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We describe a systematic framework for the construction of monopole solutions, as static self-dual gauge fields
with appropriate boundary conditions, of arbitrary topological charge. This procedure is based on the Atiyah-Ward
Ansatz, which is explicitly constructed and has some parameters. The solution, in general, is complex and has
singularities, though it is static and has appropriate asymptotic behavior for a monopole solution. The conditions for
the solution to be nonsingular and gauge transformable to a real form are given in simple algebraic form. We can
then, in principle, check by explicit calculation if they are satisfied for some values of the parameters, or prove the
existence of a choice of these parameters. However, we have not yet succeeded in determining these parameters
besides the already known cases of one- and two-monopole solutions. We give explicit expressions for the gauge
transformations and the real potentials, when these parameters can be chosen to satisfy the smoothness and reality
conditions.

I. INTRODUCTION

Among the many rich and beautiful mathematical
structures of the SU(2} Yang-Mills equations there
is the so-called one-monopole solution which is
self-dual, smooth, real, with finite energy depend-
ing only on three coordinates in four-dimensional
Euclidean space. The nomenclature comes from
the introduction by 't Hooft and Polyakov' of mag-
netic monopoles as a classical solution in a Yang-
Mills-Higgs theory. In the limit of vanishing
Higgs potential, an analytic form of a one-mono-
pole solution was found' and in this limit the mon-
opole solution can be reinterpreted as a "static"
(i.e. , independent of the Euclidean time} self-dual
Yang-Mills field in four-dimensional Euclidean
space, satisfying appropriate boundary conditions.
These monopoles are characterized by an integer-
valued topological charge, ' which is just the mag-
netic charge in suitable units. The monopole so-
lution of Ref. 4 has topological charge one.

There have been a large number of attempts to
find solutions with higher topological or magnetic
charge. One approach to this problem is to begin
with an Ansatz incorporating some symmetry to
reduce the number of independent field components.
However, it is known that the assumpti, on of
spherical symmetry leads uniquely to the one-
monopole solution. As a result one must begin
with an Ansatz with weaker symmetries, which
usually leads to a rather complicated system of
differential equations, which is hard to analyze.
We shall not use this approach here.

Another possible approach that we shall use is
to apply techniques developed for the construction
of instanton' solutions. Instantons' are the self-
dual (or anti-self-dual} Yang-Mills field in four-
dimensional Euclidean space with finite action and
are again characterized by a topological charge,
known as the Chem number, or the Pontriaign num-
ber, or the instanton number. The first successful
application of this approach is due to Manton. '
He rederived the one-monopole solution from the
Corrigan-Fairlie-'t Hooft-Wilczek" (CFtHW)
Ansatz. However, this solution is in a complex
form, i.e. , the gauge potentials are complex,
which can be made real by an explicitly con-
structed complex gauge transformation. However,
Manton did not find any new solution that can be
made real by a complex gauge transformation.

Based on the "twistor" approach to self-dual
Yang-Mills fields developed by Ward, "Atiyah and
Ward" (AW) proposed a hierarchy of Ansatze 8„,
n= 1, 2, .. ., for the construction of all instanton
solutions. The first Ansatz 8, is the CFtHW An-
satz which is given in terms of a spin-zero mass-
less free field, i.e. , a solution of the four-dimen-
sional Laplace equation. The Ansatz S„can be
described by certain spin-(n —l}massless fields.
Atiyah and Ward use the language and techniques
of analytic and algebraic geometry. Moreover,
they did not give any explicit forms beyond the
8, Ansatz. Corrigan, Fair'lie, Goddard, and
Yates" (CFGY) gave an explicit construction of
all the Ansatze 8„ l = 1, 2, . .., which takes a par-
ticularly simple form in Yang"s" R gauge. In the
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R gauge, the self-dual potentials are described
by three functions satisfying a system of second-
order (nonlinear) differential equations. More-
over, Corrigan et a/. have shown that in the R
gauge, successive AW Ansatze are related by a
Backlund transformation, "which we call the BI(the
transformation n of CFGY) for Yang's equations.
For our purpose, a BKcklund transformation (BT)
is a transformation, usually given by a system of
first-order differential equations, which generates
locally "new" solutions of self-duality equations
from "old" ones. Corrigan et al. then integrated
this BT to give an independent "elementary" proof
that the AW Ansatze do indeed give solutions of the
self-duality equations and, of course, this gives
an explicit construction of the AW Ansatze. In
fact, we use this result to give a simple definition
of the AW Ansatze. However, this definition is
local in nature and does not simplify the discussion
of global problems. As a result of the singularity
problems" this has not led to the explicit con-
struction of any new instanton solugjons. However,
as the global requirements of the monopole prob-
lem are very different from the instanton problem,
we view the AW Ansatze as generating solutions
of the self-duality equation, and then try to satisfy
the remaining requirements for an acceptable
solution.

BNcklund transformations are known" to be
quite useful in generating solutions in two-dimen-
sional models. It is, therefore, natural to try
this method in higher dimensions also. Lohe" ap-
plied the BNcklund transformation BI twice on the
one-monopole solution to construct a three-mono-
pole solution, which turned out to be singular. '
Towards similar goals, we developed" a different
two-parameter BT in a manifestly gauge-invariant
formulation" of self-dual gauge fields. However,
so far this has not been used to produce any new
finite-energy or finite-action solutions. It has re-
cently been shown by Forgacs, Horvath, and
Palla" that it is possible to obtain the one-mono-
pole solution by applying yet another BNcklund
transformation on a "vacuumlike" solution. In
this approach we can view the solutions as being
obtained by application of BT's on a specifically
chosen "initial" solution. However, this initial
solution is neither obvious nor natural, and ap-
pears to give only one acceptable solution. One of
the major advantages of this method in two-di-
mensions is that the BT can be applied repeatedly
to get more and more new solutions. This prop-
erty appears to be absent in the application to the
monopole problem.

A more fruitful approach to the instanton prob-
lem is the Atiyah-Drinfeld-Hitchin-Manin" con-
struction of all instanton solutions. This method

has been used by Nahm" to construct the one-
monopole solution. Again, so far no new solution
has been found this way.

This spell was finally broken by Ward's" expli-
cit construction of an exact monopole solution of
topological charge two. This follows the recent
numerical results' for the existence of multi-
monopole solutions and the proof by Taubes~ of
the existence of multimonopole solutions of arbi-
trary charge when their centers are separated
from each other. The Ward solution is based on
the 8, Ansatz, and is axially symmetric. How-
ever, the solution is in a complex gauge. Ward
gave an existence proof of a gauge where the solu-
tion is real.

In this paper we generalize the work of Ward to
a systematic procedure for construction of mono-
pole solutions with arbitrary topological charge.
We also explicitly construct a complex gauge
transformation which makes Ward's solution, and
any other solution obtained from this procedure,
real. In Sec. II we review some necessary results
on self-dual gauge fields and give theorem 2.1, a
necessary and sufficient condition for the existence
of a gauge transformation which makes a complex
self-dual gauge field real. Section III is a.review
of 't Hooft-Polyakov monopoles in the vanishing-
Higgs-potential limit. In Sec. IV we formulate the
problem in the R gauge and describe a superposi-
tion formula for the energy density. This imme-
diately leads to the result that any monopole solu-
tion, i.e. , static solutions satisfying conditions of
smoothness and reality, derived from the 8„An-
satz in general has topological charge n. In Sec.
V we describe a systematic procedure for the
construction of.axially symmetric multimonopo1. e
solutions. This construction is given in terms of
a single function A, of a specific form, but con-
taining some free parameters. The resulting solu-
tion is also in complex form. A necessary and
sufficient condition for this solution to be gauge
transformable to a real form is given in a simple
algebraic form. For cases satisfying this condi
tion, me gv, ve a real form for the potentials. For
general values of the parameters in function A„
the solution will have singularities and will not
satisfy the reality condition. Therefore, specific
values of these parameters have to be chosen to
obtain real nonsingular multimonopole solutions.
The known one- and two-monopole solutions are
discussed in Sec. VI. We conclude in Sec. VII
with a summary.

II. SELF-DUAL GAUGE FIELDS

In this section we review some of the results
from the theory of self-dual gauge fields in four-
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dimensional Euclidean space. We consider only
the results we shall use in the following sections.
This section also fixes our notation and conven-
tions. "

In this paper we restrict ourselves to SU(2) gauge
theory, and we use matrix notation for gauge po-
tentials, etc. , defined as

space of y and z (y and r) and can be written as
path-ordered exponentials. The path of integration
must lie in the plane y, z = constants (y, z = con-
stants) and is independent of the path chosen in the
plane. Since fixing y, X for real x„also fixes y
and g, we must complexify the space. From trA„
=0, we have

&a
A =g—.A', p, =1,2, 3, 4, a=1, 2, 3,

22
(2.1)

detD= detD= 1.
We now define a matrix J by"

(2.V)

where g' are the usual Pauli matrices and g is the

coupling constant. Then,

g2 E—'„„=. &„A„-&„A + [A, A„] .
2$

(2.2)

(2.3)

are then valid also in complex space, in a region
containing ~eal space where the x are real.
Now consider four new complex variables defined
by

M2y=x, +ix„M2y=x, -ix, ,

M2z =x, -ix„ v 2 r=x, +ix, . (2.4)

It is simple to check that the self-duality equa-
tions (2.4) reduce to

(2.5a)

F -+F -=0. (2.5b)

Equation (2.5a) implies that the potentials A, A,
(A-„,A;) are pure gauges for fixed y, z (y, z), i.e. ,
we can find two 2 x 2 complex matrices D and D
such that

A„=D D„,
A-=D D-

3

A, =D'D „
A-=D-'D-

g ~g7
(2.6)

where D, =- &,D, etc. The matrices D (D) repre
sent the phase factor in complex two-dimensional

For SU(2) gauge theory the gauge potentials A;
are real, i.e. , the matrix A, is traceless and
anti-Hermitian. However, we need to use complex
gauge potentials A'„, i.e., the matrix A is trace-
less but not anti-Hermitian, in some intermediate
stages. Then we also need to complexify the gauge
transformations, i.e. , the gauge group becomes
the complexification of SU(2), i.e. , SL(2, C) =com-
plex 2 x 2 matrices of unit determinant.

Following Yang' we now consider an analytic
continuation of A into complex space where x„
x„x„and x, are complex. The self-duality equa-
tions

J—= DD"i (2.8)

Clearly det J= 1. The remaining self-duality equa
tion (2.5b) can be written as

(J-'J „) -„+(J-'J,)-,= 0. (2.9)

It is clear from Eq. (2.6} that the definition of
D and D involves a choice of gauge. Gauge trans-
formations are given by

D DG, D DG,

A~- G" A„G+ G 'G ~,

(2.1Oa)

(2.10b)

where G is an SL(2, C} matrix. The matrices D
and D are determined up to the transformation

D- V(y, Z)D, D- V(y, z)D, (2.11)

J'- V(y, z}JV '(y, z}. (2.12)

Note that the gauge potentials A „can be obtained
from J by factoring J as in Eq. (2.8). The re-
sulting A„are not unique but related to each other
by a complex gauge transformation. Furthermore,
J' and J'related by J'= V(y, z)JV(y, z), for arbi-
trary V and V with det V= det V= 1, have gauge
equivalent potentials.

For the construction of instanton solutions, it
is customary to require the gauge potentials A'
to be real and the gauge transformation G to be
unitary in the ~eal space. In this case we require
D='(D') ' and V= (Vt) ' (the symbol =' is used for
equations valid only for real values of x~, x»x»x4)
which implies J= DD ' = DD~ = a positive-definite
Hermitian matrix. For the monopole problem it
appears to be necessary to allow complex poten-
tials and gauge transformations even in real space.
This leads to the following question: Given D and
D, or equivalently J, when is it possible to choose
a gauge so that the gauge fields are real'? To
this end we begin by assuming that there is an
SL(2, C) gauge transformation G such that the

where V, V are arbitrary SL(2, C) matrix functions
of the variables indicated, which leave the gauge
potentials unchanged. Clearly, J defined by (2.8)
is gauge invariant under SL(2, C) gauge transfor-
mations. Under the transformation (2.11), J
transforms as
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transformed potential satisfies A„'t= -A.,—', then

A'~+A~=' [(DG) ~(DG) ]~+(DG) (DG)-

= (DG) ~(DGGtDt) (DG-)t

=0.

we have

(1 p

~ &p y" pP&

(2.18)

Similarly,

A,'t+A ='(DG) '(DGGtD );(DG)t

Substitution of (2.18) in (2.9}gives

(s s-+s s-)Iny+P'P' P'P'=0
2 (2.19a)

DGGtDt = V(y, z) . (2.13) (2.19b)
Note that (2.13) implies detV= 1. Then J= DD '

= DG(DG) '='DGGtD~V '(y, z), i.e. ,

JV(y, z) =' DGGtDt = D'D't—

= positive-definite Hermitian matrix.
(2.14)

On the other hand, if there is an SL(2, C) matrix
V(y, z), functions of y and z only, so that JV is
a positive-definite Hermitian matrix, then we can
factorize J as in Eq. (2.14) to obtain real gauge
potentials. Therefore, we have the following.

Theorem'. 2: Given J, or D and D, a necessary
and sufficient condition that the gauge potentials
are real in some gauge is the existence of an
SL(2, C) matrix V(y, z), depending on y and z only,
such that

(2.19c)

the self-duality equations in terms of g, p, and

p. Since J is a gauge-invariant 2& 2 matrix with
unit determinant, we can always parametrize J
as in Eq. (2.18), even though we arrived at this
via Yang's R gauge. We choose a gauge when we
factorize J to, obtain D and D as in Eq. (2.1V}.
The R-gauge potentials are given by

(2.20a)

JV= positive-definite Hermitian matrix. (2.16)
(2.20b)

Furthermore, if V exists then the gauge trans-
formation is given by

GG~=D V(y z)D~ (2.16)

This condition is very general and, as will be
seen below, becomes more definite for the mono-
pole problem. Note that the gauge transformation
G in (2.16) is determined up to an SU(2) gauge
transf ormation.

So far we have not chosen any particular gauge.
In the rest of the paper we work exclusively in
Yang's R gauge, ' which is defined by .choosing the
matrices D and D to be lower and upper triangu-
lar, respectively, i.e. , by

0'+ pp' 0'+ pp' 4'+ pp
(2.21)

where u= y, z. Observe that we have the freedom
to add arbitrary functions of y, z (y, z) to p (p). In
the sequel, we always choose p (p) such that p (p)
does not have any additive function of y and z (y
and z) only.

For the definition and construction of the Atiyah-
Ward Ansatz, we need the following results.

I.emma 2.2: Let (P, p, p) be a solution of Eq.
(2.19). Then (PI, pi, pi) defined by

fl 0)
(2.1Va}

is also a solution of (2.19}. Furthermore, the cor-
responding potentials are related by a gauge trans-
formation.

Proof: This follows from

(2.17b)

where P, p, and p are independent complex func-
tions of y, z, y, and Z. From the definition (2.8)

pl ( 1)2 +pI I (iol)J( fol)—
yl yI

and the remarks following Eq. (2.12). The gauge
transformation G~ is given by GI= ft '(-jo,)&i.
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I,emma'. 2: Let (P, p, p) be a solution of Eq.
(2.19). Then (PB p p ) defined by

(2.22a)

in terms of a "spin-(n —1}massless anti-self-
dual linear field. " Their solution begins by de-
fining (2n+1} functions b», -n ~k ~n, which sat-
isfy the following equations:

B -Pz B Py
P2 y2 0 Pg y2 (2.22b)

S2t"»
= -S.-~».1

8 b, ~= 8-6~,1.

(2.25a)

(2.25b)

—B P»z
2

P, y
P,z-- (2.22c)

It follows from (2.25) that n» satisfies the free
field equation

is also a solution of Eq. (2.19).
Proof: We write (2.22b} and (2.22c) as

(8„8-+8,8;)n =0.
Let us also define, for n~1,

(2.26)

B
P, y

(yB)2 P, i &

p, z

(yB)2 P, 2t

Then the result follows from p -„,-= p; —,, etc.
Note that transformation I, (Q, p, p)

-(g', p', p') defined by Eq. (2.21), when operated
twice gives an identify(i. e. , $11=p, pII= p, etc. ).
Similarly, acting with the operator 8, (Q, p, p)
-(ys, pB, pB) as in Eq. (2.22), twice is also a trivi-
al operation(i. e. , pBB=P, pBB= p „,etc. ) in
that it does not change the gauge potentials.
Therefore, in order to use B more than once,
we must interpose the I transformation between
two B's. The transformation BI,

(4 P P}-'(O', P', P'}'-(0",P",P'},

~0

~0 ' ' ' ~-n2

(2.2'I)

where
~ ~

denotes determinant. We now state
the result of Corrigan et al.

Theorem&. 2: The 8„Ansatz, n~ 2, is given by

(2.26a}

i.e. , I followed by B, is a BNcklund transforma-
tion. It produces locally new solutions of the self-
.duality equations from old ones.

I,emma'. 3: A solution of Eq. (2.19) is given by

P, „=+0,. -

4 „,-+ 0,.-.= o ~

(2.23a)

(2.23b)

(2.23c}

Proof: Follows from the substitution of (2.23)
in (2.19).

The solution given in this lemma, i.e. Eq. (2.23),
is the well-known Corrigan-Fairlie-'t Hooft-
Wilczek Ansatz Note tha. t Eq. (2.23c} is the inte-
grability condition of Eqs. (2.23a) and (2.23b).

%'e now define the Atiyah-Ward Ansatz 8n, n
= 1, 2, . . . . The 8, is defined to be the 't Hooft-
Corrigan-Fairlie-Wilczek Ansatz given by Eq.
(2.23). We define 8„, n~ 2, by

~-1 &-2 ''' &-n

LsLO

1

&n-2 ~~3 '''

( 1)nl
Pn=

n-1

(2.2Sb)

(2.28c)

8 =8 -=8 = ~ ~ -8
1 2 — 3 n' (2.24}

Let us denote the functions P, p, p of the 8,„Ansatz
by p„,p„, p„. Therefore, (p„p„p,) is a solution
of Fq. (2.23), and (p„,p„, p„) is given by

(B1)n-1
(4 1 Pl Pl} - (4 P P}.

Corrigan, Fairlie, Goddard, and Yates" have
given an explicit construction of P„,p„, p„, yg - 2,

Proof of this theorem is given in Ref. 13. It
should be noted that our definition of Ansatz 8„
is related to the R~Ansatz of Ref. 13 by 8„
—= IRn, An extremely useful relation which can
be proven by means of Jacobi's theorem on the
determinant of adjugate matrices is the following:
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Sn+1
4n + pnpn= ~n-1

(2.29) 1x,q'= -—', If(r),gr (3.5c)

III. THE 't HOOFT-POLYAKOV MONOPOLE
SOLUTION IN THE LIMIT OF VANISHING HIGGS

POTENTIAL

The 't Hooft-Polyakov monopole' arises as
classical soliton, i.e., static, localized, nonsin-
gular, finite-energy solution of SU(2) gauge the-
ory with triplet of Higgs field in four-dimensional
Minkowski space. The Lagrangian density for
the model, '" is

g & Panay a & D qaDaqa+ & paqaqa

——,
' X(q'Q')',

where

and

F~g= 8OAg ~gAN+g&ascAaA

D Q'= 8 Q'+gg„, A~Q'.

The field equations are

D Fan'= gq.„q'D~qa,

D D Q'= -~'Q'+~(Q'Q')Q'

(3.1)

(3.2)

(3.3)

(3.4a)

(3.4b)

In this section we consider only static fields,
i.e. , all time derivatives are zero. This also
means that we do not make any time-dependent
gauge transformation. 't Hooft and Polyakov con-
sidered a solution of (3.4} of the form

'The potentials for the 8„Ansatz are then given
by the substitution of P„, p„, and p„ in Eq. (2.20).
It is easily seen that we can write these potentials
in terms of Q „p„„p,by using the defining
Eqs. (2.22) and (2.21) for B and I. In other words,
we do not need to integrate the differential equa-
tions (2.22b} and (2.22c) in the final BI transfor-
mation. Therefore, the potentials of the 8,„An-
satz are given by the (2n —1) functions an, (n-—1)
- 0 ~ (n —1), i.e. , by a spin-(n —1) anti-self-dual
linear field [Eqs. (2.25) and (2.26) j.

Note that i.n the B gauge the usual reality condi-
tion D='(Dt) ' becomes Q

=' real and p=' p*. How-
ever, this reality condition is not preserved by
the transformation BI. Therefore, the reality
condition in the sequence (2.24) alternates between
those of an SU(2) and SU(1, 1}gauge theory. How-
ever, this is irrelevant for us, since we are al-
lowing complex potentials and infer reality by ap-
plying theorem 2.1. Note that both SU(2) and
SU(1, 1) have the same complexification, SL(2, C).

where

2= Xf Xf ~ (3.6)

The energy of this solution, defined from the us-
ual canonical energy-momentum tensor T ~, re-
duces to the form

E= d'g —,'B',B',+ —,'D. 'D, '
i

where

——.~'Q'Q'+ -'~(Q'Q')'j, (3.'f)

e 1 0

The finiteness of energy requires for the
't Hooft-Polyakov solution

H pg
r ~-:

(3 6)

or more generally

C2
(3.9)

(3.10a)

-=s.(q'a;) —s,(q'X:) e.„-q-.sQ' sq a,

(3.10b)

where Q '=-Q'/Q —= Q'/(Q'Q')' I'. Note that 7 ~ is
gauge invariant and reduces to the usual definition
6' z= 8 W~' - 8&W ', when Q'- 6;. lt then follows
that the 't Hooft-Polyakov solution has magnetic
charge q given by 4nq= 4w/g, and the electric
charge is zero.

So far we have considered solutions with A;= 0.
Julia and Zee" found a solution with nonzero Ao,
which is a dyon, i.e. , has both electric and mag-
netic charge. It.was shown by Arafune, Freund,
and Goebel' that the magnetic charge q, in units
of 1/g, is "quantized" and conserved from the
topology of Higgs fields, and is not of dynamical
origin. The electric charge, however, remains
unquantized in the classical theory. In this pa-
per, we do not consider solutions with electric
charge, and we shall take AD=0.

An exact solution was obtained' by considering
the limit p, A. -O with C fixed,

The Abelian electromagnetic field has been iden-
tified by 't Hooft as

A'= 0,

(3.5a)

(3.5b)

x; CrA'. =- g, . —1- .
g "~r' sinh(Cr) (3.11a)
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Q'=- —', [1 (-Cr) coth(Cr)] .. 1x
gr (3.11b)

Note that in this limit the boundary condition (3.9)
does not follow from the finiteness of the energy;
in fact, the solution is unstable against changes
in C. But C is the only mass parameter and sets
the length scale, and we assume (3.9) to hold.

It was shown by Bogomol'nyi that in this limit,
with Eq. (3.9) and A;= 0, the energy is bounded be-
low by

4~Cgo ng2 (3.12)

where g = 0, 1,2, .. ., is the magnetic charge.
Moreover, the equality in (3.12) is satisfied if
and only if the Bogomol'nyi equations

B'=D Q' (3.13)

are satisfied. Note that these equations, together
with the Bianchi identity D~B„=0 for static gauge
fields, implies the field equation (3.4), for static
fields and X, p, = 0. Bogomol'nyi obtained the solu-
tion (3.4) by solving Eq. (3.12) and, therefore the
energy is given by 4mC/g'. Note that the existence
of solutions of the Bogomol'nyi equation (3.13) is
a "dynamical" problem. However, if there are
solutions to (3.13) with appropriate boundary con-
ditions, then they are topologically and energeti-
cally stable. The small fluctuation equation about
a solution of (3.13}does, however, have zero
modes, i.e. , solutions with zero eigenvalue.
These zero modes correspond to the parameters
of the solution, and the general solution with mag-
netic charge, n, has (4n —1) parameters. "

When the Bogomol'nyi equations (3.13) are satis-
fied then the energy is given by

E=~ d xB'B'+D 'D ' = d g B'D

E= —,
' d'x 8,8,.@' . (3.14)

So far we considered only "positive" magnetic
charge. For negative magnetic charge, (3.12)
holds with q- -q and (3.13) becomes B;.= D,.Q'. -
The monopole solution of charge -q can be ob-
tained from a solution with charge q& 0 by Q'- -Q'
and A~ A~.

Now, B;D,Q' = 8,(B;Q.
'). —Q'.D,B.;=&,.(Q'S,.Q. ').

= —,
' 8,8,.(Q'Q'}, where we have used the Bianchi

identity. Thus for a solution of the Bogomol'nyi
equation, the energy is given in terms of the Higgs
field by

IV. MONOPOLES AS SELF-DUAL FIELDS

C' AC 1Q' ~ —— —+0(r ')
g-+ao g g

(4.1)

and g=0, 1,2, . . . .
Note that in (M1) and (M3) we have assumed that

we consider static gauge transformations only.
We do, however, include complex gauge transfor-
mations. It is immediately clear from Eq. (3.14)
that (M2) and (M3) imply the finiteness of energy
and that the magnetic charge (in units of I/g) or the
topological charge is n. To see this, we have,
using Gauss's theorem,

E=+ d x 9 8. =lime y'dg
i

4~C
S ~ (4.2}

We now turn to the construction of the self-dual
gauge field in Yang's R gauge satisfying (M1-3).
To satisfy (Ml) we begin by noting that the R-gauge
potentials (2.20) are given by the ratios such as
P „/P, p „/P, p-„/P. This suggests that the x,

In the last two sections we discussed self-dual
gauge fields (in R'} and monopoles separately. In
this section we connect these two and discuss some
general results of the application of the R-gauge
technique for the monopole problem.

We begin with. the simple observation that the
self-duality equations (2.3) in Euclidean space

1 ~ l
g &,-~~E]~ = ~ g,.~~F0

——F
= saA4+ ~Aa»4~ —s4Aa

become identical with the Bogomol'nyi equations
(3.13) when s4A„= 0 and the Higgs field Q' is iden-
tified with A4. Since x, can be thought of as the
Euclidean "time,-" we shall use the work "static"
in this context to mean "independent of the Eu-
clidean time g4." In what follows we shall re-
strict the gauge transformations to static both in
Euclidean and Minkowski space. Therefore, with
the above restriction, the monopole problem be-
comes identical with the self-dual Yang-Mills
fields, provided we require suitable boundary
conditions.

We can therefore obtain a (multi)monopole solu-
tion as a solution of the self-duality equations
(2.3) which satisfies the following.

(M1). The potentials are static: s,A„=0.
(M2) In some gauge the potentials A'„are real

and smooth, i.e., A'„and its derivatives are non-
singular.

(MS) The gauge-invariant quantity, the square
of the Higgs field Q'= Q'Q'-=A~A4 has the asymp-
totic behavior
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dependence of (p, p, p) be factorizable with the
same factor, say f(x,). Now, B,A-„= 0 implies

p e jcggp

p e fcx4p

(4.3b}

(4.3c)

x4

f(x,)
4 = constant.

Now, this constant has the dimension of mass.
This problem has only one-dimensional param-
eter C. We therefore take" f(x,) = e'c*4. There-
fore, to satisfy (Ml) we require

(4.3a)

(g», p» p„} corresponding to the Ansatz 8„, k = 1,
2, ... . Then the Higgs field for the nth Ansatz
satisfies

(4.4)

Proof: Using A»=(-i/v 2 )(A, -A;) and Eq.
(2.20) we have

q'= —t A A =—("~}' P"P' (4 5)g2 4 4 g2 y»

%e now investigate the effect of the transforma-
tions I and B on (4.5). From lemma (2.1), I is
the gauge transformation given by

where p„p„p, are functions of x„x„and x,
only. Note that we can consistently require (4.3)
for all Q„Ansatse.

The implementation of (M2) and (M3) is consid-
erably simplified by the following superposition
formula. "

Theorem 4.I: Suppose that we require (4.3) for

'+ pP)'~' ( p)- (4.6)

If (4.3) is satisfied, then G is static and, there-
fore Q' is invariant under I. Now from the defini-
tion (1t'»„, p»„, p»„) = BI(p—, p», p ) =—(p, p, p„),
we have

( )»
1 (83j5» )'+ 2p», 'p»', 1

»+1 g2 (y )2 g2

~a r 2 I —I
( 83$») —2p» 11p» 11

(y,')'
r~2+2 r r 2( 3'Y») + P», »p», » (8 8 + 8 8 ) Inpl

(pl)2 g2 y 11 Z S»
=(Q»)'- —,V'In/»=(Q )'- —,V'In/», (4.'I)

C2 1=———V' In/
g2 g2 1 ' (4.8)

Combining (4.7) and (4.8) we immediately get
(4.4).

This theorem leads to some immediate results.
'First, following Manton' and%ard" we choose

where we have used Eqs. (2.22), (2.19), (4.3), and
the invariance of Q' under I, successively. Now

for the 8, Ansatz,

1 ((S,y, )'+ 211P,;),1 +2 ( y2

1 2P, P, ;+ 111,,»„, ~,
)g» @

2

using p, ,= (1/v 2 )(8, —C)1t1~, p, ;= (1/~2)(8,
+ C)g, from Eq. (4.3). Now using Eqs. (2.23) and

(2.19}we get

2 C2
Q~ = ——(8„8-+8 8-) In/~+ —

»

where Ap is a function of x„x» and x,. Then
from Eq. (2.23c), A, satisfies the Helmholtz
equation

v'A, = C'A, . (4.10)

ecg
Ap f'~ OO

(4.11)

we therefore have

In@, ~ (Cr+i Cx~)+ O(lnr) .

Now this asymptotic behavior for r- ~ is pre-
served by the transformation BI given by Eqs.
(2.21}and (2.22}. Thus,

In1t1» ~ (Cr+ iCx4) .

Then from Eq. (4.4), we immediately see that
(4.9) and (4.11) imply for the Q,„Ansatz

Therefore, if we choose the class of solutions
such that the asymptotic behavior of Ap is given by

P =e' "'A
1 p t (4.9)

C2 2nC 1q„' ~ —,—,—+O(r').
y~oO g g

(4.12)
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Therefore, under these assumptions, i.e. , Eqs.
(4.3), (4.9), and (4.11), the Q„Ansatz gives a
monopole solution of topological charge n, pro-
vided the condition (M2) can be satisfied.

From Eqs. (3.14) and (4.4), the energy density
S„of the Q,„A,nsatz is given by

1
h„= ——,V'V'ln(P, (t), . (4.13)

1—V2V2 in+g2 ti 9 (4.14)

where we have used Eq. (2.28a} to get Eq. (4.14).
Therefore, u)e require that &, is never zero
and has no singularities excejt for r-~for the

energy density to be nonsingular. Similarly from
Eqs. (2.28) and (2.20), the gauge potentials are
nonsingular if „,is nonvanishing. However, the
singularities in the gauge potentials are accept-
able as long as they can be removed by a gauge
transformation.

v 2y=x, +ix, g=—= le'~,

M2y = x, - ix, = $
-=' le ",

(5.5a)

(5.5b)

i.e. , l'=x, '+x,', etc.
We can now integrate Eqs. (2.23a) and (2.23b)

for p, and p, with Q, given by Eqs. (5.1) and (5.3}.
To this end we define a real function of l and x, by

AO=—y ~ A~ =—y ~&-A —= l ~&,A, .
A, is then given by the indefinite integral

A, = J' l dl A,=Q,. JtR,dR, .

(5.6)

(5.&)

Note that in defining A, we do not include any inte-
gration "constants, "which may be any arbitrary
functions of g,. We then have the following.

L,emma 5.g: -. The functions

(p, = e' "&A,= e' &cy 's,A, = e'c"4y '&;A, , (5.8a)

p, = e*'" g-'(e, + C)A„ (5.8b)

p, = e'"4g-'(S, —C)A, (5.8c)
V. AXIALLY SYMMETRIC MULTIMONOPOLES

(p, = e' "RA (5.1)

where A, is a function of x„x„and x, only and

satisfies the Helmholtz equation

V'A, = O'A, . (5.2)

In this section we discuss axially symmetric
monopole solutions. It is known that the only
solution with spherical symmetry, i.e. , any rota-
tion is equivalent to a gauge transformation, is
the one-monopole solution. It is therefore natural
to look for multimonopole solutions which are
axially symmetric. The minimal six-function
axially symmetric Ansatz has been discussed by

Jang, Park, and Wali" and by Manton, ' and nu-
merically analyzed by Bebbi and Hossi and by
Adler and Piran. ' The recent two-monopole solu-
tion of Ward is axially symmetric.

As we have seen in Sec. IV, we have for the 8,
Ans ate

solve the 8, Ansatz Eqs. (2.23).
Proof: We can write

p (y lA ec (z z)/~)

p(y 1Aec(zz)/d2)

(
—-lA ec (z-z)/ &R)

C (a-z)/ &2a

(5.9a}

(5.9b)

(5.9c)

(5.9d)

yAA+1 y @AD 1 l l k+& ' (5.10)

Therefore, as in Eq. (5.7), A„, is given by a
(h+1)-fold indefinite integral

The equations p, ,= (t), ; and p, „-= p, , are obvi-
ously satisfied. The remaining equations of the

8, Ansatz p, ,= -(t), -„, p, -, = -(t), „can be verified
by explicit computation using Eq. (5.3).

To construct the Q,„Ansatz for n ~ 2, we need
to solve the equations (2.25) for 6„, n~ h ~n. -
To do this, we define for k & 2 the real functions
A by

s HQlCR ] (5.3)

Moreover, to obtain a multimonopole of topologi-
cal charge n we must use the S„Ansatz and have

the asymptotic behavior A, „„ec"/r-With th. is
and cylindrical symmetry in mind, imitating
Ward, we choose

l dl ' ' ldlAo

=g n,. fRdRff R,.dR,. ,.

X
sinhCR&

(5.11a)

(5.11b)

where

R( = x) +xR +(xR —c.) (5.4}

Again as in Eq. (5.V), we do not include any con-
stants of integration.

I.emma5. g: The functions 6„1& k & n, defined
by

and n, , c,. can be complex, subject to the restric-
tion that AO is real. It is convenient to define ccxgA

0 Ot (5.12a}
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( 1)2eicn4(-2(8 + C)2A

&1C24~-2(8, —C)2A

(5.12b)

(5.12c)
$0 $-1' ~ ~ ~ $-n+1

~l gO . . . t-n+2

are a solution of Eq. (2.25).
Proof: This proof proceeds by induction. First,

since Ao= p„b,, = p„A, = -p„ the case n= 1 is
just lemma 5.1. For k ~ 1, we have

(8 C)2+1
8&2= e""'& '

~
— Anv'2

(5.13a) n-1 n-2

8,-b, „=e'c"
& "(8, —C)""(& '8,A,„), (5.13b)

8 A = e'c"4( 2 '(8, —C)2(v 2y 8,A„—M2kA2),

(5.13c)
2 C2

Then Eq. (2.25b) follows immediately from Eqs.
(5.10), (5.13a}, and (5.13b). To show that Eq.
(2.25a} is satisfied, from Eqs. (5.13c) and(5. 13d},
2ye A~=le, A~, it is sufficient to prove, by induc-
tion, that

(8,' —C')An„+ l8,A2 —2kA2= 0, k ~ 0. (5.14)

„=p„$ "e'c"4

C'g "e' ",
p =-p g "e'c"4,

n n

(5.16a)

(5.16b)

(5.16c}

where P„, @„, P„are ~eal functions of / and x3
only. Note that P„, 4 „, and P„are in fact defined
by Eq. (5.16).

Proof: Observe that, from Eq. (5.12),

6 2= e'c"4 x (a real function of l and x,) x ( 2

= e' "4 x (a real function of l and x,) x p.

The case k= 0 follows from direct calculation us-
ing Eq. (5.3). The induction is then completed by
taking f l dl of Eq. (5.14) and using the fact that
in the definition of A~, k ~ 1, we do not include
integration constants. This completes the proof
of Eq. (5.12c). The proof of Eq. (5.12b) is simi-
lar.

Note that functions A2 defined by (5.12) satisfy
the Helmholtz equation

8,8,A, = O'A„k = 0, ~1, ~ 2, . . . . (5.15}

We can then construct (P„,p„, p„) using Eqs. (2.28)
and (5.12).

Lemma g.a: The solution constructed above has
the form

with every term multiplied by a factor, which is
a product e' "4 and a real function of / and x3.
Now if we factor $ from the second row, P from
thethird row, etc. , thenthegdependence ofthe rows
becomes the same as that of the first row. Now,
using the fact that every term in the determinant
has one and only one term from each column, we
immediately see that &„=e'~"4 x (a real function
of l and x,). This verifies the form (5.16b). The
others follow in the same manner.

We have at this stage constructed a static solu-
tion of self-duality equations (2.3) corresponding
to the Q„sensate, in terms of the single real func-
tion Ao defined by Eq. (5.3). Now, to complete the
construction of multimonopole solutions, we need
to satisfy the conditions (M2) and (MS). From
the discussion following theorem 4.1, (MS) is
clearly satisfied. We state this formally as
theorem 5.1.

Theorem g.l: For the solution P„,p„, p„given
by Eq. (5.16), the Higgs field satisfies

C' 2&C
(5.17)

From Eqs. (5.3), (5.7), and (5.12) we see that

Az ~ (powers of x;)8

for all k. Then from Eqs. (2.28), we see that
incan„„(Cr+iC«4) and then Eq. (5.17) follows
from Eq. (4.4).

We now turn towards the existence of a gauge
transformation which makes the solution real,
i.e. , A',~= -A, '„. From theorem 2.1, we need to
find a matrix V(y, e}, detV= 1 such that JV is a
positive-definite Hermitian matrix. In general,
it is rather difficult to get such a matrix V. How-
ever, the specific form of the (g„,p„, p„) given by
Eq. (5.16) simplifies the problem considerably.
From Eq. (2.18) and (5.16), we have

Similarly,

b, 2= e'c"4 x (a real function of l and «,)
x P', etc.

(n@,

Pe„ l "4„

(5.18)

Now, X)„has the form Now, since the necessary gauge transformation
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(5.19)

Then

l"Pn

4„
n n neiCx4 @ 2

lnC,

lne- jcx4

r("e„
Pn

for the one-monopole solution is known, we can
use Eq. (2.13) to determine the matrix V, . The
matrix V, for the one-monopole solution and the
form of J'„given in Eq. (5.18) strongly suggests
that we take V to be (note that E = v 2 y)

t'
GR (5.24)

( P -4 e'"e)
(5.23)-@„e'"' P„

Note that det(G„G~) = P„P„—4„'= 1.
It is easily seen that (5.23) determines G„up to

an SU(2), i.e. , real, gauge transformation.
Therefore, to solve G explicitly we must choose
a gauge. A possible choice is to require G to be
lower triangular. This can always be done and is .

a "natural" choice since we are working in Yang's
R gauge. Then we can solve Eg. (5.23) for G to
get

Therefore, J„V„is Hermitian if y is real and The transformed gauge potentials are given by

ln * PnPn @'n n

i.e. , r'(P„P„-4') = 1. Now, if this condition is
satisfied then P„and Pn have the same sign, and
therefore we can choose the sign of y so that the
diagonal elements are positive, so that J„V„is a
positive-definite Hermitian matrix. Then we can
find G„Gt from Eq. (2.16}. It will be shown in the
Appendix that the V„given by (5.19}is the only
possible choice compatible with all our require-
ments. We then have the following theorem.

Theorem 5.2: The gauge potentials given by
Eq. (5.16) can be made real by a gauge transfor-
mation if and only if

( -M„ o )
(A,') „=

(2N 8'"~ I
M„2'„e'"8

(~„-')„=

0

(~,')„=-
0

(5.25a)

(5.25b)

(5.25c)

r'(P„P „-e„')=1, (5.20)

where y is a real constant. Moreover, if Eq.
(5.20} is satisfied, the necessary gauge transfor-
mation G is given by where

W„—V„Vne '"~

V„e'"~ Vn —W„

(5.25d)

P @ e"jng
'n n

G G~=G„G„=r
ne —

n j
(5.21)

&zPn

@„P„'

(5.26a)

(5.26b)

Pn Pn @' (5.22)

where e is defined by Eq. (5.5) and r is chosen
such that -yPn is positive. If A, is multiplied by
a constant factor (real nonzero) then &~ and there-
fore (Q„,p„,p„) are multiplied by the same fac-
tor, which does not affect the potentials. Us-
ing this factor, we can always choose y=-1
in Eqs. (5.20) and (5.21), and P„,P„ then be-
come real and positive. So, we then have

(s,+ C}P„
Vn= (5.26c)

W„= ' "=B,[ln4„].
n

(5.26d)

We have used Eq. (5.22} to derive (5.25). Since
M„, N„, Vn, and W„are real, the potentials A'„
are explicitly real.

It can easily be verified that the one-monopole
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solution does not take its simplest form (3,11) in
the "R gauge" chosen in Eq.'(5.24). The one-mon-
opole solution is given by Eq. (3.11}when we
choose Yang's K gauge i.e. , we take G to be
Hermitian. Again, we can solve (5.23) to get

coshCr
1 (6.2)

and g„p„p, of the 8, Ansatz is then given by
Eq. (5.16) with n= 1 and

( P„+1
GE

(P„+P„+2)»'
eing

n

in@
n

~.,|)
(5.2V)

P, = ( S,+ C)A, = coshCr+ —' sinhCr,

P, = (8-, —C)A, = coshCr ——' sinhCr,

l
@,=- sinhCz.r

(6.3a)

(6.3b)

(6.3c)

The explicitly anti-Hermitian form of A in this
Hermitian gauge can be calculated using Eq.
(5.22). The resulting potentials in the Hermitian
gauge has a somewhat more complicated form
than given in Eqs. (5.25) and (5.26). However,
this gives a greater possibility of cancellations,
and the multimonopole solutions may also become
"simple" in this gauge.

Besides the gauge transformation, we still have

yet to discuss the singularity problem, i.e., as
mentioned in Sec. IV. That the determinants X)„

and S, do not vanish, to ensure that the poten-
tials and the energy density are nonsingular. Then
the gauge transformations given by Eqs. (5.24) or
(5.27) obviously do not introduce any singularities
in the potentials.

It is possible that, as in the discussion of the
gauge transformations, the special form. of the
functions (P„,p„, p„) in Eq. (5.16) can be used to
simplify the discussion of the singularity struc-
ture.

VI. EXPLICIT ONE- AND TWO-MONOPOLE
SOLUTIONS

In Sec. V we described a procedure for the con-
struction of the multimonopole solution, which was
obtained by generalizing the procedure of Manton'
and Ward" for one- and two-monopole solutions.
However, we have not shown the existence of a
solution which satisfies the reality condition (5.20}
and the requirements of nonsingularity. In this
section we describe the one- and two-monopole .

solution as concrete examples of the procedure
described in the previous section. This immedi-
ately gives a real form of Ward's two-monopole
solution.

We begin with the one-monopole solution. For
this we take

The reality condition (5.22} is easily seen to be
satisfied and Py P, are both positive. Since A,
is never zero the energy density is nonsingular.
For the gauge transformation, we have from Eq.
(5.23)

G~G~—
( P,

(-e,e "
-e,e-*e)

e-cty .x ~

P (6.4)

In this case we have G~= e~'i"if', and after this
gauge transformation the potentials are given by
Eq. (3.11).

For the two-monopole solution of Ward, ~ we
have to use the 8, Ansatz. In this case, we take
c] i c and c,= -ic, w ith c real, and def ine

R'=x, '+x, '+(x, -ic)',
R =x| +x2 +(xs + $c)

and we take

C sinhCR sinhCR)
2& R R

(6.5a)

(6.5b)

(6.6)

cosh' . — coshCR

(6.8)

Then again, we have P„p,, and p; given by Eq.
(5.16}with n= 2. That is, we have

p P )2eacx4
y

@ I 2eicx4

p P $ 2efCX4

where

(6.9a)

(6.9b)

(6.9c)

A, is clearly reaL Then from Eq. (5.11), we have

2mA, = cosh'+ cosh'
and

sinhCz
0 y 7 (6.1) 1

P, =—[(s,+C)A, ]' (s,+C)'A„
0

(6.10a)

i.e. , we take n=1, n, = 1, and c, = 0 in Eq. (5.3).
We then have P,=—[(s, —C)A, ]2-(s, C)'A„

0
(6.10b)
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(6.10c)

with A„A„and A, being given by Eqs. (6.6),
(6.7), and (6.8), respectively.

With some algebra it is possible to prove that
g,p2o0, i.e. , the energy density is nonsingular,
implies that

is a sufficient condition for the existence of a
gauge transformation which makes the potentials
real. Here we complete the proof that this condi-
tion is also necessary. This can be done by "solv-.
ing" Eq. (2.13) with the P „,p„, p„given in Eq.
(5.16). Since GG is a positive-definite Hermitian
matrix, we can always parametrize GGt as

r
2C (6.11) (A1)

For c = v/2C, it is easily verified that A, + 0.
With a lot of algebra it is possible to verify that

Eq. (5.22) holds and P, and P, of Eqs. (6.9a) and
(6.9b} are positive. Therefore, a real form of
the Ward solution is given by Eqs. (5.25) and
(5.26) with 21 = 2 and P„P„and 42 as above.

VII. SUMMARY

In summary, me have given a general framework
for generating multimonopole solutions as a static
self-dual Yang-Mills field. The solution is given
by the Atiyah-Ward Ansi' tee, mhich are con-
structed explicitly in terms of a single real func-
tion Ao with a specific form given in Eq. (5.3),
having the parameters a, and c, The solution
corresponding to the 8,„Ansatz has the asymptotic
behavior of a monopole solution of topological
charge n. Since the function A, must be real, it
is natural to choose a,. to be real and take c,'s in
complex-conjugate pairs or real. The condition
given in Eq. (5.20) for the existence of a gauge
transformation, making the solution real, and the
nonsingularity condition (i.e., the determinants
S„and S„,do not vanish) has to be verified by
explicit calculation. However, in the absence of
further insight and/or simplification the required
algebra is extremely complicated for topological
charge higher than two. Therefore, it remains"
to verify by explicit calculation, or still better a
general proof, that me can choose values of the
parameters a, and c„such that the solution sat-
isfies the reality and nonsingularity conditions.
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APPENDIX

In this appendix we complete the proof of theo-
rem 5.2, We have already shown that Eq. (5.20}

where o., 5 are real and positive, and c/5 —PP*=1.
Since the gauge transformation is static, o., P,
and y are functions x„x„and x, only. Then, the
equation DGG~Dt= V(y, z) becomes

)1/2 p4
11(y } g ~ (y yg)1/2 pni

pQ
21(y! }

(y y4)1/2

(A2a)

(A2b)

p4

-(~ ~2, )1/2PnPn ~

( y )1/2 P4
22(y~z' ~(ye I +(y y+)1/2 p»n

where

(A3a)

(A3b)

t 11 V12

V(y, z)=
/

21 22

and p„, p„, and p„are given by Eq. (5.14). Then,
since P* and (p„p~)'/2 are functions of x„x„
and x„+2g must be a function of y only, i.e. ,
V»(y, z) = V»(y). Let us first assume that V»(y)
00. Now Eq. (A2a) becomes

(A4)11 i
(~2 )g

This implies that V»(y, z) =f(y)e~'/~2 for some
function f of y only. Then,

(A5)
(~2y)"

Now 6 must be real, i.e. , n= a*. This implies
that if f(y}40, then P„=g(y, y)e "2. Since P„
does not have this form we must have f(y) =—0.
Another way to see this is to observe that, from
(A2a) and (A2b) nonzero V„ is equivalent to having
an additive function of y and z only in the definition
of p„, which me have set equal to zero. Similarly,
from (A3b}, we must have V22= 0 also. Then Eq.
(A4} reduces to
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and since both n and P„are real, we must have

where y is a real constant. Then from detV= 1,
we have

Thus we have arrived at Eq. (5.19) for V. To
complete the proof we note that if V» ——0, then
from Eqs. (A2b) and (A5) P= 0, o. =ke~"&, where
k = constant, and similarly 5= k 'e~"3. It is then
easily verified that the resulting V does not sat-
isfy J„V=' Hermitian.
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