g l", (—~(Vxno)~

+K(s )+ V [s+«(s)j
and therefore, because of the consistency equa-
tion, the quantity in curly brackets vanishes and
the energy is unchanged.

For the vacuum the inhomogeneous terms on the
right-hand side of the consistency equation (3.9)
are missing, the solution is s =0, and n is the
lowest eigenvalue of a periodic solution of
Mathieu's equation. The energy

I

term 6 coax in Mathieu's equation

d2
2

—5 cosa (([)(x)=n{s)@{x), Q(x+2m)=e2"'P(x)
d&

(4 1)

perturbatively. The unperturbed states and eigen-
values are

1$(0)(x)= e'"*")*, o(0) =(s+n)2, n an integer.
27t

(4.2}

The ground state is the one for which ~s +n
~

& ~.
For s em+ —,

' no states are degenerate and we use
Schrodinger-Hayleigh perturbation theory to find

(+) e((Ss(5)X
&2m

diverges as the volume of the system. In the
presence of charges, s is nonzero around the
string. A flux tube is developed inside to which
the electric flux is confined. The radius of the
flux tube is finite, narrow at strong coupling, and
growing with a tunneling-type exponential depen-
dence on 1/g for weak coupling. The difference
M =E -E, has no infrared (volume) divergence.
The details of the solution for strong and weak
coupling will be carried out in the next two sec-
tions.

&((s~ [)n ((s~'-[)5:
+ +

5l2v 2(s+n}+1 -2(s+n)+1

1
n „(s) = (s + n) +—

(P„l kf/d« t P „}

(s +n)= —(s +n)+ 25
[4( )2

(4.3)

(4 4)

{4.5}

IV. SOLUTION FOR STRONG COUPLING

In the strong-coupling limit, g»1, the param-
eter 5=1/2g4 is very small and we can treat the

up to higher orders in 5.
In Appendix A we will diagonalize -(d'/dx'

+ 5 cos)5 ) in the subspace n = -m, —(m + 1), which
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M M
pe

1 for —— P( —,p2
—o,

2 2'
n P

0, otherwise
(4.6)

(vino)y ——
I

1, in plaquettes just above the string

—1, in plaquettes just below the
string

0, otherwise .
We then can solve equation (3.9) perturbatively,
using

(p) 1 (i)S =S» +~S~
g

and find

(4.7)

-4, in plaquettes just above the string

S; = +—, , in plaquettes just below the string
(p)

0, otherwise . (4.8}
(f)

S-, is nonzero in plaquettes that are second-
nearest neighbors to the string, corresponding to
the fact that as one goes along in the strong-cou-
pling series, longer deviations from a straight
flux path come in. It turns out that only S' ' is
needed to calculate ~ up to order I/g . We find,
from (3.15},

is degenerate for $ =m+ —,', and show that the
state with ~s+n~ & —,

' really is the ground state.
o.(s}and a(s} are then periodic in s, as we antici-
pated, and satisfy the relation (3.12}: (d/ds)o. (s)
= —2a(s). Now we take 6 = I/2g4 and display the
dependence on plaquette p, to solve the consistency
condition (3.9). We are interested in the case of
two opposite unit charges, the positive at
p = (-M/2, 0), the negative at p = (M/2, 0). Then

that

(E'-,E'-,.) =(E-,) (E;.) + nothing else,
except when the electric fields lie on links bound-
ing the same plaquette. So eventually we depart
from the strong-coupling series.

(4.11)

4~2o. e'~ (5.3)

V. SOLUTION FOR %LEAK COUPLING

For weak coupling, g'«1, the parameter 6= 1/
2g' is large. Then in Mathieu's equation

(
Q

2
—5cosx x =a s x, x+2m =e ~~ x

(5.1)
the periodic potential -5cosx is very deep; see
Fig. 1. In this case we can solve Mathieu's equa-
tion with the WEB approximation. The lowest
energy levels lie near the bottom of the well, with
just enough tunneling to satisfy the boundary con-
dition given in Eq. (5.1). Because of this boundary
condition the wave function is complex. In the
classically allowed region and near the turning
points (x„x,) the WKB approximation does not
apply for the ground state. Instead we expand
the potential about the minima at x = 0 and 2~,
which leads to a differential equation whose solu-
tions are the parabolic cylinder functions. They
are valid well. into the forbidden region. There
then they can be matched onto the WEB solutions,
which are valid deep in the forbidden region. Im-
plementing finally the boundary condition Q(x+ 2x)
= e'"'p(x) we find the ground-state eigenvalue

1 1 1 A.
u(s) = — + ——+O(g ) ——cos(2ms), (5.2)2g' 2g 16 jt'

where A. contains the tunneling dependence on g,

I'g' 1m =E -Eo=M~ ——
o(2 6g

(4.9)
The first four terms come from the "naive" per-

M is the length of the string between the two
charges, measured in units of the lattice spacing.
These two terms agree exactly with the strong-

- coupling expansion through this order.
The expectation value of the electric field is,

from (2.31) and (3.11),

(0 IE; Ie)
&@.@)

Xp
s~ ="

=gy + Qgb$y+g$y —$ "—/C$ " 4 10
b

and we can easily see that, through the order con-
sidered, the flux tube is only one plaquette in
radius. Of course, our product wave function only
allows nearest-neighbor correlations, in the sense

FIG. 1. Potential and ground-state energy for weak
coupling. ~~ and x~ are the classical turning points.
Matching of the two solutions is done in the shaded
regions.
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y(x) =E(x)+fo(x), (5.4)

where F. and 0 are, respectively, even and odd
real functions of x. To calculate a we need the
integral-

' = dx y+(x)
Ck

( )
dE(x)

( )
dO(x) (5.5)

The integral is simply a Wronskian of two lin-
early independent solutions Z and 0 of a differen-
tial equation of the for m (d'/dx') f (x) +g (x)f (x) = 0,
from which it follows that

( )
dE(x)

( )
do (x) (5.6)

From our explicit solution we can calculate the
value of this constant at, say, x = 0. ~ is then 2~
times this constant divided by the norm, which
we calculate in Appendix B.

Both methods lead to the result

turbation series for the ground-state energy in
a potential -5cosx ignoring the possibility of tun-
neling. It cancels out in c.(s) —n(0) which con-
tributes to the energy difference ~E =8 -E, that
we are interested in. The calculation leading to
the result [(2.2) and (2.3)] is presented in greater
detail in Appendix B. «(s) can now be obtained by
using the relation (3.12). On the other hand, it
can be calculated explicitly. The ground-state
wave function can be written in the form

«(s) = —A, sin(2xs) . (5.7)

In the weak-coupling limit, ) «(s) ) «) s ) and «(s)
do not change much between neighboring pla;
quettes. Thus the consistency equation (3.9) is
well approximated by

(V's)- —4X sin(2o s-) = (V x n~)- . (5.8)

The flux is now spread out over many plaquettes,
so we approximate this difference equation by the
differential equation obtained in the continuum
limit: the lattice spacing a 0. Setting x= ap,
D =aM, we find from (4.6)

(V x n') ~ g2@
~

—x' 6(y)(4 dy
(5.9)

Then, using the relation (2.9) between difference
and differential operators, Eq. (5.8) becomes in
the continuum limit

V s(x) ——,sin(2vs) = -6 —-x —6(y) .4z . D'
a 4 dy

(5.10)

Because ~ is so small, the tunneling term is only
significant when s (and hence V2s) is smali.
Therefore, we linearize the equation

V s(x) —
2 s(x) = —6 -x

i

—6(y) . (5.11)
Bmz - a' 2'I d
a 4 ]dy

The Green's function for the differential, equation
(5.11) is (I/2w)Ko([(Bing)~~ /a]~x ~

) and the solution
s is thus

(8vy)' dx' (8my)'
s(x,y) =-

$7fs D)2 [(x x ) +y ]
rwg )~I/2 +f

Q
[(x-x')'+y'] ' (5.12)

1/2
Ã (e)-~ —-- e ' for x -~.

2
(5.13)

%e see that the tunneling term screens s, with a
screening length

a ag 3/2

(8vx)'~' 4(2w)'~' ' (5.14)

Far from the charges, s depends only ony. Then
the integral for s can be evaluated and we find"

s(y) = --,'(sgny)e '"'~"o . (5.15)

Alternatively, if the x dependence is ignored, we

Here ~„(z) are modified Bessel functions of order
n. They fall off, for large &, like

d's 4X . d, ——,sin(2vs) = ——6(y)dy' a' gy
(5.16)

for x lying between the charges, i.e. , ~x
~
&D/2.

The solution is

s(y) = ——(sgny) arctan(e '" "o) for ~x
~

&D/2.
2

(5.1 I)

For x values outside the charges, i.e., ~x
~

&D/2,
we set s =0. In this solution we make some er-
rors in the vicinity of the charges. This gives

can avoid the linearization approximation in (5.11)
and simply solve the nonlinear ordinary differen-
tial equation
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rise to an error in the energy which is indepen-
dent of the separation of the -charges. But we are
interested only in the part of the energy which
grows with the separation, E-MT, where T is
the string tension.

Using the solution (5.17}we can find the energy
of unit length of the flux tube from the charges,
which is just the string tension T. From the
above, in weak coupling (p, = y/a, q, = r,/a),

st(= -- (sgnp, }arctan(e ~2 '(I)
2
w

e-IP2( /ao(1 —e "(t2 /+o)
K(s;)=4K(sg~.) (1,IP I/, ),', (5.18)

8y e-2lP2l /qo
o'(so) —o'(0) = —

(1 -2(,,I /, ,)2

The energy AE = E —Eo is now, from (3.15) and
with (4.6),

I

2 N u/2
[1+ s(~ I+ K(s(~ )) —s(p p —K(s(~, ,I)]+ ag' Q Q [&(s;)—&(0)+ s;K(s;)]

pg=- (p&, o) (p&, O, (pi, 1) (5.19)

Note that s~, , -S~, ,=-I+ I/((qoand K(s,) —K(s,)
=O(A/qo} which is negligible relative to the
first term. Thus the first sum gives a contribu-
tion to the string tension T,

g2
1 2gg'0

(5.20)

2g2 g2

p Q'0 271'go

The total string tension is then

(5.22)

In the second term, the sum over p2 can be lim-
ited to P2+0 by inserting a factor 2. We approxi-
mate the sum by an integral and change variables
from p, to u= e ~2/'o . Thus the contribution of
the second term to the string tension is

godQ 8A, Q

u v (1+u')'

8X u(1-u')
2, 2 arctanu

g (1+u)
(s.al}

The integrals are

duu 1 ' du(1 —u') (( 1
(1+ u2)& 4 '

(1 + u2)2 8 4'

Thus, using (5.14) and q, = r,/a,

Thus the electric Qux is confined to a tube of
radius q, lattice spacings. The tunneling between
neighboring wells in the periodic potential, —6

cosx, causes this confining of the electric flux and
thus the linear confinement of the two static ex-
ternal charges.

Without tunneling, X in (5.3) would be zero. Then
the solution of the consistency condition (5.8) would

be, calculated in the continuum approximation,

s;=—arctan —'M —
~

—arctanI '
)2m . ,+M ai 1

(s.as)
The corresponding electric field would be the
usual Coulomb field for two space dimensions,
and for the energy (5.19) we would find, apart
from the infinite self-energy of the charges, the
usual Coulomb energy for two space dimensions:

(s.26)

The development of an electric Qux tube of ra-
dius q, and thus the linear confining energy with
string tension (5.23) occurs only for charges sep-
arated much farther than the screening length q, .
For charges that are close together, the screen-
ing is too weak. They then develop in their vicin-
ity a Coulomb-type electric field.

2 (2 )o/4 ~ (5.22)
VI. CONCLUSIONS

+ Oi — for ip, i
(—.M

&&0
1 (5.24)

The string tension is exponentially small but fin-
ite for nonzero couplings, and vanishes with an
essential singularity at zero coupling.

From the solution for s; (5.18) and equation
(4.10) we find the electric field between the two
charges, approximating the difference in (4.10) by
a derivative,

~-i&2i /~0
(E ~b=

((qo (e 2II'I/a(t+ 1)

We have performed a variational calculation
with an ansatz separable in plaquette space. This
led to Mathieu's equation and a self-consistency
constraint. We were able to solve this analytically
for strong and weak coupling. For intermediate
couplings Mathieu's equation cannot be solved
analytically, but a numerical solution can be ob-
tained. We are working at solving Mathieu's equa-
tion for intermediate couplings on a computer.
Having completed this we can evaluate the string
tension all the way from the strong-coupling down

to the weak-coupling region, always having used
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the same calculational method, our variational
calculation. We then can see whether the string
tension varies smoothly from the strong-coupling
to the weak-coupling behavior, as suggested by
Monte Carlo calculations, "or in a somewhat
more abrupt fashion that would indicate a rough-
ening transition. Such a roughening transition is
indicated by a stable singularity in the logarithmic
Pade approximants at 2/g'= 1.02."
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APPENDIX A: DEGENERATE PERTURBATION THEORY

For s = m+-,' the unperturbed states (4.2) for n = m and n = —(m+1) are degenerate. Here we will diago-
nalize -(d /dx+5cosx) =A for s=m+s, 0 &s &1 exactly. We consider, for n, n'=-m, -m —1,

A„„= dx (])„*("(x)A(i)()(x) =
~

0 ( s' —5/2 )
(, -5/2 (s-1)'&

and find the eigenvalues

n, = —,'+ (s ——,')' v [(s —-', )'+ 5'/4]'/'.

The minus (-) refers to the ground state, the plus (+) to the first excited state. The orthonormalized
eigenstates

1 ~ J%

(X) (p
eisx + ei(s -1)x)

v' 2m

have the coefficients

((s —,-')'+ 5'/4 + (s ——,') [(s ——,')'+ 5'/4] '/'] '/'
1)s 52/4] 1// s

((s —s)'+ 5'/4+ (s ——.') [(s ——.')'+ 5'/4] ' '] ' '
&2[(s —-')'+5'/4]' '

Doing usual perturbation theory with the other unperturbed states included, we find the ground state

5/2 p
i(s+ 1)x i (g"-2)x

/1 3S+ —'+((ji ——')'+//'/4] /' -Bi+ +((s ——')'+///4] /'}
as well as

(A2)

(A3)

(A4)

(A5)

(A7)

2 2 2

//. ( )=-'+(/ —-*) —(( —-*) + / ] 4 3 (( ) /4] / 3 (( ) /4] / } ( )

~ '(2 ~ ') ) '(-2+) ')
4 3 -' (( -')' /'/4]"'P (s '

(( -')' //*/4]'"]'}'

For s=0, i.e. , s= m (up to order 5'),

8(20 —1) ' 2(1 —2") '

Q2 I
o.(s) = (s —m)'+

2 [4(

(s —m)
]((s) = —(s —m)+25'

[ ( ),

which is exactly (4.4) and (4.5) for n = -m.
For s= 1, i.e., s=m +1 (up to order 5'),

(A8)

gm

2(2s —1) ' - 8(2s 1)s /

$2
a(s) = [s —(m+1)]'+— (A9)

i((s) = —[s —(m+1)]+25
(

s [s —(m+ 1)]

which is the same as (4.4) and (4.5) f()r n = (m
+1). Thus we see that the ground state always has

+
For g=—
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1 1
p, =

~~ y, =+~p
y2)

2+ "o+
2 4 1(t'o(y )= 0 ~ (85)

5
4 2 8 '

K, =O.

(A10) This is the differential equation for the parabolic
cylinder functions (see Bateman") and has the gen-
eral solution

For ge 0, the ground state and first excited state
never cross. The second equation is a conse-
quence of the fact that for half-integer s, the solu-
tions of Mathieu's equation have definite parity.

4o(y) =PD„,(y)+ yD, (iy-) ~ (88)

'The second of the coupled differential equations
determines v, and (t), . We only quote the result
for v, :

APPENDIX B: DETAILS OF THE WEAK-COUPLING
SOLUTION

1 2 1
V1= -2 {Vp + Vp+ 2 ) . (87)

In the weak-coupling limit, where 5 is large,
we expand the potential -5 cosx near the minima
2m

Thus near the bottom of the potential wells, near
x=0 and x=2m, we have the wave functions

@„(x)= P,D„((25) /4x)

x=2(/n+ g, 5cosx=5 1-—+—+O(P) . (Bl)
2 24

+y, D,(i( 25)~ 4x) near x=0, (88)

Then we rescale

u+ 5 = (25)~2(v+2' ), (25)~4) =y

and Mathieu's equation (5.1) now reads

25)g, d'+ p+
1 y'+

(82)

(I))vc(x)=P, D((2 )5~(4x-2(())

+y,D, ,(i(25)~4(x -2(/)) near x= 2w.

(89)
From the condition (t)(x+ 2x) = e""Q(x) and the
fact that D„and D, are linearly independent,Po
we find the relation between the coefficients,

+0 —
y =0. (83) P 822(sP y 822( Sy

1 0& 1 . 0' (810)

We expand v and Q in a power series in 1/(25)2'2,

1
v = V()+ (25)v2 V1+ O(5 ) )

1
4 —AP+ (25)1/2 41+ ( ) s

(84)

and compare equal powers of 1/(25)~2. This gives
us a series of coupled differential equations, the
first of which is

I

'The classical turning points are at

o'. + 5 cosx, =0. (811)

Using u = —5+ (25)~2(vp+ 2 ), we find them to be

a 2~4
x =arccos ——= 2((n+ — (2v +l)~'+O(5 +').t 0

(812)

The WKB solution of Mathieu's equation (5.1) is,
for x well in the forbidden region,

4„se (e)= (-e - s cess) e'(c, esp
/2 X

dx'(-u -5cosx')~' +C2exp -~ dx'(-u -5cosx')~2
1

(813)

where x, is the turning point between 0 and w.

Left matching region. In the left shaded region, Fig. 1, for which we assume 1»x»x, we have to
match the parabolic cylinder solution (88) onto the WKB solution (813). In this region, (25)~4x» (25)~4x,

2{v,+ —2)~2=0(1) and we can therefore use the asymptotic expressions for the parabolic cylinder functions,
which can be found in Bateman's book. '4 Thus

p e-s)2522/4(25)vo/4xvo+ y e~2&22/4{25)-(vp+1)/4e ((2/2) (vp+1)x vp--1
PC O 0

For the integral appearing in the %KB solution we find

f'x "g p 1/2
dx'(-u —5 cosx')~2=

I
dx' —x"—(25)~2(v + 1)0

X
g Xj

5(~' . 2 . (x' -x(2)~2+x
—,'x(x' -x,')~2 --,'x, ' ln

= (25)~'x2/4--'(v + —,') —(v, + —,')(lnx —In(2/5)~4 —In[2(v, + —')]~')

(814)
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where we took 26x,2= (25)~2(vp+ 1) in the first line and we use x»x, = (2/6)~4(2vp+ 1)~2 in the last line.
With [ (&(-—6cosx]~4= (6/2) ~4x ~2, we find the WEB solution in the matching region

2 lj'4+ (VO+ j/2)/4

y„„,= C,e~"'/4x P ' — exp(=2'(v, +-,')[I —ln-,'(v, +-,')]j
2 ))/4-(vpk)/2)/4

+ Cpe~»&'/4x"p —
~

exp f2' (v, + 2 )[1- ln —,
'

(v, + —,')]j . (815)

Comparing (814) and (815) we find the relation among the coefficients:

2 d4-(I 0+9'2)/4

P, (26)"p '=C, — exp(—'(v, + —')[1-ln —,'(v, + —,')]},
2 ))/4+ (vpk)/2 &/4

y, (26) '"(&""e '""'"o"'=C, —
~

exp(=2'(v, +-2'}[I -ln2'(v, +-2')]].

(816)

$=x -2n, '

$2=x2-2)(= ——
~

(2vp+ 1)~2.

(817)

Right matching region. In the right shaded re-
gion, Fig. 1, we can proceed similarly when we
define

where k = cos(x, /2}, e = arc sin[cosQ/cos(x, /2)].
The last step we found in Gradstein and Ryzhik,
formula 2.599.2. E and I' are elliptic integrals.
Their properties are given in Ref. 15, Chap. 8.1.
For y=)(/2:

@=0, E(0,k)=E(0,k}=0.

The difference being that $ and $2 are negative,
and that we have to include in the WEB solution the
integral over the whole forbidden region

t'x

dx(-n —6 cosx)~2 (818)
1

plus the integral starting from the right turning

point x,. The latter is analogous to the integral
encountered in the left matching region.

The integral (818) is symmetric about x=)(. We

can express it as complete elliptic integrals.
First we replace -+ by 5cosx„according to
(811);then we change the integration variables to

Q =x/2, ~sing cos x = 1 —2 sin2(t) . Thus

j=4(26)~2sin—'
) dQ~ . , sin2$ -1

~2 J„ /2 ~sin'(x, /2) /

~
I

&/2

= 4(26)~2sin —sin —E(&,k)- . E(e, k)x~ 1
2, 2 ' Sin(X, /2) ' . 2 /2

For Q=x, /2:

V k, k =K(k), k) -, k) k(k). =

Another parameter of the elliptic integrals is k'
=(I -k')~' For us k'=sin(x, /2)= [I/(26)~4]
(v, +2)~2 is much smaller than 1. In this case
Gradstein and Ryzhik give an expansion of E(k)
and E(k) and we find

4 = 4(26)~2[E(k) -k "K(k)]

= 4v 25 —2(v, + 2)[ln 4+-,' jn(25)

——,
' ln(v, +2)+2]+O(6 ~21n6).

(819)

Matching the WEB and parabolic-cylinder-func-
tion solutions then gives the analogous relation to
(816),

2 ))/4-(vpk1/2)/4
(26)vp/4 p y e((&/2)(3vp+2) —C ) . (26)-(vpk)/2)/24-(2v()+1) 2vpk)/2

'I'(v, +1) ' 6 I

&( exp[41/26 2 (v.+ 2 )+ 2 (v, + 2 ) ln —,
'

(v, + 2 }],
v'2m /2) 1/4+ (vp+1/2)/4

(26) (v()+1&/4e i(v/2&( p 1& y-p ei (2/2)(avp+1& C (26 ) (vP+1/2)/2 42vp+1 2 (vp+1/2)' I'(-v, )
2 k&]i

&( exp[-4426+ —,
'

(vp+ —,') ——,'(v, + —,') ln —,
'

(v, + —,')] .
Now we implement the boundary condition (810). Then from (816) and (820) we find the e(luations

(820)
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e2¹i8 v'2m ei (r/2) (3&p+2 ) 2g (&0+1/2 )/2 4-(2&p+1 ) i (r/2) (vp 1 )e4n/26
I"(v +1)

e2¹i& ei (r/2) (3&p+1) 2g (vp 1/2)/2 42&0+le i (r/2) (I/'0+1)e-4~26v'2m
0 OF( v ) 0

(821)

These should give us vp as a function of s.
In the forbidden region the wave functions should be small and we therefore expect from (814) yO to be

much smaller than PO W. e therefore neglect it on the left-hand side of the first equation in (821) (re-
member that 5 is large). To be able to satisfy the second equation I'(-v, ) must be large. This requires

v, =n+r/ I)!I» 1, n an integer

in which case we find 1/I'(-v, ) = (-1)~'n!)!. We neglect )7 everywhere but here and find

/) /25 ) (nr)/2)/2 42nd 1e-( (t/2) (n-1 )e2r(ne -4d20

(822)

(823)

and, from the second equation,

/d e2ri (/2251( )/n2r)/2 42n 1e r((t/2-) (n-1 )e2rid)e M~25 / I ')nrl g 2+ ! e( (r/2) (2nd 1 ) ] /( 2/5) ( nr)/) 22/42nrle-1 (r/2) (n+1)e M~26
fp LK I e e e, , wn ge

Solving for q we finally find

42tl+1
)7= 2(-I))n (25) )n)/ e ~& cos(2vs)»» 1 .

(824)
Clearly the ground state has z = 0 and thus we
find the eigenvalue & from (82), (84), (87),
(822), and (824):

(&& ) e(( t2/)( r+1)[ D(e) e~r(D ( e)]
I' -v)
))(2v P ' P

for v=)I, from (88) and (823). We find

E(x)= C [Dn((25)~'x)+ Dn(-(25)~'x)],

O(x) = —C t»(2)ts) [D„((25)~'x)-D„(-(25)~'x)],

1 1 1
(2(S)= — + ——+ O(g2)

2g4 2g2 16

—e cos(2vs) .8
42m

(825)

where C is some normalization constant. We then
can calculate (5.6) from the series expansion of
the parabolic cylinder function for small argu-
ments (see Bateman or Gradstein and Ryzhik)
at the originx=0, and find

We remark that we have matched the two differ-
ent solutions, WEB and parabolic cylinder func-
tions, over an entire region, thereby ensuring
a smooth connection. Furthermore, we have used
the WEB solution only where it is valid, for all
vO~ 0. The criterion is (see, e.g. , Landau and
Lifshitz")

d 1
R—=

dx (-n -5cosx)v2

In our matching region, 1»x» x, = (2/5))/'

(2v, + l)~2. Thus,

I= 2(( 2C2v'2)) (25)~')!tan(2)(s) .
The norm is

(828)

/r ¹

dx y*(x)y(x) = 2 dx[E'(x)+ O'(x)].
(828)

For' small g one can show that the contribut:ion of
0'(x) to the norm is only of order )! For E w.e
can take E = 2CDO((25)~'x) for the whole range of
integration and furthermore exterid the integra-
tion from 71' to infinity. In all these steps we make
only errors of the order g. Thus

25 sinx
(-(2 —5 cosx)+2

—'5x
([(5/2)x' —(5/2)x 2]2/2

/2~~2 1~(Q
5& x (5) x1

Q(x) = E(x)+ iO(x) . (826)

Therefore, R»» I/(2vO+ 1)- 1 and the criterion is
satisfied. For the calculation of g we want to
write the wave function in the form

N= 8C2
40

=80 (25)d I drn, '(r)
0

= 4v' 2)(C'(25) ~'.
'Then we find for K,

)((s)= —=—=—(25)~2)I tan(2xs)(((!) id/dx
l

(())) I 2((

(830)

We can easily do this for small x, using the linear
dependence relation (see Bateman'2)

e ~2 sin(2(/s) .(831)442~
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