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It is shown that for all definitions of coupling constants any analytic continuation in the coupling parameter of the
Green s functions of quantum chromodynamics is limited to a horn-shaped domain with zero opening angle. This
extends a result of 't Hooft's obtained for one specific choice of coupling parameter to all possible choices. For some
choices of coupling parameter, it is also shown that the renormalization group itself leads to an analytic continuation

. in the coupling constant for the Green's functions regular in the above domain.

I. INTRODUCTiON

The Green's functions of a quantum field theory
are known to have a singularity at the origin in
the coupling-constant plane which leads to the
divergence of the perturbation series. It is im-
portant to investigate the analytic properties in
the coupling constant in the neighborhood of the
origin. This is essential for establishing sum-
mability methods' and it also has other appli-
cations. '

For a zero-mass field theory it has been known
that analyticity in coupling is related to analyticity
in momentum via the renormalization-group equa-
tions. ' This relation can be made more precise
by exploiting the freedom that one has in choosing
the definition of the coupling parameter. 't Hooft
introduced a definition of the coupling parameter
such that the corresponding Gell-Mann-Low
function has only two terms in its power-series
expansion. Using this ingenious definition he
showed that the renormalization-group equations
imply that analytic continuation in the new cou-
pling in the positive neighborhood of the origin is
limited to a wedge bisected by the real axis and
bounded above and below by circles which are
tangent to the real axis at the origin. ' This was
done for quantum chromodynamics (QCD) hut
similar results could hold for massless ($ ),
theory and massless QZD.

In this paper we shall extend 't Hooft's result
to all definitions of the coupling. The main output
is a theorem showing that if any analytic con-
tinuation in the coupling constant exists the domain
of analyticity is limited to a wedge as above
regardless of the coupling definition used. The
main tool in proving this theorem, is the explicit
expression for the 't Hooft transformation ob-
tained by McBryan and the author. '

While our main theorem indicates the severe
restrictions placed by the renormalization group
on analyticity in coupling it does not directly
address the question of whether such analytic

properties can be established. This is discussed
in the last section where we show that for at least
two definitions of the coupling parameter the re-
normalization-group equations do give us an
analytic continuation into the wedge. We also show
that this does not hold for general couplings without
additional input beyond that used in this paper.

The results of this paper were established only
for massless field theories or more specifically
those theories which have exact renormalization-
group equations with just one mass parameter.
We also restrict ourselves to four dimensions.
For massive field theories in two or three dimen-
sions [(P'), and (&f&'), theories] much stronger an-
alyticity results have been established by quite
different methods. ' For massive field theories
in four dimensions the renormalization-group
equations are more complicated and our method
does not apply even though the results might still
be true, see footnote 24 of Ref. 4.

II. LIMITS ON COUPLING-CONSTANT ANALYTICITY

'The input of this paper consists of two general
features of quantum field theories, namely, the
renormalization-group equations and the standard
momentum-plane analyticity. We shall present
our results for the case of massless QCD (or
pure Yang-Mills) field theories. At a later stage
we will indicate the necessary modifications for
our theorem to apply for massless (rf&'), theory
or massless QED. In all cases we restrict our-
selves to four dimensions.

We consider the Green's functions of the theory
and limit our discussion only to two-point func-
tions, G(p', a, p, ). Here a=g'/4m and g is the
renormalized coupling constant; p, is the re-
normalization point, and p is Euclidean, p (O.

hese functions satisfy a homogeneous renormal-
ization- group equation:

—P(a) +2 —2y(a) G(ap; a, p) =O. (A)
8 9
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The Gell-Mann-Low function, P(n), has the prop-
erty

P(n) =a, n'+a, n'+O(a'), a, (0
and the function y behaves as

y(n) = b, n+O(n').

The solution of the differential equation (A) is
given by

G(x'p', a, i(,)

n(t, n) y(x)=2 'G(p*;a(t, a), p)exp) 2 dx), (2)

The theorem is true regardless of the renor-
malization scheme used in defining n.

Proof: The strategy of the proof is to assume
analyticity in a domain larger than 8 and show
that it leads to a contradiction with (A) and/or (B).

Let us assume D(p'; a, y, ), P(n), y(a) are all
analytic in a sector 8, with opening angle a:

Rea&0;

We proceed. to show that this assumption leads to
a contradiction. To achieve that we first make a
change of variables, "

where

=P(a), a(0, a) = n, (4)
where we define n~ by

n„=G„(n-) = a+0(a')

and t —= ink.
Our second input is the analyticity in p' for fixed

n and p, . In standard field t:heories this is well
known for a two-point function. In QCD compli-
cations might arise because of confinement or
gauge dependence. To avoid these we take G, as
in Ref. 4, to be the Fourier transform of the time-
ordered product of two quark bilinears $(0)g(0)
and P(x)g(x) corresponding to a physical channel.
Our input is then the following:

G(p') is analytic in the p' plane cut along the
positive real axis with multiparticle singularities
extending to infinity as

p'-+ (B)
As we shall note below the presence of actual

singularities, not just a branch cut, for arbitrarily
large but positive values of P', is important for
the proof of our theorem.

Finally, it is convenient to factor out a (P') '
from G and write

G(p', a, i)=-

where we now have from Eq. (3)

D(X*p'; a, 2) =D(p*; a(ta), e)exp 2 , dx) .
n x

Our main theorem can now be stated as follows:
Theorem 1: Given (A) and (B) then if

D(p', n, p), P(a), and y(n) have an analytic con-
tinuation in n in the neighborhood of n =0, Re+
+0, the maximal domain of analyticity is a wedge
8,

8= & & xo~ Re&&0~ Im& & . 7

P„(a„)-=P(a)
d

" . (10)

As in Ref. 5. We choose G~ such that

Ps(as) = a2 nz'+ as n

with a, and a, being the same coefficients as in
Eq. (1).

To find such a function Gs(a) one has to solve
the differential equation

dG„ 2 3=
p( )

«2Gz +&SGs )

with (9) as a boundary condition for n-0. The
solution is'

1
G„(a) G, (n)

a, 1 b 1
dx ' —,+ ———-b inn, (13)

P(x) x' x a

Without loss of generality we choose t, such that
r~ & 9).

(b) Given our analyticity assumption, G„(n) is
also analytic for n(=- S,. To see this we write

with b —= a,/a„b &0 in QCD with less than eight
Qavors.

The following properties of G„(n) can easily be
established:

(a) GR(n) exists and has a unique inverse dG~/
d»0, in the interval 0~ n «„where n, is
defined by

a, 1 b 1
b lnb-=dx ', —,+ —— —bin a, .

P x x x a,
(14)
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F(n) =—b ln + b —
G

({).)
1 1 From the conformal property of G~(n) it fol-

lows that we can find a sector in the nR plane,

a, 1 b 1
d~ ' —,+ ————bin~..p(x) x' x

r, (o,) =-y(o') =r(G, '(a„)) (16)

D„(p', o'„p)=-D(P'; {)', p) =D(P', G '(o(,), p),

where a =Gal '(o.„) and the inverse exists and is
unique and analytic for n(= S,. One can now write
a new renormalization-group equation in terms
of nR and solve it to get

DZ(~ & '~d{,

B {'eP(Z, e=z)„, p)exp 2
J dx), (18)p„x

where P~(x) =a,x'+a, x' and

dNR
=a2 QR +a3 AR

~z(0p ~s) = ~z.

F(a) is analytic for {).(= S,. This is so since p(o'. )
is by assumption analytic for n cS,. Further-
more, it is easy to check that the inn term in
(15) does not lead to a singularity since it is
canceled out by splitting the integral in (15) as

f, = fOo+ J with a, real
We have here assumed that P({).') has no zero

for ne S,. This clearly does not lead to a loss
of generality, since if we have a finite number of
zeros in S, we can always choose a new and smaller
domain S... e'&c, r, ,&r„such that p has no zeros
for n(=S,. The only case we cannot handle is an
infinite set of zeros which accumulate at the origin
and lie in S. But this does not affect our theorem
since we are asserting that the largest possible
domain is 8 while the actual domain could very
well be much smaller.

Finally in (15), In[G„'({).) + b] has a branch point
at a= a., where G„(c{,) =-1/b. Again we can
choose x, & &, to locate this branch point outside
S,. It therefore follows that G„(o.') is analytic
for n(=-S, .

(c) dG~/d{). w 0, for {){(= S, and hence GR is con-
formal for o. (= S, (i.e., we can choose a and r,
small enough but finite such that this is true).
This follows easily from (12) and (9). Thus the

mapping nR —n is one to one for ac S, and n
—= G„'(n~) is an analytic function of o.z.

After changing variables from n to &R we have

with e'&0 and

(20)

such that Dz(p; c{z, i{,), yz({)(z), and pz(nz) are
all analytic for nR(= S,. This all is a consequence
of the assumption in the proof and the nature of
the 't Hooft transformation. To show that this
leads to a contradiction we write the solution of.
E{l. (19) as

1 1
bin +b — = a, t +C( o~),

R R

C ({).z) = b ln + b
1 1

&R ~R

TakingP' fixed andP'&0, we set

a„(t,a„):—z, t~ ~ t ~ t2,

(21)

(22)

where & is real and &, ~ & ~ &2. %e choose t, and
t2 large enough so that both z„~2(=S, . Then we
rewrite E{l.(18) as

'y x)p (e' "'p* e p)=D (p' zp)exp p ™. dx)R & Rt R p (x)eR R

&ezp 2 R dx, 23
d

where

1 i c(~ )T(z) =——bin -+b
a2 L 8 8 a2

(24)

ImT(z) =+(2n+1)-, n=0, 1,2, ... . (25)

For small enough s- these curves, as can be seen
from (24), are approximately circles tangent to
the origin and will always have a segment that
lies inside S,~. For small tzt we have

T(z) =——1
a28

At this stage E{I.(23) holds for real z in the in-
terval E, - ~ - z2 where by construction ~y & p,
and z2 &x,, Now we analytically continue both
sides in s for fixed nR and p'. The first term
on the right is analytic for z (= S, , the second term
does not depend on z, and the third term is also
analytic for s (= S,, This is true by hypothesis.
However, for the left-hand side T(z) is analytic
for z (= S, but the left-hand side by (8) is singular
when exp[2T(z)]P' be'comes timelike, i.e., on

the curves given by
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For n=0 we get, from (25),

g= 1 ~ 00

82 T„+f-

or Ims =—+(va, /2) (Re&)' as Is I
-0. Thus we have

a contradiction no matter how small we take &

and &' to be. The only way to avoid the contra-
diction is to choose the boundary of our domain
to be the circle for the n =0 case.

We conclude this section with a few relevant
remarks.

(1) In generalizing this theorem to massless
(P4), theory or massless QED one first has to
consider the infrared limit t--~. The renor-
malization group then maps the low-mass end
of the P2& 0 cut into circles that will lie inside
S,. However, in this case the branch cut in the
neighborhood of P' =0 will have no other multi-
particle singularities on it. Such cuts can be
moved, and the validity of theorem 1 in mass-
less ($4}4 theory or massless QED will depend
on whether we can or cannot deform the cut so
it lies outside S,. In QCD we cannot do that be-
cause there are actual singularities correspond-
ing to multiparticle states that lie on the circles
in the neighborhood of z = 0, see Ref. 4.

(2) it is crucial for our theorem that we are
dealing with four dimensions. In lower dimen-
sion, (p ), or (p')„p(g) =g+0(g ), and the exis-
tence of the g' term makes a difference. Fur
thermore, more powerful methods lead to stronger
results in these cases.'

(3) As stressed above we have treated only
massless field theories. These could include
theories having particles with spontaneously
generated mass. All we need are homogeneous
renormalization-group equations with one mass
parameter. Our method does not hold for massive
field theories although the results could still
be true.

(4) Strong Borel summability is ruled out when-
ever (A) and (B) are true.

HI. ANALYTIC CONTINUATION FOR
't HOOFT COUPLINGS

In Sec. II we showed that the renormalization
group puts a restriction on any analytic continua-
tion in the coupling constant regardless of the
scheme used in defining the coupling. The ques-
tion naturally arises as to whether one can actually
perform such a continuation into the wedge 5 de-
fined in Eq. (7), using the. inputs (A) and (B). It
is clear that using our broad definition of, coup-
ling-parameter transformations we can always
choose an n' such that at least P'(n') has a singu-

larity in S. Thus the analytic continuation into Q

can only be done at best for some restricted
choices of n unless one is given additional infor-
mation.

To perform the continuation we start with any
standard ~ and transform to a new coupling para-
meter &~ defined by

ns= Gs-(n) =n+0(n'),

and we choose

dGs a~ y(n)
( )

dn b, p(n)

(26)

(27)

where a, and b, are given in Eqs. (1) and (2), and

p, (n, )-=p(n)
d

' (28)

This transformation exists and is given by

Ge(ee)=a exp ~ d»
p

— ' I.a~ " y(x)
5, 0 px ax (29)

It has a unique inverse in the interval 0& z c&*,
where n* is the first zero of y(n) or p(n), which-
ever is smaller. Q~

' is singular at ~ =~*.
The advantage of this new variable can be seen

when we calculate the new renormalization-group
functions Ps(ns) and ys(ns). One gets

rs«s) -=r(Gs '(ns})=r«}
and from (28)

(30)

Ps(ns} =
h

y(n)Gs'In) =
y

nsys(ns).
1 1

(31)

Thus with. this new variable we have a situation
reminiscent of the case of the photon propagator
in QED where P and y differ only by a factor n.
In this section we take D to represent the trans-
verse gluon propagator in the Landau gauge, then
our new renormalization-group equation is given
by

9 ~a 9
n s ys (n s } —2 y(n s ) Ds (xp; n s, g) = 0,

where

(32)

Ds (Pi ns» p }=D(Pi n~ V)~ .
— (33)

With the exception of the factor a,/5, and the factor
2, Eq. (32) is identical in form with the Callan-
Symanzik equation for the photon propagator.

The solution of Eq. (32) is now

n t n, ) "~~"
D(~'P'; ns, I) =D(P' ns(f, ns), u)

S

(34)
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where again

CRs 0
&s ys+~s} c's( ~s) =o's

dt b,
(35)

ns(t, ns) =z, t, &t& t,. (38)

From Eq. (36) we get

25q/tSq

D(-e 'rs"'p', ns, p, ) = —,z,&z&g„(39)
s

where

J„ps(x) a, „,xy, (x)

Up to this point all quantities in (39) and (40} are
real. The analytic continuation in z can be easily
performed in (39). The right-hand side is analytic
except for a cut which we choose on the negative
real axis.

Using (B) we see that, excluding the negative
real axis then in the neighborhood of z = 0, Ts(Z)
must have singularities along the curves

ImTs(z) =+(2n 1)+—, n= 0, 1,2, . . . .

For small enough z

(41)

and g is taken large enough so that o. = Gs '(ns) & n*.
Using a subtraction procedure where D is unity

at p'= —g', we simplify (34) further to

n(tn) "&"
D( e2t~2. + ~) — s s R (36)

ns

The running coupling constant in the ~s variable
is then simply related to the gluon propagator in
the Landau gauge,

ns(t, ns) =ms[&( e"-p'; n„p)]""~.

This again is analogous to the case of QED where
indeed we have the special case (a,/2b, }=1.

We choose large real t, and g» t, & t, & 0, and set

(43)

n, =H(ns) =ns+O(ns'),

where

(44)

da
}(a,H'+a, H'). (45)

Following arguments exactly analogous to those
of Sec. II, Eqs. (12)-(15), it is easy to see that
since Ps (z) is analytic for z v S, H(z) is analytic
there and also conformal such that H '(z) is ana-
lytic in a smaller but similar wedge p'. But we
have the relation

and hence ys(z) is analytic in z for z z 8 except
at the zeros of dT~/dz. The same is obviously
true of Ps(z). Finally, from Eq. (34) we have
fOr Zg&Z&Z»

f z ' i~'2
Ds(e s p ~s p)=Ds(p g p)

i

&&s

(34')

This gives an analytic continuation of Ds (p;z, p, )

for all g c- S (with the above exceptions).
In summary using the variable zs does indeed

give us an analytic continuation into S for Ds(p;
z, p), y, (Z), P, (z)

The question is now can this be true for general
choices of e? Clearly with the kind of general
arguments we are using'in this paper the answer
is no. For we can always define an no and a P
such that by construction Po(g) has a singularity
for z ~ S. The only fixed property of p is the in-
variance of the first two coefficients of the power-
series expansion.

However, for specific choices of coupling one
can get analyticity in some Q', for example the
't Hooft coupling o.s, of Sec. II where Ps(~„)
—=a, u&'+a, nz'. We consider the transformation
zs-n~ given by

Ts(z) -=—
7

Q2z
yg(z) = ys (H '(-z)) (46)

and (41) for n = 0 leads us to the same boundary
of analyticity a,s in the previous section.

In addition, however, Ts(z) could have singu-
larities at those points z, which correspond to
zeros of dD/dp' in the p' plane, i.e.,

dD

dP p2 22's 4'0)
(42}

With the exception of such points it is clear
that Eq. (39}provides us with an analytic continu-
ation of Ts (z) such that it is regular for g c-S
with S defined as in Eq. (7).

From (40) we have

Hence, ys(z) is analytic in some similar wedge
8", 8 c:8, since bothy'"' and ys are analytic.
Furthermore, ps(z} =a, z'+a, zs and therefore
trivially analytic for z ~ 8". The renormalization
group now guarantees us that Ds(p'; z, p, ) is ana-
lytic for z(= Q".

It is clear that in general without additional in-
put we cannot carry out the argument that took
us from ns to n„ to go from Qts to any o. . The
argument is crucially dependent on the simple
form of P„(c.„}.One can consider the transfor-
mation ns -~o where the relevant Po is chosen,
for examPle, as Po =o.o4(5'-o.@')' '+a, n'+a, o.o',
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with 5 as small as one wishes. This leads to a
Po {g)which has a singularity for g ~ g and gives
us a counterexamp)e to a generalization of the
argument for n„ to all ~, without new information
not included in this paper.
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