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How super-renormalizable interactions cure their infrared divergences
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Perturbative expansions in models which possess super-renormalizable interactions of massless fields are beset by
severe infrared divergences. We show that the complete theory is well defined and has no such divergences; rather
the exact amplitudes are nonanalytic functions of the coupling constant and cannot be expanded in its powers.
Typically, logarithms of .the coupling constant occur, as well as analytic pieces. The analytic portions cannot be
found in perturbation theory;. they are determined by matrix elements of composite operators. But the nonanalytic
behavior is completely fixed in terms of the theory's other parameters. The present investigation should be relevant
to a study of physical quantum chromodynamics at its finite-temperature phase transitions.

I. INTRODUCTION

Super-renormalizable interactions are governed
by coupling constants with dimensions of positive
powers of mass. When the fields are also mass-
less, perturbative expansions in the super-renor-
malizable coupling lead to infrared divergences,
even in off-mass-shell amplitudes, for the follow-
ing reason. Computation of any Green's function
to some (high) order yields a formula which must
involve, for dimensional, reasons, a (high) power
of the coupling constant, divided by a (high) power
of a momentum variable, characteristic of the
process in question. Upon inserting this result
into some further diagram and attempting a further
momentum integration, infrared divergences will
in general be encountered, as a consequence of the
momenta in the denominator.

In this paper we examine how these infrared
singularities are healed in several interesting
models; how perturbation theory must be modified
in order to avoid them. The result is that the
dimensional coupling constant provides an in-
frared cutoff and is a source of nonanalyticity in
various amplitudes. An expansion in the coupling
is possible, but logarithms of the coupling con-
stant occur, in addition to powers. 'The coeffic-
ients of the leading nonanalytic logarithms are
calculable in conventional perturbation theory,
but the coefficients of the analytic powers require
nonperturbative information. ,

Super-renormalizable field theories arise in
studies of symmetry-changing phase transitions
at finite temperature. ' When one examines a
physical theory in four space-time dimensions
and at a finite temperature close to the critical
temperature, a three-dimensional field theory
becomes effective in the description of dynamics
near the transition. Moreover, at high tempera-
tures, even away from a critical point, the in-
frared behavior of any theory is described by

the same theory in one lesser dimension. If the
four-dimensional theory is governed by renormal-
izable, dimensionless coupling constants, those
of the effective three-dimensional theory are
super-renormalizable and dimensionful. They
are related to the physical- ones by inverse powers
of the temperature. ' We shall disregard this
physical context for super-renormalizable models,
and shall study them in their own right, as inter-
esting examples of quantum field-theoretical
phenomena.

When perturbation theory is beset by infrared
divergences of the type discussed here, a very
simple mechanism may intervene to heal the
infrared singularities: The field may acquire a
mass in perturbation theory through a tadpole
mechanism. The mass provides an infrared cutoff,
and this is a trivial solution to the problem, which
happens, for example, in theories with scalar
fields. We are interested in the more interesting
situation where a mass cannot be generated in
perturbation theory because it is prohibited by a
symmetry or by some other principle. Prime
instances are gauge theories, where gauge invar-
iance prevents the gauge fields from acquiring a
mass. Also massless spinors will not generate
a perturbative mass term. Even scalar fields
at the phase transition can have no mass, since
the critical temperature is defined as precisely
that temperature at which the tadpole-induced,
temperature-dependent contribution to the mass
cancels the bare, zero-temperature mass. (There
may of course be nonperturbative mass generation
by dynamical symmetry breaking. We have nothing
to say about this, and ignore it henceforth. )

In the interesting situation wherein a perturba-
tively produced mass term does not heal the in-
frared singularities, another mechanism operates,
whereby coupling-constant-dependent logarithms
replace those that are infrared divergent. This
was noted many years ago' but was not publicized
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at the time, since no physical setting was envi-
sioned; a situation which has changed with the
advent of gauge theories and finite-temperature
field theory. The emergence of coupling-constant
logarithms is somewhat analogous to bound-state
perturbation theory; a inn contributions to the
Lamb shift are familiar. 4 Also it is similar to
chiral perturbation theory, where logarithms of
the chirality-breaking parameter are encount-
ered."

In Sec. II we present an integral equation for a
scalar amplitude, in a highly truncated four-
dimensional field theory, with super-renormal-
izable cubic couplings. ' Although not particularly
realistic, the example provides a simple setting
for the effects that we wish to discuss: emergence
of coupling-constant logarithms with coefficients
that are perturbatively calculable, and analytic
terms which require nonperturbative information.
The results are relevant to realistic models which
are studied in the following sections. In Sec. IG we
analyze three-dimensional massless spinor elec-
trodynamics (QED),' and in Sec. IV, three-dimen-
sional Yang-Mills theory in interaction with mass-
less fermions, quantum chromodynamics (QCD}.'
The latter, which should be relevant to the physical
quantum-chromodynamical theor'y at the deconfin-
ing phase transition, ' follows the behavior of the
former; but differences are present which reflect
the greater complexity in the infrared of the non-
Abelian interactions.

II. A SIMPLE SCALAR MODEL

Consider the following integral equation (in
Minkowski space)':

E(x)=(0 Trp(x)q (0)jd'z: —,
' y'(a): 0

C

d4x e""&(x)=-
(&'+ te)'

(2.3)

Perturbation theory now corresponds to solving
(2.4) by a power series in x, a procedure which
again yields logarithmic divergences. But the
differential equation which follows from (2.4),

(C= connected part) in a massless, scalar, four-
dimensional field theory with a (gj3.)P' interac-
tion. The truncation consists of ignoring quartic
couplings which are necessary to stabilize the
cubic interaction, dropping tadpoles which give
rise to a mass, and keeping only the lowest-
order ladder in the Bethe-Salpeter kernel. Con-
sequently, (2.1}is a very unrealistic approxima-
tion, but it is useful for us as an example of the
infrared-curing mechanism, which we shall ex- .

plore for realistic models in Secs. III and DI.
Note that the cubic coupling is super-renormal-
izable; g carries dimension of mass. Graphically
(2.1) is represented in Fig. 1.

Equation (2.1) may be easily solved, since it is
of the Polterra type. Upon recognizing that
[(r —p)'+ i&] ' is a Green's function for the
d'Alembertian with respect to p, we may convert
(2.1) to a differential equation by operating with

Equivalently, we may rotate to Euclidean
space, perform the angular integrations in (2.1),
and find a one-variable equation:

f( )=(+J &)fb)+ f —'f()),
0 x

(2.4)

(2)T)4 [(r —p)'+ is, ](r'+ ie)'
f "( ) x (2.5)

Equation (2.1) cannot be solved perturbatively,
because the first iteration is infrared divergent.
With an infrared cutoff in the double propagator,
one gets

+ 0(g'}

has well-behaved solutions. We discuss the two
cases, corresponding to the two signs, separ-
ately.

A. Negative sign

For the negative sign, the solution to (2.5) in-
volves modified Bessel functions and two con-
stants:

f(x) =A2v K,(x2~x+ B2 xI,(2') . (2.6)

Nevertheless, a solution exists for (2.1).
The integral equation is here presented as a

mathematical model for the phenomenon that will
eoneern us in the remainder of the paper. With
the positive sign, it is a highly truncated Bethe-
Salpeter equation for the Fourier transform of
the amplitude

1 + (g~)

FIG. 1. Graphical representation of Eq. (2.1). The x
depicts an insertion of fd z: z Q (z): .
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f(0)=1 . (2.7)

However, since I, grows exponentiall. y at large
x, it would produce a divergence in the integral
equation; hence B=O. Also, A=1, since (2.4)
fixes f at the origin:

The following sum rule, which is easily derived
from (2.4), (2.5), and (2.10), shows this:

y,'(0) =- I -
Jt —' [f(x)- S(I -x)]

p X

Thus the integral equation is solved by = —1+ dx lnx 'x (2.12)

2

=1+ ln
16m p~ 16m p

.+, , (2y- I)+ O(g'),16m'p' (2.8)

In conclusion, let us rewrite the integral equa-
tion in a way that permits a direct perturbative
solution, with one undetermined constant. We
introduce an arbitrary scale in (2.4):

A dy
f(x) =1 —

)' dy f(J)) —x f(—y)
p x

p'-g'/167(' . (2.9)

Indeed the coefficient of the nonanalytic piece,
viz. , of the logarithm in (2.8), is exactly the
same as that of the infrared-divergent logarithm
in (2.2). But the analytic, nonlogarithmic O(g')
contribution to (2.8) cannot be found in (2.2).

We may understand why perturbation theory
cannot yield the nonlogarithmic terms from a fur-
ther examination of the equations. Because the
integral in (2.3) ranges to infinity, a power series,
even when modified by logarithms, cannot be
used for f. However, the differential equation
(2.5) allows an expansion about x=0. The bound-
ary condition at the origin, (2.7), gives rise to a
logarithmic singularity -x lnx; so we try

y(x) =y, (x)+ y, (x) I~,
f,(0)= 1, f,(0) = 0 . (2.10)

The two functions f, , can be expanded in powers
of x. When this expansion is substituted into
(2.5), one finds that f, is completely determined,
but the differential equation leaves f,'(0) arbitrary.
Of the two boundary conditions on f, needed for a
unique solution, one is given at the origin and
can be incorporated in the perturbation series.
The second, which follows from (2.4), is

where y is Euler's constant.
Note that the infrared divergence has disappear-

ed and the infrared cutoff in (2.2) has been re-
placed by the coupling constant

—x —y(y) .dg
(2.13a)

Guided by the 'renormalization-group analysis
of the infrared behavior in the Bloch-Nordsieck
model, ' we want to send A, into the ultraviolet
region (small A). But this would produce ultra-
violet divergences in the last two integrals of
(2.13a). To overcome the problem, we rewrite
(2.13a) as

+ x lnx —x lnA+ —f(I)) (2.13b)

+ x 1 ~

p
(2.14)

With the exception of one constant, the equation
can be solved iteratively by expanding f—1 in
powers of x" and x"lnx.

B. Positive sign

With the positive sign in (2.1), which corres-
ponds to the field-theoretic model, the situation
differs in that both of the differential equation's
solutions, which are now ordinary Bessel func-
tions,

Since A is arbitrary we may now set it to zero,
and derive

(((~) () x(~+ xy =(o) fd',y((()-) -()
p

lim f'(x)=0 .
X& cy

(2.11) y.(x) =Abel« ~, (af «)+B~~~,(2M~), (2.15)

This condition is not at x= 0; it cannot be iricor-
porated in the expansion of f about x=0. In other
words, the perturbative solution leads to a family
parametrized by f', (0), but only for one value of
this constant is (2.11) satisfied. This quantity is
not locally determined at x=0, but requires
knowledge of the complete solution for all x.

oscillate at infinity and lead to a convergent inte-
gral. Thus while the boundary condition at the
origin fixes A at —v/2, B remains undetermined,
since 2v x J,(2)/x) vanishes at the origin, and its
derivative vanishes at infinite x. One must go
outside the truncated Bethe-Salpeter framework
to fix the other constant.
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The sum rule for the unknown quantity

(2.16a)

may be recast in terms of the field-theoretical
amplitude. We return to the original notation
and rewrite (2.16a) as

f', (0)=1+—J (T-0 ) . (2.160)
reg

Here reg indicates that an ultraviolet regulation
[the step function in (2.16a)] should be inserted.
[There is no infrared divergence, since I'(0) =f(~)
= 0.] In Minkowski space (2.16b) is reexpressed by
(2.3) to give

f (0)—I
(2 )'(p'+ )'

=1+ se 10 Te'd'(0) f d'* —', (e*(x) 0
C reg

(2.17)
Evidently, the nonperturbative information,

' needed for the matrix element of (t)(x)(f)(0), is
contained in the matrix element of (P'(0)."

C. Summary

The lessons to be drawn from the above exer-
cise are the following. Infrared divergences
arising from super-renormalizable interactions
can be cured, even when masses are not gener-
ated. It is necessary to allow for coupling-con-
stant logarithms in the perturbative expansion.
The coefficients of these logarithms are found in
perturbation theory; however, there remain
terms, not involving logarithms, that are not com-
putable perturbatively. Rather they are deter-
mined by matrix elements of composite operators.
All this also happens in more realistic theories,
to which we now turn.

6 g(t, x)a' ' = o2 g(t, x'),
6 A'(t, x)a -' =A'(t, x'),
O'A2(f, x)6 -' =-A'(t, x'),
(PA'(f, x)(P ' =A'(f, x'),
%=(x,y), x'=(—x,y) .

Also time inversion T is a symmetry,

1'g(t, x)V' ' = o,g(-t, x),
v'Ao(f, x) V

' =A'(- t, x),
V'X(f, x)f' ' =-X(-t, x) .

(3.3)

(3.4)

It is now easy to check that both the fermion and
gauge-field mass terms are odd under P and T."

To begin our study of the infrared structure,
we compute first-order corrections to the ferm-
ion and gauge-field propagators:

There does not appear in 2 a fermion mass
-mT))g, nor a photon mass, which in three dimen-
sions can have a gauge-invariant form:
—,p, & ~"E &A„. We must ensure that such masses
do not arise in perturbation theory. Note there
is no chiral symmetry for the massless fermions,
since no matrix anticommutes with all the Dirac
(Pauli) matrices.

In three dimensions the situation is somewhat
unexpected and requires discussion. In fact,
neither mass will arise perturbatively, if it is
absent from the Lagrangian, because both violate
P and T invariance. Correspondingly, if one is
inserted in the Lagrangian, the other will be in-
duced by radiative corrections. To see this, let
us first recall that in two spatial dimensions, par-
ity corresponds to inverting one axis, say the x
axis. (Inverting both would be a rotation. ) One
verifies that the theory (3.1) is invariant under the
following parity transformation P:

IH. THREE-DIMENSIONAL SPINOR
ELECTRODYNAMICS

We consider massless fermions g interacting
with a massless Abelian gauge field 4, in three
space-time dimensions (QED),

0„„(0)=fd'xe'e'(0 (Td (x)d„(0)(0),

2(0) fd'xe'"(0
l
Td=(x)0(0) l0) .

The self-energies are defined by

(3.5a)

(3.5b)

2 =iPy" (s„—ieA„)(I)——,
' F""F,„,

E„„=8~4„—8„A.
(3.1) u'„, =if „„[p'-II(p')]+ p„p„, —

p.p„&p', -
(3.6a)

yo g 3 ~1 gal

and g is a two-component spinor.

(3.2)

The square of the coupling constant e has dimen-
sions of mass; the interaction is super-renormal-
izable. In three space-time dimensions the Dirac
matrices can be chosen to be the 2x2 Pauli ma-
trices

(3.6b)

We shall always work in a class of covariant
gauges, parametrized by the constant ~, and we
shall describe our results as gauge invariant
when they are n independent. The lowest-order
formulas for II„„(p)=p„„II(p') and Z(p) are
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rl, „(p)= i-e', try„S(p+k)y, S(k)
d3k

+ O(e'), (3.Va)

d3k
Z(p) =-ie', y'S(p+u)y"D„„(u)

+ O(e'),

where D„„and S are the free propagators,

(3.'Ib) FIG. 2. Potentially infrared-divergent two-loop con-
tribution to gauge-field self-energy.

—z
llv(p) p2+i~ pll (p2+ 'e}2 ppp& t (3.8a)

2
S(p}=—. (3.8b)

The integrals are elementary; no infrared diver-
gences are encountered. In spite of superficial
ultraviolet divergences, they too are absent, by
symmetric integration in the fermion case and

by gauge invariance in the gauge-field case. (In
this simple evaluation no regulators are needed,
but if they are used, one must respect the mass-
lessness of the fermion; otherwise a mass for the
gauge field will be generated. )

The results are

S„„and g. The appropriate formalism is the one
that expresses these objects as functionals of
themselves. This procedure is well known: one
writes the vacuum functional in terms of 5),„and
8, keeping only two-particle-irreducible graphs.
The equations for the propagators follow by de-
manding that the variation of the functional with

respect to the propagators vanishes. "
Of course there is no hope of solving the equa-

tions exactly; we shall be content merely to deter-
mine the O(e') logarithms. To this end we need
only keep truncated equations,

d 3'n '„„(p)=iP,„p' —e', try„g(p+k)y„8(k)

aII(p') =
8

(-p'- ia)"'+O(e'), (3.9a)

(3.9b)

+ —p p„+O(e')
i „,, (3.10a)

The gauge-dependent fermion correction vanishes
in the Landau gauge (n =0); the gauge-invariant
vacuum polarization is positive for spacelike mo-
menta, as it should be.

Next we attempt to calculate O(e') terms. Of
the several relevant graphs, the only ones which
are potentially infrared divergent involve the in-
sertion of one of the above self-energies into an
internal propagator. The problematical graphs
are depicted in Figs. 2 and 3, with wavy lines re-
presenting gauge-field propagators and solid lines
representing fermion propagators. One finds the
insertions into fermion lines [Figs. 2 and 3(i)] to
be innocuous. The reason is that Z(p) for small
p is O(1); the two attached fermion propagators
add a factor 1/p', but the three-dimensional phase
space can overcome this singularity. However,
the fermion bubble in the gauge-field propagator
[Fig. 3 (ii)] produces a divergence: II(p') is O(p);
the two attached photon propagators are O(1/P'),
and the O(1/p') singularity gives rise to a logar-
ithmic divergence in the integral over loop mo-
menta. We conclude that to O(e4), the gauge-field
propagator remains finite, but that of the fermion
acquires a logarithmic divergence, which we now
show is cured by a nonanalytic e41ne2 term.

We need the complete equations that determine

d'Q
3 '(p) = . p+e'—, y"8( p+u) yu„„(a) +O(e') ~„,.

(3.10b)

Here O(e~} „,represents contributions that are
regular to O(e'). The omitted terms do give rise
to logarithms, but only in terms O(e') and higher.
[Observe a significant difference from the toy mo-
del of the previous section: There we find a sing-
le power of the logarithm; now because of nonlin-
earities, the O(e'} logarithm fuels higher logar-
ithms in higher orders. Thus in O(e') there is an
ln'e' term as well as lne'. It is likely that all the
leading logarithms can be explicitly calculated,
but we have not done this here. "] To O(e'), the
insertions into fermion lines are innocuous;
hence, on the right-hand side of (3.10) we may
replace 5 by S, its free-field part. Thus we ar-
rive at the completely simplified equations,

FIG. 3. Potentially infrared-divergent two-loop con-
tributions to fermion self-energy.
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d'4
'„„(p)=fp~I'„, —e'

), try S{p+ ~)y )l~(p')= f &) p(u')&((;~)
0

+ —p„p„+O(e') i„„, (3.11a) =):(p;0)+f &) p()')I)'(p;))-)'((;0)I,
0

+O(e') i„„. (3.11b)

8-'(p) = —. p+e', y'S(p+k)y" S„„(k)
1 2 6 0

Z (p; P, ) =-e', y "S(p + 0)y"P„„
d'k 1

(3.16b)

These are of course trivial to solve. From the
lowest-order result (3.9a), we have an improved
formula for the photon propagator:

2 ~]

&,.(p) = -i&„, p'+f~ —
16 ( p'- f&-)"'

(3.12)

g (xp P
(P'+ f~)'

The spectral function for (3.12) is

2 e 2 1
P(P ) —

8 2
( 2(16)2 ~

(3.13)

(3.14)

Note that as a consequence of I ehmann's the-
orem, it is normalized to unity,

dp p p2 =1.
0

Also its asymptotic form for p. » e2 is

(3.15a)

To evaluate 8 '(p), we merely need to insert
(3.12) into (3.11b). Although the resulting integral
is elementary, we prefer to proceed in a more
deliberate fashion, in order to control the rele-
vant momentum scales. It is useful to represent
the improved photon propagator in a spectral form

()0

2 1
&..(p) =-f&.. di P(P'),

0

(3.16c)

(3.17)

Here f is a dimensionless function, which by vir-
tue of (3.15a) satisfies

dxf(x) =1,
0

(3.18a.')

Once Z(p; p, ) has been determined from (3.16c),
the remaining task is to evaluate the integral in
(3.16b).

An exact integration requires knowledge of
p(p. ') for all p, . Although our expression (3.14)
provides a possible formula for p(p, '), it is in
fact unreliable for p, &e2, since in that region we
may expect higher orders in e' to contribute.
Fortunately, because we are interested only in non-
analytic O(e') terms, involving logarithms of e',
we may approximate (3.16b) in such a way that
only reliable information about P(P,') is used. At
the same time it will become obvious that a de-
termination of the analytic O(e') contribution
needs the exact spectral function, i.e. , the exact
photon propagator. In other words, all orders of
perturbation theory must be summed before the
analytic term is known to O(e4).

Let us begin the evaluation of (3.16b) by leaving
p unspecified, except for its form, which follows
from dimensional analysis,

e 1
p(p ) (3.15b)

while lowest-order perturbation theory [viz. , Eg.
(3.15b)] gives

E(luation (3.13) shows that for the evaluation of
(3.11b) we are instructed to compute a self-mass
Z(p; P, ) with an infrared cutoff P., and to integrate
over the cutoff with the spectral function providing
the relevant measure

(3.16a)

f(o)= 8, . (3.18b)

Next we write Z(p; tu) —Z(p; 0), which is explicitly
determined by (3.16c), in terms of a dimensionless
function AZ,

):(),v)-):(P, ) , . „,»-, . )„,).
(3.19)

With the new notation, (3.16b) becomes

r
QQ e2p e 2

&) p()')I)(p;~)-)'((;0)I=, . „,. &~f(~)» (,,)„, ).
0 -p —$&y

(3.20a)
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We wish to extract the O(e') terms from (3.20a); however, a direct expansion of LZ produces a logarith-
mic divergence, since f(0) does not vanish. To proceed we rewrite the integral in (3.20a) as

e dx x ~ 2 . 1/2 =e 0 dx Z

1 2
+e' dx(f(x) -f(0)]nZ, . „, )

1
(3.20b)

and observe that the last two terms do not give nonanalytic contributions to O(e'). In the first term on the
right-hand side of (3.20b), we change variables, and integrate twice by parts, to find

e' e'f(0)
ef(0) d+ nZ 2 ' 1/2 2 ' 1/2 2

(—P —Zkg X (—P —ZE) 2/ ( P ]6)l/2

e'f(0), e' 8'
(-p —iC)a/2 (-p2 —i6)"' (—p' —ie)

( P2 2~)1/2 e2

( p' re)" ')--
dy lny hZ" y .

~2/r( P $6)l/ 2
(3.20c)

Therefore, (3.16b) evaluates to

pe(p')=z(p;0)+, . If(0)nz'(0)ln, . „, —nz'(0) f —(f(x)-f(0)e(1 —x)]
0

-f(0)nZ'(0)+f(0) f dy(nynZ"(y)I+0(e').
0

(3.20d)

Note that the coefficient of the coupling-constant-dependent logarithm involves the perturbatively deter-
mined quantities f(0) and &Z (0). However, the analytic piece proportional to e includes, in addition to
perturbatively calculable numbers [the last two terms of (3.20d)], an integral over the spectral function,
f(x) for all x, i.e., for all e'. The expression for the fermion propagator which thus follows from Z(f);0)
= 0, nZ((0) =1/67/ is

i 16(—p2 —i&)'/2 48v2(p2 'e) (-p' —ic)'/2 + (3.21)

The coefficient of the logarithm is gauge invariant
(o. independent).

It is important to appreciate that only two prop-
erties of the photon spectral function are needed
to derive (3.21): I ehmann's theorem (3.15a) or
(3.18a), and the asymptotic form (3.15b) or
(3.18b). The former is of course a general re-
sult; the latter is fixed by perturbation theory.
In fact the number I/8)T controls the logarith-
mic infrared' divergence, which is present in
fourth order, before the healing is taken into
account. [In Sec. IV, where we study the non-
Abelian theory, a successful analysis depends
critically on our ability to use only reliable infor-
mation of the type (3.15) or (3.18) for the spectral
function. ]

Terms. that have been dropped in arriving at

c4= —f x — 0 8 1-x
0

1 " 'd
du»u [u' p(u'N.

e dp
(3.22)

The unknown constant c4 satisfies a sum rule
completely analogous to (2.12). Indeed one may
relate it to a matrix element of an operator. We
write

I

(3.21) include the nonlogarithmic O(e') contri-
butions as well as all higher orders; The
O(e ) terms arise from the next-order contri-
butions to Eq. (3.11), i.e., from graphs depicted
in Figs. 4 and 5, from the last two terms in
(3.20d), and from the perturbatively noncalculable
quantity which, from (3.17) and (3.20d), is seen
to involve [e /6v(p2+ie)]c„where
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FIG. 4. Infrared-finite two-loop contributions to
gauge-field self-energy.

FIG. 6. Potentially infrared-divergent three-loop con-
tributions to gauge-invariant fermion bilinears.

OO

c = —, dp p p(p') ~„.„.e p
(3.23a)

(3.23b)

In cont:rast to our toy model, in which the cor-
responding formula (2.17) involves a product of
two fields at the same point, here occurs an op-
erator product extended over x, with the extent
somewhat damped by the (x') ' ' factor. The
reason for the difference can be traced to the dif-
ferent dimensionalities in the two problems, and
to the circumstance that here we need to extract
an effect that arises from second-order pertur-
bation theory, rather than first.

Although the logarithmic effect that we have
exposed is gauge invariant (o.'independent), it
occurs in a gauge-variant quantity —the fermion
propagator. If one examines a gauge-invariant
amplitude, then to leading order the infrared
divergences are absent. Consider, for example,
(0~ T jt (x)I'P(x}g(y)ry(y) ~0), where I' is any 2
&& 2 matrix. Naively one would expect. infrared
divergences at the three-loop O(e') level. There
are two dangerous graphs, depicted in Fig. 6.
For a finite evaluation we may extract the O(e )
terms from the same graphs constructed with the
improved photon propagator (3.12); see Fig. 7,
where the double wavy line depicts the improved
propagator Q „. But an explicit calculation shows
that e'lne' is absent from the sum, even though
each individual graph contains it.

Since the nonperturbative portion of the analytic
O(e ) piece occurs in the same combination with
the lowest-order logarithmic term Icompare

Here, as in (2.16b}, reg indicates that an ultra-
violet regulation is to be inserted. [The regulation
corresponds to the step function in (3.22}.t The
spectral function is given by the absorptive part
of the photon propagator; carrying out the ap-
propriate integrations gives equivalently to (3.23a)

d3
c4 ——

2 2 . OF~" xF 0 0

(3.20d)], it also cancels in the O(e') contribution
to the gauge-invariant amplitude.

One may understand the cancellation of the in-
frared divergence on the basis of guage invari-
ance. The summed graphs of Fig. 7 can also be
represented by

d'ke'
( ), u„„(k)T""(k,p),

where T""(k,p) is a forward Compton amplitude
for the scattering of photons on the "particles"
(I'P. Since T'" is gauge invariant, viz. , trans-
verse to k", the integral is simply

3-ze2, k'+a~ — (-k'-f~)" T' (k P).

The O(e') contribution,

ie4 d'k
16 (2v)' (-k' '~)'"

does not diverge, since by virtue of the trans-
versality condition, T~ vanishes at zero photon
momentum. A higher-order calculation, which
is seen to involve at least four loops, must be
done to exhibit the nonanalytic and nonpertur-
bative contributions to gauge-invariant amplitudes.
We expect that nonanalytic, presumably loga-
rithmic, dependence on e' does set in, since
we know of no reason for T",(k, p) to vanish at
k=O faster than all powers of k.

In summary, three-dimensional massless @ED
cures its perturbative, infrared divergences by
giving rise to coupling-constant logarithms. The
effect is gauge invariant and first occurs in
O(e'), but only to higher order in gauge-invariant
amplitudes. Subdominant terms include non-
logarithmic O(e ) contributions, as well as double,
triple, etc. , logarithms in O(e'), O(e' ), etc.
The coefficient of the leading logarithm is com-
putable in perturbation theory, but the normal-
ization of the logarithm, which affects the non-
logarithmic power term, is not. This nonper-

FIG. 5. Infrared-finite two-loop contributions to ferm-
ion self-energy.

\

FIG. 7. Infrared-finite graphs from which the healed
three-loop contributions to gauge-invariant fermion bi-
linears can be extracted.
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turbative number is related to a matrix element
of a gauge-invariant composite operator. In the
further subdominant terms, new nonperturbative
information is needed for the analytic terms, but
the logarithms are then known. Our results should
be valid in the region where e'/(-p')'~a«1 and

~

In[e'/(-p']'~'
~

» 1, so e'/(-p')'~'In[e'/(-p')' ']
also is small.

IV. THREE-DIMENSIONAL YANG-MILLS THEORY

We now consider a non-Abelian gauge theory
in three-dimensional space-time, governed by
the following QCD Lagrangian:

The gauge group we use is SU(N}; then (4.2c) in
the adjoint representation implies

fabcyr'bc N6aa' (4.2d)

The gauge-fixing and gauge-compensating terms
to be added to the Lagrangian are

(8„A",}'+ay, u, +u, sa(gf"A„M,), (4.3)
2Q

where u is the Faddeev-Popov ghost field.
No mass terms appear in the Lagrangian. Nei-

ther a fermion mass, -mug, nor a gauge-in-
variant gauge-field mass,

Z =i P ya (8 +gA' T') $ ——,
' E '""F' „,

F'„=8 A„' —8„A;+gf' "A„A'„. (4.1)
&Ogy Fa pa g gabcga gb~c

4 ~g y 3 2 0(l g

The representation matrices Ta span the Lie
algebra of the gauge group under which the Fermi
fields transform. The structure constants f'»',
defined by

will be generated in perturbation theory owing to
P and T invariance. "

We shall study the various two-point functions

[Ta Tb] fabcTc (4..2a)

are normalized conventionally: the fundamental
((Iuark) representation matrices Tz satisfy

trT~T~==, 6"b & ag (4.2b)

while for other representations the analogous
trace involves the quadratic Casimir eigenvalue
Q(T) in that representation:

o"ey, (o) = fa x e„"*(o('yy(;(x)e(„'(D))o),

O O(O)= fa'xe"*(D(yx. (x)x,(O)IO),

S(p) = Jtd~xe'~(0~ T'P(x)g(0) ~0) .

(4.4a)

(4.4b)

(4.4c)

T T —— T
a

trT'T'=-C(T)6" (4.2c)

The self-energies are defined by

& '..(P}= P..[P'-11(P')1+ p. p. , —(4.6a)

}
dimension of representation

dimension of group

(4.6b)

(4.6c)

The lowest-order formulas are

II""(P)=P'"II(P )= —ig'N (P+k)'k" G(k)G(P+k)+g'N, [D'"(k) g""D, (k)]-dk

d'p
+

2 (
.I/"""'(p, k) V"88' (p, k)D.,(k) D. , ( p+ k)

d Q-ig'C, tr y'S( p+ k)y"S(k) + 0 (g'), (4.6a)

M(p') = -ig'N
2 b p" k"D„„(p+k)G(k)+O(g ), (4.6b)

dQz(o)=-(o () f,y' o(o oly"D, „(k)ec(eg ): (4.6c)
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Here D„„and S are the free gauge-field and
fermion propagators Eqs. (3.8), G is the free
ghost propagator

()=k.,
and the vertex in (4.6a) is given by

(4.'t)

V2" (p, k) =(p+2k)"g —(k+2p) g ~

+ (P —k)'g" (4 8)

ll (p') = ————(1 + o )' + ~ g'(-p' —2e )'~,
32 64 16

(4.9a)

M(p2) g
( p2 ' )2/2

16 (4.9b)

N
~(p) ——

16 Qzo'g
(

2 )xP- (4.9c)

The fermion result (4.9c) is completely analo-
gous to that of QED; it offers no surprises.

To the numerical constant in the gauge-field
polarization (4.9a), -N/32 comes from the ghost
loop, -(N/64)[8+ (1+n)2] from the gauge-field
loop, and C~/16 from the fermion loop. The
gauge-field and ghost loops contribute with a

C~ is the constant of (4.2c) and Q~ is the quadratic
Casimir eigenvalue, both for the fermions' repre-
sentation. To the gauge-field self-energy (4.6a),
the first contribution comes from the ghost loop,
the second, from the gauge-field contact term,
the third, from the gauge-field bubble, and the
fourth, from the fermion loop.

A lengthy but straightforward calculation yields

sign opposite to that of the fermions, a circum-
stance familiar from the four-dimensional calcu-
lation. Consequently, the vacuum polarization is
negative for spacelike momenta, when C~ is not
too large. The gauge dependence (o. dependence)
is to be expected, since we are calculating a
gauge-variant quantity.

The ghost self-mass (4.9b) also is negative for
spacelike momenta; moreover it has the surpris-
ing feature that it is unexpectedly gauge invariant
(n independent).

Observe that the negative self-masses produce
a pole in the gauge and ghost propagators at
spacelike momenta. Admittedly, the location of
the pole is at g2/(-P2)'~2 -O(1), where we no longer
rely on our approximate calculation. Neverthe-
less, it is puzzling to encounter this further in-
frared singularity, which is the three-dimensional
residue of asymptotic freedom, and presumably
signals the infrared instability of the theory.

In the next order, infrared divergences are en-
countered. Of the many fourth-order graphs, the
potentially dangerous ones involve inserting the
above self-energies into propagators. They are
depicted in Figs. 8, 9, and 10, where wiggly lines
are gauge fields; dashed ones, ghosts; solid ones,
fermions. Just as in QED, insertions in fermion
lines are infrared finite [Figs. 8 and 10(v)]. Also
for the ghost insertions, the momentum in the
vertex decreases the infrared singularity, so they
too are innocuous [Figs. 8(ix) and 9(v)]. To heal
the infrared singularity arising from the gauge-
field insertions [Figs. 8(i)-8(viii), 9(i)-9(iv),
and. 10(i)-(iv)], we consider the complete equa-
tions for the propagators and truncate them so
that only the O(g'4) logarithms survive. The ana-
logs of (3.11) now are

dk dk~ '.„(P)= a'„„P' g'N, -(P+ k)"k"G(k)G(P+ k) -2g'N, [u'"(k) —g""n.(k)]

'N d'k
+

2
)2V2" '(P, k)V'8t|'(P, k)I) 2(k)5),.2.(P+ k)

-g'Cz» try "S(p+k) y"S(k)+ O(g') I2e2,
d'k

(4.10a)

9 '(p)=ip' -g'N 2p~k"~„„(p+k)G(k)+ O(g') („2, (4.10b)

8 '(P)=-,.P' g'e. „.~"S(p.k)~"~„„(k).O(g')I....1, d'k
(4.10c)

The gauge-field propagator I)„„is determined by (4.10a), and then is used in evaluating 9 ' and 8 '. How-
ever, even in a truncated approximation, Eq. (4.10a) remains nonlinear and impossible to solve exactly.
But for our purposes it is sufficient to replace Q,„on the right-hand side by the improved formula arising
from the lowest-order approximation to ll, Eq. (4.9a),
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(iv)

(v) (vi) (vii) (viii)
(iv) (v)

(ix) (x)

FIG. 9. Potentially infrared-divergent two-loop con-
tributions to ghost self-energy.

FIG. S. Potentially infrared-divergent two-loop con-
tributions to gauge-field self-energy.

5)~„(p)= -zp~„[p + zf -g c(-p -$f) ] -iQ

5N N 2 Cgc = ————(1+o. )2+ —.
32 64 16 '

(4.11)

We would like to use (4.11) to evaluate (4.10), but if we accept (4.11) for a]]. momenta, we encounter the
problem of spacelike singularities. Fortunately, our careful discussion of the Abelian case indicates how

to proceed.
We replace the unphysical formula (4.11) by a spectral representation

0

For the spectral function we assume Lehmann's theorem

f d~ p(~')=1.
0

Also we take the asymptote for large p',

p(~') -,„.,

(4.12)

(4.13a)

(4.13b)

where the coefficient is set by lowest-order perturbation theory, so that the perturbative logarithmic di-
vergence is reproduced if this formula is used all the way to p. = 0. Just as in the electromagnetic case,
Eqs. (4.13) are sufficient to determine the O(g~) nonanalytic pieces. After an extraordinarily lengthy cal-
culation we find

(4.14a)

2

3-1(p) 1 g 1+ g +QE g Qrc l g O~
16( p2 f g)ll 3272(p2+ 2&) (-p2 -zt)&

(4.14b)

(4.14c)

Everything is gauge dependent. In the gauge-
field propagator, the further a dependence of the
logarithm's coefficient (beyond. that contained in c)
arises when one of the two gauge-field propagators
in the gauge-field loop contributes its transverse
part, while the other gives its o'-dependent, long-
itudinal part. The regular O(g4) contributions
are not perturbatively computable.

One may also consider gauge-invariant, group-
singlet, fermion bilinears. ' The dangerous graphs

(iv) (v)

FIG. 10. Potentially infrared-divergent two-loop con-
tributions to fermion self-energy.
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are the same as in QED, Fig. 6, and are healed
as in Fig. 7. As a consequence the three-loop
O(g') infrared divergences as well as the nonper-
turbative analytic pieces again cancel, "for the
same reason, and one must proceed to a higher
order to encounter the coupling-constant nonan-
alytic ity.

In summary, to the order here investigated, the
perturbative non-Abelian theory behaves similarly
to the Abelian one, except for a greater gauge de-
pendence and a characteristic reversal of signs.

V. CONCLUSION

It is amply clear that perturbative infrared di-
vergences arising from super-renormalizable
couplings in massless theories are a defect of the
perturbation theory and are absent in the exact so-
lution. The reason why the spurious singularities
occur is that amplitudes are not analytic in the
coupling constant; logarithmic singularities are
present, which lead to logarithmic divergences
when a power series is forced. Upon taking ac-
count of this phenomenon by expanding in powers
of coupling-constant logarithms, one gets a, com-
pletely finite perturbative expansion which, how-
ever, does not determine the analytic terms. They
are fixed by nonperturbative values of matrix ele-
ments of various operators, and then the logarith-
mic coefficients can be calculated. The leading
logarithms do not need the nonperturbative infor-
mation; they are just the perturbative infrared
divergences, with the coupling constant providing
an infrared cutoff.

All the above is well illustrated in our toy model
based on a four-dimensional scalar theory with
cubic self-couplings. Physical theories in which
this phenomenon is observed include three-dimeo. -
sional Abelian (QED) and non-Abelian (QCD)
gauge models, with massless fields. Our calcula-
tions produce no surprises in QED, while QCD
acquires (presumably spurious) poles at spacelike
momenta.

Much further investigation can be carried out.
It should be possible to sum all the leading log-

I

arithms. " An effective way of extracting the non-
analytic behavior from gauge-invariant ampli-
tudes should be developed. Since high orders of
perturbation theory are involved, direct calcula-
tion becomes prohibitively lengthy. Finally a
better understanding of the analytic terms, with
nonperturbative coefficients, is needed.

The investigation of the gauge models has been
confined to perturbation theory, which is limited
by the requirement [e'/(-p')'+]~ ln[e'/(-p')'+]j-1.
But one ma.y inquire about the nonperturbative
structure in the infrared region p'- 0. Presum-
ably the theories confine; in the classical approxi-
mation they do so with a logarithmic potential.
However, in lowest-order perturbation theory for
QED we find that the p= 0 singularity in the gauge-
field propagator is weakened: the inverse prop-
agator goes as e'(-p')'~' for small p, and screen-
ing sets in. How all the higher orders, which on
dimensional grounds add a term proportional to
e' times a function of e'/P, modify this picture
remains an open question. Especially intriguing
is the difference observed between the Abelian
and non-Abelian theories: the latter develop
spacelike singularities. We do not know whether
they are an annoyance of improper extrapolation
and therefore unreliable, or if they are providing
the first signal for instability in the perturbative
theory.

We hope our considerations are applicable to
physical four-dimensional QCD at finite tempera-
tures in the vicinity of its phase transitions.

Note Added in Proof. The leading coupling-con-
stant logarithms have now been summed to all
orders, in the Abelian gauge theory [S. Templeton,
MIT report (unpublished)]. Results for the fer-
mion propagator and vacuum polarization tensor
are as follows.

The exact functional integrals for these two ampli-
tudes (in Euclidean space), when evaluated in an
approximation which correctly summarizes the
leading coupling-constant logarithms, lead to a
representation in terms of ordinary integrals
(viz. position-dependent fields become constant
fields in this study of the infrared region):

}}}))Jd'Ae "+}))=+)14}' fd'Ae " ",

}}"")P)=e'fd'Ae "",try +}))+ l))d) )'y'())+)&4) ' d'Ae" +,d'k
v ' - 3 -A2 2

(2m)'

e4
X' = 1np/e'& 0.

48m'

A formal expansion of the above in powers of X

gives the e4lne2 series encountered in perturba-
tion theory. (In the vacuum polarization tensor

-all terms beyond the first integrate to zero, since
the leading coupling-constant logarithms are ab-
sent. ) Evaluation of the integrals yields
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powers of X=(e'/v 48m) in'i'p/e', which do not
occur in perturbation theory. Of course the re-
duction of the exact functional integrals to the
ordinary integrals is justified by perturbation
theory. Hence the significance of the nonpertur-
bative contributions remains unclear.

The results possess unexpected features. For the
fermion propagator the first two terms in the
brackets, when expanded for small X in an asymp-
totic series, reproduce the Borel-summable per-
turbative series involving even powers of A.. [The
first two contributions to that series agree with
(3.21).] However, the last term possesses an es-
sential singularity at A. =0 and is not seen in per-
turbation theory. For the vacuum polarization
tensor, only the first term in the brackets re-
produces the perturbative result (3.9a}. The re-
mainder is entirely nonperturbative; an asymp-
totic expansion for small A. yields a series in odd
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