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Within the framework of an Abelian U(1) gauge theory, with N massive fermions, we develop the formalism of the

1/N expansion and compute explicitly the P function of the on-shell renormalization scheme up to first nontrivial

order. Sorel summability is discussed.

I. INTRODUCTION

In this paper the underlying field theory will be
an Abelian gauge field theory with N massive
fermions. All of the fermions will be assumed to
have the same mass m and charge e. We will
choose to renormalize our theory according to the
traditional on-shell renormalization scheme: The
coupling constant o. will be the usual fine-struc-
ture constant and the renormalized mass will be
defined as the position of the pole of the total
propagator. (For a review of renormalization
schemes. in QED, see Ref. 1.) We will develop a
perturbative approach according to increasing
powers of 1/N. One could call such an approach a
"fermionic expansion" or "flavor expansion. " I et
us emphasize the fact that thi. s expansion should
not be confused with the "1/N expansion" used in
non-Abelian gauge theory where N refers to the
gauge group. " In Sec. II we will explain the basic
features of the method, using the photon propaga-
tor as an example. Then, after introducing the
usual Callan-Symanzik P function, we will show in
Sec. III how to develop it according to the powers
of 1/N The fir.st term of the expansion will be
obtained in a straightforward manner, but the
computation of the next term will involve an in-
finite number of Feynman diagrams. To tackle
these diagrams, we will use the method introduced
by deRafael and Rosner that is reviewed in Sec.
IV. As a by-product we will be able to exhibit
analytically the contribution of diagrams of Fig.
l(a) to any finite order in a, and will recover, of
course, the results of Refs. 4 and 5.

In Sec. V we recall the notion of Borel summa-
bility and discuss the nature of the series whose
formal sum is P, (K), with

d=d, ().d, (»)-'.o(—',
) (»= ").

Actually, we will find that P, is given formally by
a non-Borel-summabl. e series. In Sec. VI we will
discuss the possible generalization of this ap-
proach to the case of a non-Abelian gauge group.

In this article we have deliberately avoided the

use of functional integration to generate the j./N
expansion. This could, of course, have been done,
but, for technical as well as "pedagogical" rea-
sons, we have decided to use a more pedestrian
(and diagrammatic) approach.

II. THE FERMIONIC EXPANSION

In order to explain the basic idea leading- to the
concept of fermionic expansion, we will use the
photon propagator as an example. The first dia-
gram shown below is of order nN because there
are actually N diagrams of this type with the same
value. I et us define K= o(N/w and keep K as a
constant. Then

(f', )~ is of order aN/s =» x i,

(f, ) ~ is of order (a/s)'N=»' x 1/N,

(f,) ~ is of order (a/s)'N=tf' x 1/N'

(f,) + is of order (o./n)'N'=K'x 1/N,

p, ) is of order (o(/v)'N' =K' x 1/N'.

Notice that the diagrams (j,) and (j4) are of the
same order in n, but are not of the same order in
I/N.

We will be mainly interested in the photon pro-
per self-energy ilI"' since one can recover the
complete propagator -iD„using the relation
D =Do+D'IID (where —iDO is the free propagator).
The leading term in the fermionic expansion of. II
is obviously given by diagram (i,). It is easily
seen that, of all the diagrams of a given order
o. , the ones contributing to leading order in 1/N
are those which maximize the number of fermionic
loops, e.g. , diagiams of Fig. 1(a). Notice that
diagrams of Fig. 1(b) would also be of order 1/N
but they are strictly equal to zero because of the
Furry theorem. The fermionic expansion of II
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(a)

(b)

(c) A

(a) e ~ g)+ +Q„+'g)+ +Q
+ + + ' + e ~ ~

(e)

{f) WW + P 4 + MM +, ~ ~

(g) +

could be applied as well to another Green's func-
tion and S-matrix elements. For example, study-
ing the fermionic proper propagator, the leading
term (of order 1) is given by Fig. 1(e) and the next
leading term (of order 1/N) is given by the infinite
sum of diagrams in Fig. 1(f).

III. THE CALLAN-SYMANZIK P FUNCTION
IN THE FERMIONIC EXPANSION

I et us recall some basic definitions and results.
The renormalized photon proper self-energy ten-
sor ilia"(q) has the structure

ilig"(q) = —i(g""q'-q "q")II„(q',m', n). (3.1)

The general expression for the renormalized pho-
ton propagator is

. / „„q"q "~, ndts(q'/m', n)
2I( q )I

P
(h) xvO~. -vC&t = - i V+y (p loops)

+ n(& —1)i
Q'

where & is the gauge parameter. Moreover,

d = and D""=D "'+D " II D".1
1+II~ pa ~

(3.2)

(3.3)

me

~ (p-I)
~ ry They are p-r internal loops

If Z, denotes the renormaliz. ation constant of the
photon field, we have the following relations be-
tween the bare and renormalized quantities:

(3.4)

(3.5)

1
(1+II) =—(1+litt),

Z3

II (q', m') = lI(A', q', m') -II(A', 0, m').

(3.6)

(3.7)

&s =1 —II(A', q'=0, m', n), where A is a Uytt' cutoff.
Applying the operation md/dm to both sides of
(3.6), one obtains the Cailan-Symanzik etIua-
tion6 1P

e f e
m e +t3(n) I

n
e 11 [I + 11 (q- /m n)]]

where

=F(q'/m'r n), (3.8)

FIG. 1. Feynman diagrams referred to in the text. P( )=g d
'. (3.9)

has the following structure:

II=A. +ax —+C x —,+O —~.N N Ni'
The diagrams contributing to A and B are dis-
played in Figs. 1(c) and 1(d). The previous method

By direct application of Weinberg's theorem on
high-energy behavior, ' it can be shown that
E(qs/me, n) vanishes at each order of perturbation
theory when -q /m' - ~. Then, by denoting as 1I„"

the asymptotic self-energy part of the photon
propagator, i.e. , deleting all terms which go to

/
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zero when q'- ~, one obtains

8 t'~8
+P(n) I

-1 [I+ lis(q'/rn', n)] =0 .(3.10)
em (B~

In the case of a theory with N fermions of the
same mass m, one obviously has the same equa-
tion, but now P and II„"will depend on N. Accord-
ing to our general philosophy, we will develop P
in powers of 1/N, viz. ,

m (e/~m) nII~
P(n) =1 2(e/s )H-, (4.1)

not repeat all the details of this method since
they can be found elsewhere. However, for the
sake of completeness, we will sketch the various
steps of the procedure.

SteP 2. The Callan-Symanzik equation (3.10)
leads to

1 1
P =P, (K) +P2(h) x —+0 —

2 (3.11)
where II& is defined by B&= nII~.

SteP Z. The numerator of (4.1) may be sepa-
rated into two terms:

Knowledge of P, is directly linked to the value
of the diagram in Fig. 1(c). It is a well-known
fact that, for V=lt e mt=ttt =ttte

P(n)=pl —
I P P = ~ ~ (3.13)

Henceforth, for N arbitrary one will obtain

2 6
P (K) = —X —X N= 3K.

3 n
(3.14)

2)
D„"(q', nt') =—[s, + &, In(-q'/~')] +Ol-

w
' ' ( v

(3.12)

with a, = —'and 5, =--,'. Then using (3.10) and the1 9
usual development for ~V=1, one finds

m; g ' e
ttt '=ttt = ttt 7

where the external and internal masses (m, , m;)
are defined in the following way. Assume that all
internal photon self-energy parts in a vacuum pol-
arization diagram are shrunk down to points. The
mass in any remaining fermion loop will be called
external; all other fermion masses in the internal
diagram will be called internal. Then one can
prove, using the Adler-Bardeen theorem, " that
the m;a/am; part is exactly canceled by the de-
nominator of (4. 1) . Hence,

Thus,

P, y) =z'C(Z) (3.16)

Knowledge of P, is linked to the value of the
diagrams in Fig. 1(d). In the N= 1 case, let us
denote as 13„" '~ the contribution to P of the dia-
grams of order (n/a)" with n —1 fermionic loops.
Of these n —1 loops, one is external and n —2 are
internal. For example, P4'~ is associated with the
three diagrams of Fig. 1(g).

Then, if NW1, one will obtain

1 - n&"
P= Z ——

I
O'" 'N" ' =— &" 'P'" '

n=2 ~~ N n=2

(3.15)

P(n) =m, nil (q', m, ', m, ', n)
e m&-ttt&-m

(4. 2)

SteP 3. If one calls ~z"&,&,
" the sum of the three

diagrams of Fig. 1(a) with p —2 internal loops,
one sees that this quantity can be obtained easily
by inserting &uI~', which is defined in Fig. 1(h), in
the lowest-order light-by-light scattering ampli-
tude corresponding to the forward scattering q+k

q+k [Fig. 1(i)]. This amplitude is described
by the tensor 11&+~'(q, k, m') which, owing to gauge
invariance, is a finite quantity and does not need
renormalization. A direct consequence of (3.1)
is that

with g FI "=—3q% (4.3)

C(IS) =PI'~+P 'I@+PI'IA'+PI'lZ'+ ~ ~ ~ . (3.17)

IV. METHOD OF COMPUTATION

By using and generalizing the technique de-
scribed in Ref. 4 for the case n=3, we will com-
pute the quantities PI" '~ for arbitrary n. We will

I

and

g„,q'q" Ii„„(A',q', m') = -6q'II(A', q', m', n) .
8

~VOI ~VIS

(4.4)

Putting all things together, one obtains

8
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In this formula the symbol "asymp" refers to the asymptotic part. The quantity II'""(q,k, m', &') differs
from II&~~&"(q, k, m ) by a mass renormalization counterterm associated with the diagram in Fig. 1(j).
One can then move m, B/Bm, through &o~~'(k', m, m) to obtain

p~
' =asymp 4[-iP„(k',m )]g „m —,II'""(q,k, m, A')+~ig~ IP""(q,k, m', A')

8$ 8gg q=0

(4. 6)

SteP 4. One can then prove, owing to Weinberg's theorem, "that the contribution of the first term van-
ishes. Then,

4 82

SteP 5. The quantity u,~' is obtained in a straightforward way:

fo] Np~
py y2+ ~

k pk, )(
pY gpss p2 )~p2 + ' g(2) 0

26

q=0
(4. V)

(4. 8)

with Ilz&» —(o./v)[a, + ii, ln(-k'/m')]. One then obtains

(4.9)m (
pp

' = asymp -1)' '~ . . ~[a, +I, ln(-k'/m')]'-' gQ p ~ PPl

(2w)' ' ik'+is& ' ' am 24 Bg Bga

SteP 6. One now separates the mass renormalization counterterm which is implicit in the definition of
II~""(q,k, m', &') ~, , We shall write

PP "=P~~ "(direct) + PP
' (mass counterterm) .

The direct contribution is equal to

4 1 (m'

(4.10)

(4. 11)

where " is defined aS

n'
(f

m' g,„g„g„za'll;„'(q, k, m')
I, -k2 24 ~Q'

&Cjoy

The mass conterterm contribution is equal to

(4. 12)

(& ~ B-O
p& '(mass conterterm) =-~zm, 2(&-&) (4.13)

where Z"~" is the contribution of Fig. 1(j) to the 2(p —1) order of the unrenormalized self-mass of the
fermions.

SteP 7. Using Feynman parametrization, and performing a Wick rotation over the variable k, we obtain

P,
'-' (direct) = —~ (-1)' —(a, —Ii, lnz)' 'z—= (z)

0

with z=m'/(-k ), and

1 (1 e)2 Pz-
P~~~ "(mass counterterm) = -&(-1)~ d&(8 —2) a, + b, ln

0
1 1 g

(4. 14)

(4. 15)

V. ANALYTICAL AND NUMERICAL RESULTS

The function = (z) defined in (4. 12) can be computed using either Feynman parametrization or the power- .

ful Gegenbauer polynomial expansion technique. 4 The result as given in Ref. 4 is
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X" ~

:(~)= -Y dx g .[&.x'(I -x)'+&.X(I -x)'+D.(1 - x)']„, ~+x(1-x)" (5. 1)

with

B)——42, Ex = -124, D

B,=-iVO, E, =289, D, =-65,

B3——190, E3= -274, D3 = 62,

B4 ——-69, E4 ——90, D4 = -2]..

I

Note that

lim" (8) = -4, lim=(8) = 0 .
8-0 ' e-a

Most of the algebraic substitutions and factoriza-
tions leading from (5.1) to (5.3) have used the
symbolic system REDUCE' elaborated by Hearn.
We will also need the derivative of "(8):

This parametric representation is not always con-
venient. Some pieces of this integral are singular
but the final result turns out to be finite, owing to
relations such as E4+84+D4=0 or Z, ,D, =0.
Actually, even a "good computer" runs into prob- .

lems computing "(z) with sufficient precision to be
abl. e then to evaluate the integral (4. 11). It ap-
pears that =(z) can be evaluated in a nice closed
form provided we use the natural variable 6), de-
fined by

1 —(I + 4~)' ~'

I + (I + 4~)'~' (I —e)'

O& e&1 0&~=m'/(-q') &

We obtain

468'(1+ 8') lne (I +108'+ 8')
(1+8) (1, —8) (1, +g)

d (8) 968(8 —28 +482-28+1)
de (1+ e)'(1 —e)'

488(1 + 8 ) 16(8—1)(82 —48+ 1)
(1 + e)'(1 —e) (1 + e)'

Note that

(8) 1 3 s 7 . 3-[3 -3]+f-, - -.]+~[-, - ~- I]
d8 e qX

2
3 x

R[ 15 2]8 8

with x = 1 —0. Let us recall the basic formulas
(with a, = —,', b, = ——,'):

P =P (Jf)+P.(If) +c —
)—, P, R') =-If, P.(h) =If' c(K),

C(K) =p +p ff+ .+Pi~ K '+ . , Pi' ' =pi~ '~ (counterterm)+pi' '~ (direct)
I - (I g)2 y-2

pi~ '~ (direct) = ——,'(-l)~ a, +&~in —=(g)dg,

(5.5)

(5.6)

(1-8)' ' '
pi~ '~ (counterterm) = ——,'(-1) (g —2) a~+ jg, ln dg.1 1 g

(5 7)

Despite the awkwardness of (5.3) and (5.4), the
functions =(8) as well as d=(g)/d8 are bounded in
the interval [0, 1]; their plots are drawn in Figs.
2(a) and 2(b). Numerical results for p~~~ '~ from
p=2 to p=20 are given in Table I. As a special
case we recover the results of Hefs. 4 and 5:

p~i'~ (direct) = ~ —T = —0.0556,

p~i'~ (counterterm) —,' ', — 0.72,
p~i3~ (direct) = —T'8'2 = —0.1167,

89 277.
P4i'~ (counterterm) = — — - + = 1.27 .

162 27

This constitutes a check for the validity of formu-
las (5.3) and (5.4).

cn(K) = g cga',
P=o

(5.6)

CcT(K) = Q CcTK
P=o

The. perturbative polynomials are defined by

(5.9)

c', (ff)= c z', c"(K)=g c,"If'.
=0 P=o

They are plotted in Fig. 3. It can be seen from
the results of Table I and Fig. 3 that (5.9) is a
divergent. series whose coefficients grow very

Let us define C&
——pp; "(direct) and C~ = p~;,' "

(counterterm). Then, C(Z) =Cn(K)+ C T(K) with
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=-(e)
0.1 0.2 09 0.4 0.5 0.6 0.7 0.8 0.9 1.0

I I I

TABLE I. Numerical values for P
&' [of order

(&x/~)~iv].

-2

4-

20

18

B (0) =-4
-(1)=0

(a)

(b)

2
3
4

8
9

10
11
12
13
14
15
16
17
18
19
20

P&+ (counterterm)

1
-0.72

1.27
-2.53

6.93
—21.70

78.61
-310.12,
1309.12

0.57 x104
0.26 x10&

-0.1 x 106

0.58 x106
-0.27 x107

0.13x108
—0.65 x108

0.31 x109
-0.15x10'

0.76 x10io

P~~ "(direct)

—0.5
-0.055
-0.115
—0.060
-0.111
—0.109
—0.197
-0.249
—0.453
-0.623
-1.15
-1.59
-3.13
-3.9
-9.1
—8.5
-3.0
—3.9

0.14x10

10

0.2 0.4 0.6
I

0.8 I.O

FIG. 2. Plots of (a) =(e) and (b) d. (e)/de

rapidly with p. This will be confirmed later.
We will show in the following that the series

(5.8) and (5.9) are not Borel summable. Actually,
we will study in particular the mass counterterm
contribution (5.9). The results will obviously be
the same for the direct contribution (5.8) since the
only difference comes from the replacement of
(e —2) by d /de which is also a well-behaved
bounded function in the interval [0, 1].

Let us notice first that the divergent nature of
the series (5.8) and (5.9) shows that the family con-
stituted by the contributions to the P function from
all possible Feynman diagrams does not constitute
a summable family. If we were to suppose the con-
trary, every subfamily would be summable, in
particular the one constituted from diagrams of

c~= '(-1)'
~

de(e —2)[/(e)]'
0

(5.11)

order n 'N~ ' = (nN) ~/N for p ranging from zero to
infinity. In such a case, (5.8) and (5.9) would be
convergent. Let us recall that a family fn~}~sz
is said to be summable if ~M such that, for all j
finite, j &I,Z~e, ~a~I & M. However, it is very
often possible to define what is the sum of a diver-
gent series, especially when it is an alternating
series."" '7here are many possible nonequiva-
lent definitions, all of which have to be "regular, "
i.e., when applied to a convergent series, they
have to lead to the correct sum. One of the best
known definitions is that of Borel': Suppose Q~.,a~
is a divergent series. Multiplying and dividing by
p'. , we get+~.,pta~/p~, which is exactly the
same. Then expressing p~'as an Euler integral,
we get

dt e-'t~~,
po 0 P'

which is again the same. Finally, permuting the
symbols Z and t, we get

OO

B= '

df e-' a
0 ~0 P~

'

When B exists, it is called the Borel sum of the
series Z, ,a~.

Let us study the case of the series C (K),

C (K)= QC~ K~

with
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CN (K)

loO—

= 10, the numerical integration begins to fail; the
approximation (5.13) would give a better value. ]
The Borel transform of the series (5.9) is

CCTB"(K)=g;K&.
i)}=0 P '

(5.14)

The Borel sum of series (5.9), if it exists, would
be

lo-

C (Jc)= f dt 8 B(t'ct) .
0

(5.i5)

We will show now that the series (5.9) is not Borel
summable. One way to see it is to use the asymp-
totic expression (5.13). The first term of (5.13)
which is asymptotically leading) is Borel summa-
ble, but the second is not:

[pl ( 1)0(2 }0+Ie5/6]K0 2 e5/6 (5 I 6a)1, 1

, , p~
'

» 1+'K '

ol l l

o.a5 o.5o ops
l I

l.25 L50

g—[p r 4() )'+'e~']K'= -'e-'/'1 1
pt

'
» i-K/3 ' (5.16b)

c„(K)

0.10 025 375

¹21

e

1.0

The first term (5.16a) will lead to a finite integral
(5.15) for all positive K, but the second will intro-
duce a singularity for E = 3.

Another way to prove this result is to proceed
to the exact evaluation of Bcr(K). Indeed, it is not
hard to express BcT(K) in terms of the. Euler I
function:

-1.7—

FIG. 3. Plots of perturbative polynomials.

@CT
2e»') I"(1+Kb,)I'(1 —2Kb, )
2-Kb, r(I -Kb, }
2e-'/9» r (i -K/3)r (i+2K/3)
2+K/s r (1 +K/s)

It is clear that I" (1+Kb,) is singular for K=3, 6,
9, . . . , (sp), . . . . As a consequence, the Laplace
transform of BcT(K) leading to the Borel. sum
(5.15) does not exist.

If we permute f and+ in (5.10) and carry out
the geometric sum, we get

and
1 d

[1 +Kf(8)]de (5.18)

f(8) = a, + b, ln
(I —e)'

8
(5.i2)

It is clear that, for large p, this integral receives
contributions primarily from the region near 8 = 0
and 8 = 1, where

~f(8)
I
~ 1

The sum of the contributions from these regions
(obtained using the saddle-point method) is

~T—p t [( 1 )0( & )0+& e&/8+ 4( & )f +& 8-5/3] [1+ 0(1 /p )]
(5.13)

[The numerical values given in Table I for P ~
are

calculated via numerical integration using the
exact formulas (5.6) and (5.7). Actually, above p

1 1
[i+K (e)] ( (5.19)

As one would expect, these integrals have no
meaning (for K&0) because of the existence of a
zero of the integrand between 0 and 1,

8'»+8(-2» —1)+» = 0,
1 +Kf (8)= 0-

((+lca,
)

The discriminant of this second-degree equation
is always positive; it is equal to 4= 4z+1. More-
over, the product of the two roots is equal to 1,
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so there is always a root —which we will call
8,(K)—between 0 and 1.

In the neighborhood of 8„

ln8=ln 1+ +ln8p +ln8p,
8 —80 8 —80

80 -' 80

ln(1 —8) = ln 1+ ' + ln(1 —8(&)
(1-8)-(1-8.)

1 —80

+ ln(1 —80) .80 —8
1 —80

Hence,

1+K'(e) Kb, ' (8, —8) .
'8(, 1 —80

We have a singularity of the type "I/x. " The non-
Borel summability of the previous series signals
an ambiguity in QED. Another example of this
phenomenon has been given in Ref. 15.

In order to give a precise meaning to the quantity

P, appearing in the fermionic expansion, one has
to handle the singularity of E(ls. (5.18) and (5.19).
For instance, one can do this by subtracting a
quantity that vanishes in perturbation theory, e.g. ,

c- (K) = "'de
1+Kf(8) ' (fe de

(5.20)

Bcl'(3& Bcr[(Gcr((&)&+ 3Gcr((&Ger(&&+Ger(3&]

(s.av)

It is then clear that B~'"&(K)= (8"/sK")B~(K) can
be easily computed uni(iuely in terms of Bcr(K)
and the derivatives G ' '(K)=(8 /eK )G (K).
The coefficients appearing in (5.25}-(5.2V) are
simply products of multinomial coefficients which
are tabulated in. all books of mathematical func-
tions. To conclude we have only to compute the
derivatives G ' '(K)=(8 /BK )1nB~(K) )z~. This
calculation, starting from (5.1V), is straightfor-
ward, using the Euler g function defined as

g(z) =—1nl'(z) .d
dz

%'e find

(s.aa)

»G~(K) b, '(p -1)!
sK&' (2 Kb, }('

+b [q' "(1+Kb,)+( 2) q' -"(1-2Kb,)
—(-1)&y(&-"(I-Kb, )], p - 2,

(5.29)
BG (K) bi=-a, + ~ + b[P(1 +Kb, }—2((1 —2Kb, )

+ y(1 Kb,)]. (S.3O)

If %=0, we get

(5.21) Gcr(l&[0] —
& +~El

2
(5.31)

go~~(~P'~"-'&(cT) = '
BK~ (5.22)

Since the derivatives of ini'(1+x) are easier to
write than those of I'(I+x), we find it convenient
to write

Bc'(K) = exp[Go (K)] (5.23}

with

Another possibility would be to handle the first-
order singularities in the Laplace transform (5.15)
by giving a contour prescription (for example, a
principal-value prescription).

Let us now return to the problem of obtaining
analytic results from the expressions (5.6) and
(5.V). It is clear that the Borel transform B~(K)
defined in (5.15) can be used as a generator func-
tion for quantities

q'"(I) = (-I)'"p) &(p.1).
Then, finally

(s.33)

G~(»[0]= ', (I+ ~(P)2'[(-1)~+2('- I]] .b, ~(p I}!

(s.34}
One could also write this result in terms of the
polylogarithm function Li~(x) since f(p) = Li~(1).

In order to check the previous formulas, let us
compute P,'(CT), P,'(CT), P,'(CT), and P, (CT).
Using P~(0}=1, we find

P',(cT) =1,

Gcr(&&[0]= & ~ +b ('[q(& &(1)+( 2)&y(('- &(1)
b '( -1)!

—(-I)'0(""(I)] (5 32)

It is convenient to rewrite this result using the
Riemann f function which is related to P(~&(1) by

G~(K}= 1nB~ (K) .

~CT(&) —~CD CT(1)

Bcr&&& —Bcr[(GCT((&)&+GcY(2&g
Ju

(5.24}

(s.as)

(5.26)

P'(CT) = ——' ——'
9 6

89 2m~
4 162 2V

2 '
p', (C )=[-1+—(&&(3)] 3[-~~]—

~pl

+ (-,'-,')', "
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The expression (5.33), used in conjunction with
(5.22) and (5.23), allows us to compute p~~~n

(counterterm) to any order. We have not attempted
to find an analogous result for P~~~" (direct), but
it is clear that one could be worked out.

The previous calculations have been performed
in the Feynman gauge. However, the result is
gauge invariant for (at least) two reasons: since
P is gauge invariant, its 1/N expansion must be
gauge invariant order by order. Moreover, the
three diagrams of Fig. 1(a) constitute a gauge-in-
variant set of diagrams.

VI. GENERALIZATION

The fermionic expansion in QED displays inter-
esting features but its phenomenological applica-
tion is not for today since, by now, only three
kinds of fermions (electron, p, , r) have been dis-
covered;%=3 is not a big number. However, at
tremendous energies, far above all the fermionic
thresholds, such an approach would lead to new
results. (The fact that all the fermions have. been
assumed to have the same mass would not play any
role at such tremendous energies. )

It is clear that the most promising consequences
of this approach have to be found in an extension
of this procedure to the case of a non-Abelian
gauge group. Until now, the topological expansion
on the 1/N expansion [where N refers to SU(N)]
has produced "qualitative" results, but very few
quantitative results. One can hope that, using an
expansion with respect to the number of flavors
according to the previous ideas, one will be able
to find explicit results such as those displayed in
this article.

Finally, let us notice that the singularities ap-
pearing in the Borel transform BcT(K), Eq. (5.16),

which are reminiscent of the presence of a "Lan-
dau ghost" (5, & 0), may be expected to be absent
in the quantum-chromodynamics (QCD) case.
However, one has to be aware of the fact that, in
the pure QCD case, things are much more com-
plicated since the P function cannot be obtained
from only the knowledge of the vacuum polariza-
tion. Even if one is only interested in the (gluonic)
vacuum polarization, a diagram such as Fig. 1(k)
is of order e,'n'=(&, n)'/n, where n is the number
of flavors.

If one wants to apply the previous ideas to the
study of the photon vacuum Polarization with QCD
corrections [which is of interest in order to com-
pute T (e'e -hadrons)], things look better since,
for example, the diagram in Fig. 1(1) is of order
(n.'n)(n, n)'/n, and the diagrams in Fig. 1(m) are
eliminated by a factor 1/n: The first one is pro-
portional to (nn)(n, n)'/n', the other one to
(n'.n)(n, n)4/n2. But the diagram in Fig. 1(n), which
was equal to zero in the QED case because of
Furry's theorem, is no longer equal to zero here
since 8 x 8 = 1+8+3+ 10+16+27 has a singlet com-
ponent. Thus, the generalization is not obvious
but, at least in the case of the QCD corrections
to photon vacuum polarization, does not seem im-
possible.
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