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We demonstrate that for sufficiently high temperature T the behavior of any four-dimensional gauge theory with
small coupling constant tr, at distances beyond the electrical Debye screening length ge —1/~aT, is determined
precisely by the corresponding three-dimensional theory. This is the magnetic sector of the original theory, and in
the non-Abelian case it is a Yang-Mills theory like three-dimensional quantum chromodynamics (QCD, ). We study
QCD, in the loop expansion, which is only valid for distances &1/aT, in both covariant and Coulomb gauges. At a
finite order in the loop expansion, the presence of logarithmic infrared divergences signals the appearance of new
operators in the operator-product expansion. For example, in a covariant gauge, the gauge self-energy develops
infrared divergences at two-loop order associated with the operator 3 '. Infrared divergences in the Wilson loop are
also considered and shown to cancel below the order at which gauge-invariant local operators can appear in the
operator-product expansion. The infrared structure of QCD, at distances 1/aT cannot be directly probed in the
loop expansion, however. We present a simpler model which is calculable in this infrared limit, and which might
serve as a prototype for QCD, ; The model is massless scalar QED„which with N charged scalars is soluble in a 1/N
expansion as N~00. Using the 1/N expansion, we demonstrate that infrared softening occurs: the long-range
behavior of the photon propagator iri massless scalar QED, is less singular than that of free fields. Infrared softening
might also occur in QCD„although it cannot be demonstrated to finite order in the loop expansion. The
implications of an assumed infrared softening in QCD, for the magnetic sector of Yang-Mills theories at high
temperatures are also discussed. In particular, we consider the possibility that, if the softening is sufficiently great,
there is screening of hot non-Abelian magnetic fields and possible confinement of primordial magnetic monopoles.

I. INTRODUCTION

The study of field theories at finite temperature
is a subject of considerable interest. It is rele-
vant both to the early universe and, more specu-
latively, to the creation of fireballs in heavy-ion
collisions. For any non-Abelian gauge theory,
there exists a critical temperature T, at which a
phase transitipn to a qualitatively different medi-
um occurs.

In gauge theories which undergo spontaneous
symmetry breakdown at zero temperature, a
phase transition occurs owing essentially to the
evaporation of the Higgs effect at finite tempera-
ture. By using perturbation theory to one-loop
order, it can be shown that the vacuum expecta-
tion values of scalar fields which drive symmetry
breaking at zero temperature vanish above the
critical temperature. ' ' Thus, in the Weinberg-
Salam model the SU(2) &U(1) gauge symmetry is
restored for temperatures T & T, -250 GeV.

For gauge theories like quantum chromodynam-
ics (QCD) which are unbroken at zero tempera-
ture, the phase transition at finite temperature
is one of deconfinement, whereby quarks and
gluons are freed. This was first shown in the
lattice theory at fixed lattice spacing, '4 with de-
confinement resulting heuristically from the con-
densation of electric flux strings at T,.' Monte
Carlo simulations with a finite lattice' and esti-
mates of instanton effects" indicate that in QCD
T, -200 MeV. .

'

The properties of the phase transition itself de-
pend on understanding the theory near the critical
point T,. The present work will be restricted to
the question pf what happens to non-Abelian gauge
theories as they are driven to temperatures T
much greater than T,. Ne assume all coupling
constants are small, sp that at least naively, per-
turbatipn theory will be a reasonable approxima-
tion. This is true for QCD because of asymptotic
freedom, and for most realistic grand unified
models at temperatures T ~10"GeV. It is im-
portant to emphasize the elementary point that as
we always work above the critical temperature it
is immaterial whether or not the gauge symmetry
is broken at zero temperature.

To study equilibrium processes at finite tem-
perature, all bosonic (fermionic) fields are taken
to be periodic (antiperiodic) with period P= 1/T
in Euclidean time. In a gauge theory, it is alter-
natively possible to demand periodicity only up to
a gauge transformation, but we shall not avail
ourselves of this choice. Instead, we insist that
regardless of how the gauge is fixed lpcally,
globally all fields be strictly periodic (antiperi-
odic) "

A general expectation is that thermal fluctua-
tions mill act to screen long-range correlations.
How this occurs in detail can be understood as an
example of the decoupling theorem. " In brief,
different excitations receive temperatur e-depen-
dent masses ~, and since Euclidean space-time
governs at finite temperatures, gyes is related to
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an inverse propagator at zero momentum. For
the corresponding field Q, this mass acts to
dampen long-range correlations as

(P(&,x), (f)(0, 0)) e

The temperature-dependent masses nz are of the
form m -& T, where + =g' is a fine-structure
constant, and the power p depends on the type of
field considered. Consequently, fluctuations in a,

p field are screened over distances (» I/(u~ T).
If a. is small, a hierarchy pf distance scales can
then be established. By working out from short
distances, the theory will simplify enormously as
various massive excitations decouple.

To. begin with, correlations over spatial dis-
tances f» P (P= 1/T) are those of the static theo-
ry. The boundary conditions in time require all
energies p, to be even multiples of mT for bosons
(p, =2nnT) and odd multiples of vT for fermions
[p,= (2n+ l)mT]. Thus, since their energy can
never vanish, fermions decouple classically for
$» P, and the only bosonic modes which propa-
gate for (» P are those with zero energy. The
static theory consists of the gauge field along with

any scalar bosons to which it may couple. Since
at temperatures far above T, the only dimensional
parameter to be encountered is the temperature,
classically all scalars are essentially massless.
In the same way, within the static theory the con-
tribution of electric fields to the action density is

Go,
'- [D;Aol (1.2)

Therefore, the Ao field couples covariantly as a
massless scalar to the vector potential A,. for the
three-dimensional gauge theory.

What remains for distances t » P is an effective
three-dimensional theory of gauge bpsons coupled
only to scalar bosons, which are massless at the
tree-graph level. Let us now consider quantum
corrections to the effective theory. Any loop inte-
gral over a virtual momentum (p„p) is of the
fprm

Ignoring possible ultraviolet divergences for the
moment, the decoupling of finite-energy (n&0)
modes gives a three-dimensional gauge theory
with a dimensional coupling constant &T."

A three-dimensional gauge theory is superre-
normalizable, with ultraviolet divergences arising
only from mass renormalization. Because the
original gauge theory is renormalizable at zero
temperature, any such apparent divergences will
yield a finite, temperature-dependent mass re-
normalization when the sum over all finite-energy

P'P" 11.,(P., P) =o. (1.3)

In the infrared limit F0=0,p'-0, II „becomes
[II„.(0,p) =0]

II„(0,0)= m„'(-nT'),
(1.4)

At zero energy, gauge invariance places no re-
striction on the value of II«(0, 0), which we define
as the electric mass squared, nz„'. A positive-
definite ~„' at one-loop order is common to both
Abelian and non-Abelian theories. On the other
hand, gauge invariance does restrict the form of
the magnetic self-energy since II,,(0,p') must be
transverse. In contrast to electric fields the in-
frared behavior of hot magnetic fields, which is
determined by the dependence of II(p ') on p

' near
zero momentum, depends on whether the group is
Abelian op non-Abelian.

In summary, for distances ]» P/~o.'electric
and scalar fields decouple to leave a pure three-
dimensional gauge theory. For an Abelian group,
since the photon couples only to massive particles
the infrared structure is trivial; to any finite
order in perturbation theory, II(p') always van-
ishes like p' fpr p'-0." Fpr example, at one-
loop order

11 (p 2) ~ p
2 ~op 2

p 2~0 PL@
(1.5)

The factor of p2 above must arise if II, , is to be
transverse. It is easy to show that each higher
order in a, loop expansion contributes a higher
power of nT/m~-W& to II(p'). Thus the pertur-
bative expansion is infrared finite to all orders in

modes is performed. " We shall find it convenient
simply to ignore the finite-energy modes, but to
retain the temperature as an ultraviolet cutoff.

To one-loop order, there are contributions to
the self-masses for both scalar and electric (Ao)
fields. With the temperature as a cutoff for the
linear divergence, all scalars develop a, mass
m &'- &T' from pne-loop diagrams. Therefore,
correlations between scalar fields or electric
fields are screened over distances f»p/v&. Ex-
plicit calculation shows that contributipns to m ~'
are always positive definite. " Intuitively, this
reflects the fact that temperature always results
in screening, not antiscreening, of scalar fields.

For the electric field this effect is the familiar
Debye screening. However, there is an essential
distinction between the behavior of hot electric and
hot magnetic- fields with low momentum, which can
be directly understood from how gauge invariance
works at finite temperature. The one-particle-
irreducible self-energy fpr the gauge field, II, ,
must satisfy the Ward identity
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a loop expansion. That is, although there is elec-
tric screening in hot QED at one-loop order, the
long-range perturbative interaction between
(purely) Abelian magnetic fields is always that of
a free field."

For a non-Abelian group, the effective theory
for g» P/v n is a three-dimensional theory of un-
broken Yang-Mills fields, a representative ex-
ample being three-dimensional QCD (QCDs).
Since gluons couple to themselves, - we expect the
infrared behavior to be quite complex. One nat-
ural question to ask is whether there is screening
(magnetic screening for hot QCD, ) at any order of
perturbation theory. A necessary condition for
magnetic screening to occur is that the gluon
propagator be infrared soft: the renormalized
inverse propagator must vanish less 'quickly than
p' about zero momentum. Equivalently, II(p'}/p'
must be singular about p'=0.

Consider then a calculation of the gluon and

ghost self- energies in perturbation theory. We
can immediately understand why there are diffi-
culties in the infrared region. A dimensionless
quantity such as II(p')/p2, if it is free of diver-
gences, can only depend on the dimensionless ra-
tio nT/p, so that each order in a loop expansion
is expected to be proportional to a power of ()(T/p.
We refer to this property of the loop expansion as
infrared sensitivity: the infrared behavior be-
comes more singular with each higher order in

At one-loop order

II(p')-p' -c(Tp,2QT
p

and already II(p')/p' is not regular about the ori-
gin. At two loops naive power counting indicates
that II(p')/p 3-(c(T)'/p', suggesting the possibility
of "magnetic mass" developing dynamically in

QCD 2, 3, 7

In this paper we shall concentrate on the struc-
ture of QCD3. We argue that the analytic structure
of II(p')/p' is much more complex than a simple
pole in p' at p '=0. Although a cpmplete splutipn
to the small-momentum behavior is not produced,
the loop expansion exhibits features which are
closely tied to large-distance questions such as
possible magnetic screening. To motivate our
discussion of these features, we remind the reader
that the existence of a phenomenon like magnetic
screening would be rather surprising. Electric
screening can easily be understood since any
charged particle carries an electric charge. To
one-loop order, thermal fluctuations pull charged
pairs out of the vacuum to screen external
charges. Homever, there are no fundamental
particles in any gauge theory which carry a. mag-
netic charge; viz. , D,.G, ,=0 is always an identity.

Magnetic screening can presumably then only
arise from nonperturbative fluctuations which
carry magnetic charge.

We are thus led to the question of nonperturba-
tive vacuum structure in QCD, . Of course, we
cannot hope to calculate nonperturbative effects
from perturbation theory. However, the presence
of nonperturbative vacuum structure is augured by
the infrared sensitivity pf the loop expansion —in
particular, by the presence of logarithmic infrared
divergences in Euclidean Green's functions at a
finite order in perturbation theory.

This aspect of QCD, is of considerable interest
beyond its implications for hot four-dimensional
theories. Forgetting finite-temperature physics
for the moment, QCD, is an important (albeit un-

physical) model to be analyzed. It is intermediate
in complexity between QCD, and the nearly trivial
two-dimensional model QCD, . In four dimensions,
the nonperturbative vacuum structure which must
occur in order to produce confinement cannot be
seen to any finite order in perturbation theory.
In QCD„on the other hand, the vacuum intrudes
at a, finite order in the lpop expansion. Still, un-
like QCD„ the problem of confinement for QCD,
remains difficult and unsolved.

Our analysis mill proceed as follows. Consider
an arbitrary local operator with dimensions of
(mass}". If we were to calculate its vacuum ex-
pectation value (0) in perturbation theory, the re-
sult would be of the form

(0) -A'() + c —+ + c —In —+ '
) (l.7)

Q
r pr

where A is an ultraviolet cutoff independent of the
fine-structure constant n (we have redefined nT
as u) and the c, 's are constants. The important
point is that, at rth order, (0) develops a loga-
rithmic infrared divergence, which we cut off
with an infra. red regula. tor p. . If we were to solve
the theory exactly, the regulator p, mould presum-
ably be replaced by n times some function of the
parameters of the gauge group [for example,
p =f (N)c( for an SU(N) gauge group]. The occur-
rence of a term like ln(o!/A) indicates we cannot
consistently require that (0) vanish in the physical
vacuum.

This discussion can be systematized within an
operator-product expansion (OPE). In the OPE,
the operator Q(p'} appears in the computation of
some Euclidean Green's function, expanded about
the limit of hard mpmentum, p» n . The 1ppp
expansion of (Q(p')) is then just that of (0), ex-
cept that the ultraviolet cutoff A is replaced. by
the hard momentum p. The appearance of loga-
rithmic divergences in the Euclidean Green's
function indicates that- new operators are contri-
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buting to the OPE.
These conclusions hold for any operator, gauge

invariant or not. Infrared divergences occur to
lowest order in perturbation theory for quantities
with the lowest dimensions of mass. In QCD„
the operators with the lowest mass dimensionality
are A ' (A is the gauge field) and ~y@(2 (y+ is the

ghost field). These, however, are gauge depen-
dent and cannot enter the OPE for gauge-invariant
Green's functions. Gauge-invariant operators
such as (G, ,') [-(mass)2] have higher dimension-
ality, requiring computation to higher order to be
able to see the associated infrared logarithm.
Consequently, in QCD, it is quite difficult to dis-
entangle the role of gauge invariance.

In Sec. II, these questions will be addressed
within the context of an Abelian model which can
serve as a simplified version of QCD, . The
model is charged scalar electrodynamics in three
dimensions (QED,), where the renormalized scalar
mass is fixed to be zero at each order in the loop
expansion. " The principal virtue of massless
scalar QED, is that gauge invariance is much
easier to deal with since the photon self-energy
is itself gauge invariant. Furthermore, if N is
the number of scalars, the model is soluble as
N- ~ within a 1/N expansion. Using the 1/N ex-
pansion, many questions which are otherwise in-
soluble can be answered. For example, it is used .

to show that the photon propagator is softened for
infrared momenta p «Nn.

QCD, is discussed in Sec. 111. The gluon and
ghost self-energies are computed in perturbation
theory, with convergence anticipated for hard
momentum p» n. We work both in covariant and
three-dimensional Coulomb (B,A, + 82A2= 0)
gauges. We calculate the coefficient of the loga-
rithmic infrared divergences which appear in the
self-energies at two-loop order and discuss their
gauge dependence. The connection to a gauge-
dependent OPE is also established. In order to
answer gauge-invariant questions, we examine
Wilson loops suitable for both covariant and Cou-
lomb gauges. Cancellation of infrared divergences
corresponding to gauge-dependent operators is
demonstrated in the Wilson loop through two non-
trivial orders.

In Sec. IV, we conclude with a brief discussion
of the open questions and possible implications of
our results.

making this adjustment, scalar QED, becomes a
theory with coupled massless fields, giving it an
infrared structure similar to QCD, . Indeed,
purely on dimensional grounds, we see that since
the loop-expansion parameter is of order u/p (p
is the momentum scale pf some correlation func-
tion), the loop expansion in massless scalar QED,
is infrared sensitive. That is, perturbative cal-
culations in n are valid at best for hard momenta
P»A,

Questions such as the nature of infrared soften-
ing and the role of the operator-product expansion
in short-distance correlation functions can only be
answered by going beyond finite orders in the loop
expansion. There are two reasons why massless
scalar QED, is ideal for understanding these ques-
tions of infrared physics. One is that since the
model is Abelian, gauge invariance is much easier
to deal with than in QCD, . The second is that if
there are N charged scalars, 1/N provides a new
expansion parameter which allows the summation
of infinite classes of Feynman graphs. The use
of the 1/N expansion will be particularly useful as
a means of developing intuition which would other-
wise be lacking in QCD, .

The invariant Lagrangian density for the model
is&9

a=1

where the P, are complex scalar fields and i,j
run from one to three. We remind the reader
that we shall only concern ourselves with the pure-
ly Euclidean theory, as directly relevant for hot
four-dimensional thepries beyond the Debye
screening length. Calculations will be performed
in a class of covariant gauges, in which the bare
photon propagator is

The simplest gauge-invariant correlation func-
tion is the photon propagator, which we shall now
examine both in the loop expansion and the 1/N
expansion. The polarization tensor is defined Bs

where II,„(p2) is ultraviolet finite to all orders.
At one-loop order, II,„(p2) is also infrared finite
and is given by

II. MASSLESS SCALAR QED3

This section is devoted to an Abeli3n gauge the-
ory which can, in many ways, serve as a proto-
type of QCD, . The model is charged scalar elec-
trodynamics in three dimensions (QED, ), with the
renormalized scalar mass fixed to be zero." By

(1)( 2)
16 ~' (2.4)

where n = e'. To leading order in the large-N
limit (N-~ with nN fixed), the complete propaga-
tor is given by the iteration of the one-loop polar-
ization tensor
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~1) 6'fJ PCPJ I &Pl

p
2 + (Nu/16)p p ~ (2.5)

11,(p')= —p-, u(Nu)in +O(Nu'). (2.7)

The leading term results if the bare gauge propa-
gator is used in Fig. 1 [k'+(Nu/16)k k' above]-
and it corresponds to one-loop perturbation theory
without the 1/N expansion. The presence of the
ln(Nu} factor in the next term indicates that the
perturbative expansion in u has broken down. An

attempt to compute the scalar self-energy in the
loop expansion will encounter a logarithmic in-
frared divergence at the two-loop level, which is
not canceled by other diagrams. Without the 1/N
resummation, or some other scheme for handling
contributions from small momenta, only the co-
efficient of the infrared logarithm in Eq. (2.V) can
be computed. The argument of the logarithm, or

+
p+k p

I

FIG. 1. The ch'arged scalar self-energy in QED3 to
leading order in the 1/N expansion, . The curly line
represents the photon propagator of Eq. (2.5).

There are several comments to make about this
result:

(i) It is an exact result to leading order in the
1/N expansion.

(ii) Only the transverse part of the propagator,
which is independent of P, is renormalized by in-
teractions.

(iii) Because of the sign of II,„(p ), Eq. (2.4),
there is no tachyonic pole in the photon propagator.

(iv) For small momenta, p«Nu, the dynamics
softens the behavior of the bare propagator, but
not enough to result in mass generation.

To proceed further, beyond one loop in the po-
larization tensor and beyond .leading order in the
1/N expansion, we shall riext compute the scalar
self-energy II~(p') shown in Fig. 1. In order to
keep the scalar massless, a subtraction will be
performed at p' =0, eliminating the second (tad-
pole) diagram. With the subtraction, the remain-
ing diagram can be shown (unexpectedly} to be
gauge invariant. Because of this, without loss of
generality the self-energy can be written as

dsk (2p+ k)'(2@+ k)' (6;, —k;kg)
(2v)' (p+ k)' [k'+ (Nu/16)k]

u p' " ' sin'8 d8
7I' o 0 (p+ k)'[k+ (N/16)u]

'

It is instructive to consider this expression in
the limits of both large and small momentum.
For large momentum p»Nu,

equivalently the constant term beyond the loga-
rithm, receives contributions from all orders in
the loop expansion. Physically, the meaning of
this result is that at this order, even a short-
distance correlation function becomes sensitive
to long-distance effects.

This sensitivity can be understood in the lan-
guage of the operator-product expansion. Because
the loop-expansion parameter is dimensional, the
expansion will eventually lead to operators of
higher dimension than the unit operator. The
necessity of new operators in the OPE will be
signaled by the occurrence of infrared diver-
gences. At the two-loop level, the new operator
appearing in II~(p') is the vacuum expectation
value of A', (A'). Since the scalar self-energy
has dimensions of (mass)' and (A') has dimensions
of mass, there must also be a single power of a
accompanying the contribution of (A'). This fac-
tor of u describes the coupling of (A') to the
scalar fields and can be regarded as part of the
Wilson coefficient function.

Of course, the operator A' is gauge dependent
and so it cannot appear in a gauge-invariant corre-
lation function. Since the scalar propagator is
itself gauge dependent the appearance of (A') is
possible. Loosely speaking, A' couples to the'

charge carried by the scalar field.
In the small-momentum limit p «Nu, 11~(p')

becomes

(2.8)

The important point to be made about this result
is that Iiz(p') vanishes like p~ ln(p). From the
form of the propagator for hard momenta, we
might have expected terms proportional to p or
In(p) in the infrared. The 1/N expansion shows
that the behavior of the propagator in the ultra-
violet is completely misleading in predicting the
leading infrared behavior.

The factor of In(Nu/p) in Eq. (2.8) is worthy of
special mention. %e naturally expect corrections
in the 1/N expansion to be of order 1/N Equatio. n

(2.8), however, suggests that the effective expan-
sion parameter is actually of order (1/N) In[(Nu)/p].
Even in the 1/N expansion, which sums an infinite
class of diagrams, arbitrarily small momenta
cannot be probed. The 1/N expansion will only
converge for momenta p»Nne ". The loop ex-
pansion was found to be infrared sensitive in a
powerlike manner. We 'now see that the 1/N ex-
pansion is also expected to be infrared sensitive,
if only by powers of logarithms.

All the above questions should finally be studied
for gauge-invariant correlation functions. For
that purpose, we examine the leading correction
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II&2'(p2) to the polarization tensor in the 1/N ex-
pansion. It is possible to determine both the
large- and small-momentum limits of II',.',.' by
power counting and by paying careful attention to
gauge invariance. The contributions are shown in
Fig. 2 with the internal photon propagator given
by E&I. (2.5). Two-loop perturbation theory corre-
sponds to using the bare photon propagator [Eq.
(2.2)] instead.

We first consider II',-',.' in the small-momentum
limit. A typical diagram, say Fig. 2(a}, gives a
contribution of the form

d3q (2q+ p)'(2q+p)'
(2.) (p+-) (- )

(2.9)

d'q 11,(q')
(2+)3pc Pg (P y q )2(q2)2

' (2.10}

Using the form of 113(q2) for small momentum

[Eq. (2.8)], the behavior of the expression (2.10}
for p «Nn is found to be

,n p,.p,.P in~
32 (Na
3«' ' ' ~p

(2.11}

The other graphs in Fig. 2 are found to behave
similarly. Thus, for momenta p«Nn, the photon
propagator through second order in 1/N is

P A

&i~-PiPg
p'+ (N&2/16)p[l+ O((1/N) In(N&2/p))]

A

~ ]P&p)
p' ' (2.12)

We offer three comments about this result:
(1) Like the scalar self-energy, the form of the

propagator in the infrared region is very different

where 113(q2) is the scalar self-energy of Eq. (2.6}.
Because 113(q2) -q for large q, this expression has
an ultraviolet-divergent part proportional to 5,,
However, this divergence must cancel against
other diagrams, since there is no gauge-invariant
counterterm to remove it. A reliable estimate of
11&2,.' is extracted from the part of E&I. (2.9) pro-
portional to p,.p, This piece behaves as

from what might be expected from hard momenta.
Two-loop perturbation theory for p» Nn appears
to indicate the development of a photon mass ~'
-N&22. This is just wrong, The 1/N expansion
shows that the would be mass actually behaves as
Nn p In(Nc&/p).

(2}The logarithm in Eq. (2,12) again suggests
that the 1/N expansion is infrared sensitive with
an effective expansion parameter (1/N) in(Nc&/p).
It might be possible to go beyond finite orders in
1/N by renormalization-group methods, but we
shall not pursue this here.

(3}For a three-space-time-dimensional theory,
the logarithmic potential corresponding to a 1/p'
propagator is softened in the infrared region to be-
come a 1/r potential, up to logarithmic correc-
tions in the 1/N expansion. Because of the loga-
rithms, the form of the potential is not trust-
worthy for distances r»e"/Nc&.

To conclude this section, the large-momentum
limit of II',2'(p ) will be examined. The main ob-
servation, as for the scalar self-energy 113(p'),
will be the breakdown of the loop expansion and
the appearance of a new operator in the OPE.
Now, however, everything will be gauge invariant.

Consider the integration over q in Fig. 2(a}. If
II3(q 2) is approximated by its one-loop value uq/4
[the first term in Eq. (2.7)], the q integral be-
comes logarithmically infrared divergent even
at fixed external momentum p, indicating a break-
down in the loop expansion for the polarization
tensor at the two-loop level. The divergence can
be regulated by going beyond the loop expansion
and using the full expansion for 113(q2) [Eq. (2.6)]
justified by the 1/N expansion. Because of the
softening of 113(q2) in the infrared [E&I. (2.8)],
there is no longer an infrared divergence. In the
large-p limit, the leading behavior of Fig. 2(a)
can be read from E&l. (2.10). The integral over
q is conveniently broken into a piece from 0 & q
~No Bnd another piece from Nu &q&p, using the
low- and high-momentum forms of 113(q2). The
dominant contribution can be shown to arise from
the region c&N~q&p. Using this, Eq. (2.10)
takes the large-momentum form

4+k

p+4

(a)

q+k

1L
4

WOO ~ ~ y eg

(b)

1L

(c)

N& pp, ~ dqn Nn'- - p
2~2 pR 2 4 q 8~/ Pf Pg

Thus, for hard momentum p»Nn, we find

(2.13)

~we e ere $L i rneee

(d) (e)

FIG. 2. Contributions to the vacuum polarization
tensor in QED3 to second order in the 1/N expansion.
The conventions are those of Fig. 1.

Q

11 &,;.&(p) - (6,, —p,.p,.),in( p/N&2) + O(N&2') .

(2.14)

The infrared divergence has been replaced by a
logarithmic dependence on Nn. This sensitivity
to large distances can be viewed as a contribution



23 HIGH-TKMPKRAYURK YANG-MILLS THEORIES AND THREE-DIMENSIONAL. . .

from the vacuum expectation value of a higher-
dimension operator in the OPE. The only gauge-
invariant operator which has a low enough dimen-
sion to arise at this level in the loop or 1/N ex-
pansions is

~ P P =g, , &f&,*@, .That this is indeed
the relevant operator can be seen by short cir-
cuiting the propagator carrying the large momen-
tum p in Fig. 2(a). The resulting graph describes
(~ p ~') to first nonleading order [Nnln(Nn)] in
the 1/N expansion. It then couples with strength
a to the photon.

At higher orders in the loop or 1/N expansion,
higher-dimension operators such as

~ Q ~
or E,.~'

will be encountered, all having nonzero vacuum
expectation values. Gauge-dependent operators
such as A' should not appear. This operator,
which appeared in the scalar propagator at tmo

loops (order n'), first makes a possible appear-
ance in the polarization tensor at three loops
(order n ). Even though it can be seen in individ-
ual graphs, it must finally cancel for the full po-
larization tensor.

III. THREE-DIMENSIONAL @CD

We now turn our attention to three-dimensional
Yang-Mills theories, generically referred to as
QCD, . The gauge group is taken to be SU(N) but
our conclusions apply equally well to other groups
relevant to grand unification. The invariant La-
grangian is

will be elucidated. The Green's functions of QCD,
are all gauge dependent and, therefore, in order
to ask gauge-invariant questions, Wilson loops
will also be examined. It is instructive to per-
form the analysis both in covariant gauges and
in a three-dimensional Coulomb gauge. This sec-
tion will be divided accordingly.

(3.4)

where n —= g'. The gauge polarization tensor is
defined as

11,,(p) =(S,, —j,.j,) rr, (p') (3.5)

A. Covariant gauge

In the class of gauges considered, the bare
Euclidean gauge-boson propagator is given by

gabD(0)(p) gab (g p p ) y gP&P& (3 3)
1

' 'p' p'
The self-energies for the Faddeev-Popov ghost
and for the gauge boson will play an important
role in subsequent discussions and we begin by
computing them through one loop.

The one-loop ghost self-energy affords the sim-
plest computation. There is one diagram, shown
in Fig. 3, and it is both infrared and ultraviolet
finite. Furthermore; it is found to be independent
of the gauge-fixing parameter ] in three dimen-
sions. The result is

=-G'. G'. ,

where

G' =2 A'. —B.A'+ gf'"A' A'.
aJ f J J i J''

(3.la)

(3.1b)

and the three contributing diagrams are shown in
Fig. 4. The result is ultraviolet and infrared
finite but gauge dependent, in the form of a quad-
ratic polynomial in $. We find

The quadratic Casimir eigenvalue of the adjoint
representation, C~, is defined by II,'"(P')=[(5+1)'+ 10] 64

(3.6)

faedf bed
= CA~ah ~ (3.2) The sign of II~ means that the ghost propagator

with C„=N for SU(N).
Although computational results mill be presented

in this section for general N, the kind of tractable
1/N expansion employed in Sec. II is not available
here. The celebrated 1/N expansion for SU(N)
gauge theories leads only to the dominance of
planar diagrams bo Although QCD, is soluble in
this approximation, the existence of transverse
degrees of freedom in higher dimensions has so
far prevented similar progress. "

The analysis of this section will therefore be
restricted to finite orders in the loop expansion.
Large-momentum Green's functions will be shown
to contain infrared singularities associated with
the breakdown of the loop expansion. The connec-
tion of this phenomenon to the-operator-product
expansion and the vacuum structure of the theory

gab
5"&~(p')=-, , —,

)P —II@ (P
(3.7)

FIG. 3. The one-loop ghost self-energy is a covariant
gauge. Curly lines represent gauge bosons, solid lines
ghost quanta.

would develop a tachyonic pole if the one-loop re-
sult could be trusted for p -O(Nu). It cannot, of

course, since the expansion parameter is ex-
pected to be of order Nn/p. Similarly, the gauge
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thyme e aa~ea-
P

(a) (b)
Ghost

(c)

FIG. 4. The one-loop gauge self-energy in a covariant
gauge.

propagator
A A A A

5abD (P )
—5ab id Pi PJ y ~

Pi Pi
ij y2 11 (Pa) P2 (3.8)

would exhibit a. tachyonic pole if the one-loop re-
sult were used with abandon. Here, however, the
gauge dependence of II,'" further complicates the
discussion. While II'" is positive for any real $,
it can be made nonpositive or even zero with a
suitable complex choice for (.

Before addressing the problem of gauge invari-
ance, we examine some correlation functions at
the next level of the loop expansion. Attention
will necessarily be restricted to the short-dis-
tance regime p» Nn.

Consider first the gauge propagator. If Iia(p')
were again free of ultraviolet and infrared diver-
gences at the two-loop level, then it would be of
the form (Nn)'. It is this guess for II,"'(P')
which, when wrecklessly extrapolated to p &Nn,
suggested the appearance of a magnetic mass in
finite-temperature QCD. Our analysis of mass-
less scalar QEDb, where a soluble 1/N expansion
is available, has shown how wrong this is.

Even at large momentum, the form (Nn)' is in-
correct for II'"(P') since there are divergences
in the class of diagrams shown in Fig. 5. In a
gauge in which the one-loop insert [Eq. (3.6)] does
not vanish, the integral over k will diverge loga. -
rithmically. Employing an infrared cutoff p. , the
self-energy is of the form

(3.9)

The logarithmic infrared sensitivity means that,
at this level, the propagator is beginning to sam-
ple the large-scale structure of the vacuum. This
sensitivity signals the appearance of a new opera-
tor in the OPE. The only allowed operators with
low enough dimension to contribute at this level
are A' and

~ g~ ~', both having dimensions of mass
and both being gauge dependent. By short cir-
cuiting the line carrying the large momentum in

8'= Pexp ig dx„A' (3.10)

An appropriate choice of the contour will allow,
for example, the extraction of the static potential
between two color charges in the (2+ 1)-dimen-
sional theory. To analyze infrared divergences
and their connection to the OPE, however, it is
simpler to use a small contour such as the one
shown in Fig. 6. If the contour has diameter
d «1/Nn, then only short distances are being
probed and the OPE can be directly applied.

Dimensional analysis shows that if no infrared
divergences are encountered, the loop expansion

Fig. 5, we see that it is only (A') which arises.
It might be thought that ~g~~' will also appear
through the two-loop graph formed by inserting a
one-loop ghost self-energy in Fig. 4(c). However,
the integral is suppressed in the infrared at this
order due to the gauge-ghost vertex structure.

Other Euclidean Green's functions will also
develop infrared divergences at two loops. They
always arise from one-loop insertions on internal
lines and they are always associated with the ap-
pearance of A' in the OPE. The coefficient of the
logarithmic divergence can be computed at the
two-loop level but the argument of the logarithm
is sensitive to momenta. on the order of Nn. Thus
it is sensitive to all orders in the expansion and
it can only be computed if some nonperturbative
scheme is available.

All two-loop infrared divergences can be elimi-
nated by choosing the gauge ($ + 1)'= -10, in
which II,'" vanishes. They therefore have no
physical significance and in any gauge they must
cancel in the computation of a gauge-invariant
correlation function. This expectation is further
reinforced by the association of these divergences
with the gauge-dependent operator A' which cannot
arise in the OPE of a gauge-invariant correlation
function. In QCD» the gauge-invariant local oper-
ator of lowest dimension is (G,,)' - (mass)'. Thus,
noncancelling infrared divergences should first
appear in gauge-invariant correlation functions at
the four-loop level. A convenient gauge-invariant
object to study is the Wilson loop,

(a) (b)

FIG. 5. Contributions to the two-loop gauge self-
energy with infrared divergences.

FIG. 6. A term of order ~ in the perturbative ex-
pansion of a small Wilson loop.
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must give the result

W =g C„(Nn d)" .
n=o

(3.11)

Since the local operator G, ,' first becomes infra-
red divergent at order n, and as two powers of
n are required to make contact between the Wilson
loop and this operator, we expect the expansion
to break down at the n. = 5 level. The cancellation
of infrared divergences in a general gauge has
been checked through the n, =2 level, where a typ-
ical contribution is shown in Fig. 6. The two-
loop propagator divergence of Eq. (3.9) would

feed into the Wilson loop at the a= 3 level and it
too must cancel.

B. Coulomb gauge

We now discuss the loop expansion for QCD, in

a three-dimensional Coulomb gauge where

V A=O. (3.12)

Throughout this section, we shall use the conven-

tion of denoting two-dimensional vectors by A, so
that a three-dimensional vector A =(A,A3). We

expect the results of computation in the Coulomb

gauge to be most directly relevant not for QCD3
considered as the limit of QCD4 at high tempera-
tures, but for QCD& considered as the Euclidean
form of a Yang-Mills theory in two space and one

time dimension.
In the Coulomb gauge there are quanta asso-

ciated with Coulomb transverse and ghost fields.
The bare Coulomb and ghost propagators are in-
stantaneous in the 2+ 1 "time" coordinate x3 be-
having as 1/~p in momentum space. In contrast,
the bare transverse gauge field propagates in both
two-dimensional space x and time x3, behaving as
1 p

1
6sbg) (0) 6sb(6 p p )

P +P3
(3.13)

In this section, i and j run only between 1 and 2.
We follow the same general method of attack as
for covariant gauges, and so begin by discussing
the self-energies to one-loop order.

The contributions of lowest order to the Coulomb

self-energy II, (p,p, ) (p = ~p ~) are sketched in

»gs. 7(a) and 7(b)." Because the virtual Coulomb

particle in Fig. 7(a) is instantaneous, its contri-
bution to II, is independent of the (2+ 1)-dimen-
sional energy p3, and so it must be a number
times NnP It is found to b. e NnP/v The contri-.
bution of Fig. 7(b) at P3 ——0 is

Nnpi ———|'7 1

so that

II,(P, 0) = 7N—nP . (3.14)

Thus the sign of II,(P, O) would be tachyonic if
valid for p &Nn. The value of II,(p, o) is of spe-
cial interest as the sole contribution to the static
potential at lowest order in perturbation theory.
The general function II,(P,P3) is not of use to us
here, and we only note that it vanishes when p
does:

11,(o,p, ) =o. (3.16)

The transverse self-energy Il,(P,P~), defined as

lips(p, P s) = (~;y P~P&) II~-(P»3) (3.16)

is rather easier to calculate than might first be
expected. Because graphs such as Figs. 7(c} and

7(d) involve emission and reabsorption of a virtual
pair of quanta —both of which are instantaneous—
their contribution is of the form

"(p+ 2k)'(p + 2k)'d'k
k~(p + k)~

(3.17}

Nn (k3+pa)2d2kdk3
(2m}~ (k —p}2(k~ + k 2)

(3.18)

To deal with the logarithmic singularity in the in-
tegral over virtual two momenta k about k= p, we
intr'oduce an infrared regulator p, by drilling a
hole of radius p, in momentum space about k= p.
With this convention, Fig. 7(f) then contributes

N (p, &~
I2pi

4&&pj (3.19)

which diverges as In(p/p) for all values of p and

p 3 ~

This infrared logarithm at one-loop order is at
first rather surprising. However, it is just the
appearance of the local operator A3, which can
easily be understood as follows. Since to this or-
der the bare Coulomb field is instantaneous,

(A,')- Jt dk, ~ -Aln —, (3.20)

where A is an ultraviolet regulator. Hence, al-

Contributions like Eq. (3.17}are directly propor-
tional to an ultraviolet cutoff as fdk3, and so van-
ish identically after regularization.

We wish only to make the following point about
the transverse self-energy. The contribution
from Fig. 7(e) depends on both P and P~, and is
infrared finite for all p and p3. For example,
when p =0, it is a finite number times Nn

~ p3~ .
Now consider the contribution of Fig. 7(f), which
is due to the emission and reabsorption of a vir-
tual Coulomb quantum by a transverse gluon. This
graph behaves as
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(a) (b)

p+k

/
~%7~eo eI

k

(c)

ready at one-loop order, (A3 ) develops an in-
frared logarithm. When we compute Fig. 7(f) as
in Eq. (3.19), A is just replaced by P and p„but
the lnp, dependence persists.

We do not pause to discuss the ghost self-ener-
gy, but proceed to sketch the origin of infrared
logarithms at two-loop order. We concentrate on
the Coulomb self-energy at P3=0 because of its
close relation to the static potential.

First of all, as in covariant gauges, the momen-
tum structure of the ghost-gauge vertex ensures
that the operator [g&~' does not appear to this
order. Further, one-loop insertions for trans-
verse gauge bosons as in Fig. 7(g) can be shown
to be infrared finite in the integration over the
loop momentum k. The only infrared divergence
is inside the one-loop insert and that has already
been identified with the appearance of (A~ ) at one
loop. Hence all that remains are one-loop inser-
tions on the propagators of Fig. 7(a). An insert
on the Coulomb leg of Fig. 7(a), .as in Fig. 7(h),
does not by power counting yield any infrared di-
vergence [the fact that II,(O,P3)=0, Eq. (3.15),
must be used to show this]. The only infrared di-

vergence occurs due to an insertion in the trans-
verse gluon of Fig. 7(a) as in Fig. 7(i). Note that
the infrared logarithm of Fig. 7(i) is directly as-
sociated with the appearance of A, but that A,'
also enters indirectly through the contribution of
Fig. 7(f) to the one-loop insert for the transverse
gluon of Fig. 7(i). All these infrared divergences
should, of course, cancel in a gauge-invariant
correlation function.

We end this section with a short consideration
of the Wilson loop in the Coulomb gauge. It is
most appropriate to consider long, thin loops,
whose temporal duration in the x3 direction ~, is
much greater than the spatial extent R. For
T»R, at lowest nontrivial order the dominant
contribution to the Wilson loop is given by the ex-
change of a single Coulomb quanta across the
loop. This term, which is of order o. [ln(R/A)jr,
is just the leading term for the static potential in
a (2+ 1)-dimensional theory. In contrast, the ex-
change of a transverse quantum between the ends
of the loop is of order aR and can be neglected.

Since a Wilson loop is directly related to the
static potential for the (2+ 1)-dimensional theory
only when ~ »R, we cannot directly carry over
the remarks about the applicability of the OPE to
Wilson loops as in the preceding section.

Nevertheless, it is direct to verify that infrared
divergences in the static potential cancel to order
n2. The leading R-dependent term is given by the
one-loop insertion for the Coulomb propagator,
as in Fig. 8(a). Since the bare Coulomb field is
instantaneous, to this order only II,(p,p3) at
P3 ——0 enters. This term. itself is infrared diver-
gent as

(e)

(g)

&oa ace eeyey but the divergence cancels against R -independent
terms as in Fig. 8(b). As mentioned at the end of
Sec. IIIA, divergences should continue to cancel
through four orders in n. The limit 7'-~ can then
be taken and the static potential can be extracted
in the usual way. At order a', large-distance
quantum fluctuations may prevent the extraction
of a static potential.

FIG. 7. Contributions to self-energies in Coulomb-
gauge QCD3. In this figure, dashed lines represent
Coulomb quanta, curly lines transverse quanta, and
solid lines ghost quanta. In Figs. 7(g)—7(i), 1L denotes
one-loop inserts using the results of Figs. 7(a)—7(f).

(0) (b)
FIG. 8. Terms of order G.

~ for g long, thin Wilson
loop in the Coulomb gauge. The conventions are those
of Fig. 7, except that the sides of the loop are drawn
as solid vertical lines.
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IV. CONCLUSIONS

We now summarize some of our main conclus-
ions and avenues for further research.

First of all, the Abelian gauge model analyzed
in Sec. II deserves much more study. The lPl
expansion, which has led to interesting and non-
trivial behavior for both large and small distan-
ces, should be examined more thoroughly. A
X/4 interaction ean be included along with the
gauge-coupling and renormalization-group methods
studied. A comparison with the & expansion about
four dimensions should be especially interesting.

In QCD» the I/N expansion leads only to planar-
diagram dominance just as in four dimensions.
Nevertheless, since spin-one particles have only
one degree of freedom in three space-time di-
mentions, perhaps the planar-diagram approxi-
mation is more manageable.

In both QCD, and the Abelian model, an infrared
breakdown of the loop expansion for Euclidean
Green's functions has been. discovered. In each
case it has been connected with the appearance
of new local operators in the operator-product
expansion for the large-momentum Green's func-
tions. The OPE should be studied further for
these models. For example, the factorization of
infrared and ultraviolet physics (the basic physi-
cal content of the OPE} should be established by
examining higher orders in the loop expansion.

On a deeper level the infrared physics embodied
in the vacuum expectation values of local gauge-
invariant operators appearing in the OPE should be
explored. Although these operators have appeared
through the infrared sensitivity of the loop expan-
sion, their computation and physical understanding
surely take one beyond the loop expansion. In the
Abelian model, vacuum matrix elements such as
( P& P and (F

&& ) can be studied in the 1/N expan-
sion.

In QCD„ the vacuum expectation (G,&') is of
most immediate interest. The question of its
sign, for example, is important. A positive sign
is anticipated by considering QCD, as the Euclid-
ean form of a (2+ 1)-dimensional theory: the Euc-
lidean term G„.'= ,'(E'+ B') becomes G,&' ———~(-&'
+ B') in Minkowski space. If (2+ 1)-dimensional
QCD is to confine electric flux (in the fundamental
representation}, then it must be a magnetic con-
densate for which B'&E', so (G,.J') &0."

We conclude with some remarks as to why there
might be magnetic screening of hot non-Abelian
fields if infrared softening is sufficiently strong.
Infrared softening implies that the ability of the
physical vacuum to sustain long-range magnetic
fields is reduced by interactions. If this reduc-
tion takes place, the loop expansion suggests

that it will set in over distances $ a P/(N&) for
SU(V).

We want to stress that no direct evidence for
this infrared softening has emerged from the an-
alysis of this paper. We can only study QCD, in
the loop expansion, and thus are restricted to dis-
tances $~P/(Nn} Th. us we cannot compute any-'
thing about the infrared structure of QCD, . In
contrast, for the Abelian model we melee able to
analyze the theory for distances $ a P/(Na) using
the I/N expansion. In the Abelian model, we found
a mild softening in that a 1/P' propagator became
I/p in the infrared limit. No magnetic mass was
found in this model of massless scalar QED, .

Nevertheless, it is worth exploring the conse-
quences of the assumption that in QCD, there is
sufficient infrared softening to give a finite range
[of order P/(Na)] to the magnetic fields of hot
QCD~. Whether it is precisely of the form of a
mass term or whether the analytic structure is
much more involved, as is certainly likely, may
not be that important. 'The gross qualitative f ea-
tures of the physics' may not depend on the de-
tailed form of the gauge-boson propagator about
zero momentum.

Consider then the introduction of external mag-
netic charge into a hot thermal bath of Yang-Mills
fields, as in the early universe. When the effects
of infrared softening are sufficiently great there
will only be two alternatives: screening or con-
finement. Screening will always occur if there
are vacuum excitations with the quantum numbers
of the external charge, confinement if not.

To decide between the two, we need a conven-
ient way of introducing external sources for mag-
netic charge. Let us then extend the gauge group
to be semisimple, "such as G' x U(1), at tempera-
tures below restoration to a simple gauge sym-
metry. For example, consider the Georgi-Glas-
how SU(5) model at temperatures above -250 GeV
and below -10"GeV.' There are then massive
Abelian magnetic monopoles M, with m„-10"
GeV. The Abelian monopole M acts as a source
for both Abelian [U(1)] and non-Abelian [SU(2)
x SU(3)] fields.

The question of magnetic screening vs con-
finement hinges upon whether there is a topologi-
cal invariant associated with magnetic charge.
However, it is easy to understand why non-Abe-
lian magnetic charge has no topological signifi-
cance. Non-Abelian magnetic charge Q„ is de-
fined as the integral of the magnetic field &; over
spatial infinity as

Now, the magnetic charge Q„must be linear in
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the magnetic field so that they both transform in
the same manner under discrete symmetries such
as I' and T. But then the only gauge-invariant
charge we can form is tr(Q ), which always van-
ishes. In contrast, Abelian magnetic monopoles
are topologically stable since, with an adjoint
scalar field &f&' (with mass typically -10'4 GeV in
the Georgi-Glashow model) not zero at spatial in-
finity, a gauge-invariant charge can be formed as

Weinberg-Salam model the infrared sensitivity of
hot non-Abelian magnetic fields will eventually in-
fect hot Abelian magnetic fields, in that the infra-
red behavior of hot Abelian fields is softened from
tllat of free fields. The demonstration of this
might provide a solution to the vexing problem of
too many primordial magnetic monopoles in the
early universe. "2'

Since nothing topological prevents non-Abelian
magnetic fields from being screened, it is pos-

, sible for it to occur over distances —P/(No. ). Mag-
netic screening can be imagined to result from a
condensate of Wu- Yang monopoles, with a spatial
density of order (P/Na)'. Such a monopole con-
densate would also generate a nonzero value for
(G,.2). This picture has been discussed elsewhere. '

But consider then what would happen if there
were infrared softening for hot Abelian magnetic
fi'elds. In that case the only excitations which
could screen the Abelian magnetic charges are
virtual MM pairs. In any realistic grand unified
model, enormous energies are needed to pull
very massive MM pairs out of the vacuum, and
Abelian magnetic monopoles would be effectively
confined.

Demonstrating that the Abelian part of G' x U(1)
is sufficiently infrared soft is difficult. Naive
power counting indicates an Abelian magnetic
mass (Sec. I) could occur beginning at fifth-loop
order m„'- a4T'. If true, the length g over which
MM confinement occurs would be g, -ti/a'. Of
course, at such high orders in a loop expansion a
very careful analysis is required in order to be

. able to make definite statements.
Nevertheless, we would like to suggest the pos-

sibility that for any semisimple model such as the
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