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Generalized noninteracting vortices
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The Abelian Higgs model allows noninteracting multivortex solutions for a special choice of coupling constant. We
show that more general noninteracting vortices are permitted in models with a general scalar interaction V(P),
provided that the kinetic term for the scalar fields in the Lagrangian is suitably modified. We discuss properties of
the general system and show that the static field equations are solved by a single nonlinear partial differential
equation.

I. INTRODUCTION

The simplest of the gauge theories exhibiting
soliton behavior is the Abelian Higgs model in two
space dimensions. The solitons, or vortices,
were described by Nielsen and Olesen' using ideas
known from the Ginzburg-Landau theory of super-
conductivity. The static solitons are the localized
vortex solutions found by Abrikosov' and consist
(in three dimensions) of filaments which pierce the
superconducting fluid, and in which the magnetic
flux is concentrated. The vortices are character-
ized by a localized energy density and correspond-
ing finite mass, and by a nonzero charge of topo-
logical origin. The properties of the static vorti-
ces are determined by coupled ordinary differen-
tial equations which do not allow analytic solu-
tions, except asymptotically, so that investigations
of the detailed vortex interactions must be done
numerically. The nature of the interaction depends
on a dimensionless coupling constant X; for X&1
(with our normalization) the vortices repel each
other and the static multivortex configuration is
not stable, but for X&1 the vortices attract each
other. ' 4

We are interested here in the special case X=1
for which the electromagnetic forces cancel the
attractive forces due to the Higgs scalar particle,
with the result that the vortices do not interact
even at finite separations, as has been verified
numerically. ' For X=1 it is possible to obtain
some results analytically, principally because the
second-order equations can be integrated to a
coupled first-order system. This model is one of
several for which the Hamiltonian can be arranged
as a sum of positive terms plus a surface integral
which is fixed, and which therefore provides a
lower bound on the energy. This lower bound can
be attained by imposing first-order -equations, and
the total energy can then be evaluated exactly and
is equal to the surface integral, which in turn is
related to the topological charge. Examples of
such systems are (among others) scalar field

theory with self-interaction V(P) (Ref. 5) in one
space dimension, monopole theory with no scalar
self- interactions, and pure four-dimensional
Yang-Mills theory. ' Advantages of such models
are the following: to obtain static solutions one
need only solve a first-order set of coupled equa-
tions; the system is dynamically stable because
any perturbation can add only positively to the
total energy; the dual requirements of nonzero
topological charge and finite energy are combined,
and the mass can be calculated exactly. The Abe-
lian Higgs model for X=1 possesses such proper-
ties as Bogomol'nyi' has shown. The first-order
system in this case cannot be so1ved in closed
form but has been investigated' assuming rotation-
al symmetry, when all vortices are located at the
origin. The general solution has been shown' by
deformation theory to belong to a 2n-parameter
class, where n is the topological charge, as one
would expect if the 2n parameters were the arbi-
trary positions of the n vortices.

We describe here a generalization of the Higgs
model which possesses similar properties. The
decomposition of the Hamiltonian for the Higgs
model as a sum of positive terms plus a surface
integral appears to rely heavily on the Q' inter-
action, but classically there is no reason why $'
should be distinguished in this way. There is
ample motivation for finding a generalization
which allows an arbitrary interaction V(Q). One
might hope to find a model with properties resem-
bling those of the sine-Gordon model, or at least
a model for which some exact solutions are pos-
sible. In such models there is also the possibility
that perturbations about the static vortices might
allow analytic description; in the quantum theory
this would constitute a description of vortex-meson
interactions. At present, phenomena in the Higgs
model such as possible vortex-meson bound states
must be investigated numerically.

We obtain the generalization we require by mod-
ifying the kinetic term for the Higgs field [Eqs. (l)
and (2)]. We do not discuss the quantum theory or
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The Lagrangian we use is

~ =--:(F„„)2+-.'F(e)(D„e )'- V(e).

Here p, , v=0, 1, 2 and a=I, 2, and we have a two-
component real Higgs field Q, with

D ya S ya «abg yb

F and V are real functions, depending only on
~

&f&
~

so as to ensure the gauge invariance of g, and

being at least continuous and finite everywhere for
finite ~P ~. We also require that F and V be non-
negative in order that the Hamiltonian H be non-
negative, and V should have a minimum at a non-
zero value of ~Q ~

so as to obtain symmetry break-
ing. We now define V, for each I", according to

V =—ze',1
R

where
&tet I

(2)

(v(iP i) = — ds sF(s).
'P'

We will frequently use V'=(v«0' =-
~
P ~F(v, where

V'(P) =dV($)/d
~
Q

~
. Evidently V is non-negative

and has a single minimum, at ~Q ~

=v. As a spe-
cial case of Eq. (2) we can take F —= 1 which implies
that V= —,'(~ P ~' —v')', and we regain the Higgs mod-
el with the special coupling constant X=1 men-
tioned above. Equation (2) ensures, if we may
think in quantum-mechanical terms, that- the mass-
es of the Higgs meson and the massive photon are
equal, implying that the corresponding forces due
to each are of equal range.

The mass m of the scalar and vector particles
is given by

V"(v)m'=F(v)v'=
F(v)

'The field equations which follow from the Lag-
rangian (1) are

eaF F(g)«abpaD pb

whether such models could be renormalizable.
The decomposition of the Hamiltonian into positive
terms plus a surface integral is given in Eq. (11)
and the first-order system which determines static
solutions is given in Eqs. (12). These equations
reduce to a single elliptic partial differential equa-
tion shown in Eq. (21). Finally we follow the anal-
ysis of Weinberg' to show that the general n-vortex
solution of the first-order equations depends on 2n
parameters.

II. GENERALIZED VORTICES

s(F(( =F(0)«"4"D(4',

F(~)[D,DP + (~)~]

[e (D e')'-2D V.(e'D e')]

(5a)

,'(F ~+«.p)—) + (« qDqpa+. «a«D((t(a)a

where we have had to use the relation (2). The
term «(JB,. (A,.«0) when integrated can be converted
to a surface integral which vanishes, since zv-0
at spatial infinity. Using the identity

I I'
«ab(tcyaS (t«8 ya «ab«S yae ()b (7)

we also obtain

«. «'«8 @'9 QaiS i

=e,[(C ~)~y~ '«„««y e,yb], (S)

where C is some constant. This expression is
checked by formally performing the differentiation
on the right-hand side. Since this manipulation is
valid only if [C —(v(Q)]

~
Q

~

' is nonsingular for all

~
Q

~
we see that we must choose

C =(o(0) .
The factor [(v(0) —(v(P)]

~
Q

~

' is then nonsingular
at ~(t

~

=0 provided the same is true of F(Q), as
follows from the relation (2). The expression (8)
therefore contributes a surface integral which is
easily evaluated in terms of the winding number
n, where

We wish to find a first-order system which solves
these equations, and to look for smooth solutions.
with a nontrivial winding number n. Here n must
be an integer and is proportional to the charge
corresponding to the conserved current

ja «aaa«a«S yae yb
V P

Provided V has a minimum at some nonzero
~
Q

~

= v, the nontrivial topological structure at spatial
infinity ensures the existence of the winding num-
ber n, which guarantees topological stability for
the system.

For static solutions with A, =O the Hamiltonian
density can be arranged as follows:

&=a (F(()'+ aF(4)(D(4')'+ V(4)

D„[F(0)D'0'1=-, .+2, .(D.0')'

The static field equations are (i,j = 1, 2)

n= 1
27l 5

da~««'a8 pa& Qai

The Hamiltonian is now

(10)
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H= d x g E])+c)~K

+ (s,,D 0'+~ "D 4')2 +2vnw(0)
F( )

dent if we calculate the instantaneous force on a
vortex due to.any other vortices. ' The symmetric
energy-momentum tensor for static solutions with
&p 0 is given by

7'u =F~aF~a+F «)D~&'D~&

showing that the energy of any solution with wind-
ing number n has a lower bound of 2wnw (0). Here
we have assumed that n is positive, but by suitable
sign changes negative values of n can also be ac-
commodated, leading in general to a lower bound
of 2v ~n ~w(0). We can attain this bound by imposing
the first-order equations

—~,&[-'(F„)'+I'(4 )+-.'F (4 )(D,0')'] (17)

and for solutions of Eqs. (12) is identically zero.
Let us choose, for a time-dependent interacting
vortex system, a configuration in the gauge Ap 0
which is initially static and satisfies Eq. (12).
Then the force at that initial instant acting on an
arbitrary volume 0 is'

F
)g

= —c)g w(Q ) q

D Pa g esbD yb
(12)

d
d2x T„= dSST

0 S
(18)

which are a simple generalization of those obtained
by Bogomol'nyi' for a Q' interaction. From Eq.
(11) we see that any solution of these equations
must provide a local minimum of the Hamiltonian
and will therefore satisfy the field equations.
This can also be checked directly by substitution
into Eqs. (5). It happens then that both sides of
Eq. (5b) are equal to zero. Equations (12) also
imply the equipartition of energy between electro-
magnetic and potential terms, as is implied by
Derrick's theorem'.

d x-.'{5'„)*=fd xv(4). '
A) --—s)a —c)js~(inR).

The gauge condition e,A, =0 gives

(19)

where the surface 8 encloses ~, and we have used
the conservation properties of 7.'„„. Since T,&

—-0
we see that the instantaneous force between vor-
tices is zero.

Next, let us simplify Eqs. (12). This can be
done as before" with the help of the polar decom-
position

Q~+f$2 =Re'

The second set of Eqs. (12) then reduce to

The mass M of vortices which are solutions of
Eqs. (12) is given by [from Eq. (11)]

M =2wnw(0). (14)

4@=0,
and from Eq. (12),

~(lnR) =-w(R).

(20)

(21)

Since there is the possibility of rescaling F(P) and

w(Q) this mass should be compared to the squared
meson mass, giving

For the solution of Eq. (20) we choose

x -a'
n = arctan

j-"1 X1 —61 j
(22)

2vnw(0)
m' F(v)v' ' (15)

which is also identically conserved and for which
the charge is equal to the vortex mass (14).

The linear dependence of the vortex mass on the
charge suggests that these vortices are noninter-
acting and that one ought to be able to find solu-
tions describing vortices located at arbitrary
points on the p1.ace. If such solutions exist they
would be dynamically stable as Eq. (11) shows,
since any perturbation can add only positively to
the energy. The noninteracting property is evi-

The vortex mass is related to topological proper-
ties of the theory. In fact we could define a cur-
rent

F
V P

'+ -e~P e+&Q Q+Q P&

R- ~x-a'
~

for x-a' (i =1, . . . , n). (23)

This means in fact that Eq. (21) should be replaced
by

~(inR)+w(R) =2v p 5(x —a')
)=1

to accommodate the singular behavior of lnR as R
approaches zero. We also impose the boundary

(24)

where the 2n parameters a' = (a, ', a, ') for i
=1, . . . , g can be taken as the vortex positions. The
parameter n is the topological charge as calculated
from Eq. (10), and is a positive integer. So far we
have ignored singularities. We must. have smooth
gauge fields, and from Eq. (19) this means that
lnR must be singular as x- a' in order to cancel
the singularity arising from n at x=a'. We re-
quire
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condition

R-v as ~x~- (25)

of solutions of the equation

0 (30)

gG = —zv(ve~~) (26)

By writing G as a power series in + we obtain a
sequence of Poisson equations, except for the
first which is Laplace's equation, for which the
solution can be chosen to have the correct singu-
larities. However, convergence of the series
needs to be demonstrated. The situation is sim-
plified if we choose all vortices to be located at
the origin, for then R is a function of the radial
distance r alone. Generally, R attains its vacuum
value radially at infinity and we find

We have now arrived at the point where the
Higgs model with a P~ interaction stands, where
we need to solve a single nonlinear elliptic partial
differential equation. It is hoped that one can
progress further by selecting some suitable V(R)
for which Eq. (24) can be solved exactly. We can
choose Eq. (24) to be linear by taking V(R) =[In(R/
v)]', but this potential behaves badly at R =0. A
series solution of Eq. (24) can be constructed by
perturbing about Laplace's equation. Let G =ln(R/
v) and consider

where S* is the adjoint of S. We can show that Eq.
(30) has no solutions, i.e., the kernel of S*van-
ishes, so that 8(X)) counts the number of infinite-
simal deformations of a given solution. Let

~2 ~1 1 2

(31)

0

The equation DS*$=0 implies

F ~Q ~'P, —4$, =0,

Since the g functions must be square integrable
we find from positivity that $, =$, =0 and hence
also g, =0= g,. For this we use tbe fact that F is
non-negative. From here we may follow Wein-
berg's analysis exactly. We can write

R —v -Ko(mx), large x (27)

where K, is a Bessel function, and the mass ~ is
defined in Eq. (3).

M2 l & M2
Nl~)=»(~~ I, [

-Yrl ~~, M
—,),

to be evaluated in the limit M'-. We find

(33)

III. DEFORMATION THEORY

X)g=0,

where q = (5P, , 5Q, , 5A, , 5A,)', and

B~ —A2 —s A~2

8 +A,

-F&2 —'2

0

(28)

(29)

(our fields are defined with opposite sign to those
of Weinberg). The index 8(&) is defined as tbe
number of solutions of Eq. (28) minus the number

If solutions to Eq. (24) exist with the boundary
conditions (23) and (25) then we expect the general
solution to depend on at least the 2n parameters
determining the vortex positions. By deforming a
given solution we can count the modes of fluctua-
tion which leave the energy unchanged. Weinberg's
analysis, ' which is recovered for F(P) —= 1, general-
izes easily and allows us to show that there is pre-
cisely a 2n-parameter family of solutions.

First we impose the Coulomb gauge B,.A,. = 0 as
before. Hy expanding Eqs. (12) about a solution
and retaining only linear terms, we find

where I„I-, are first-order differential opera-
tors, and satisfy

T f., =-2F„-2(A)'-(F'+2))y(',
(F'+2) fy f',

so that TrL, —Tri 2= —4+». Finally, using

(34)

we ean evaluate 8(5)}to obtain' 8(K)) = 2n, as ex-
pected.

IV. CONCLUSION

We have described a generalization of the Abel- .

ian Higgs model with X=1, and have shown that all
the main features of the classical vortices general-
ize with little modification. We have introduced
an arbitrary function F(Q) into the theory without
disturbing the main properties, and hope that a
study of the general system will lead to a better
understanding of vortex behavior. A similar
generalization, of modifying the scalar kinetic
term of the Lagrangian, does not seem to exist
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for an SU(2) monopole theory in the Bogomol' nyi-
Prasad-Sommerfield limit without destroying the
noninteracting property.

Recently, considerable progress has been made
by Taubes" in understanding the classical vortex
system for the case F =—l. 'The solutions of Eq.
(24) with boundary conditions (23) and (25) are

shown to exist and to be unique, and the first-
order equations (12) are shown to yield all finite-
energy vortex solutions for E = 1. Existence and
uniqueness can also be proved for the general
case described here, "with mild restrictions on I",
and other properties also follow" using similar
arguments to those of 'Taubes.
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