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Studies in the renormalization-prescription dependence of perturbative calculations
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Now that the quantitative testing of perturbative quantum chromodynamics (QCD) has become a major
experimental and theoretical effort, it is important to understand the renormalization-prescription dependence of
perturbative calculations. We stress the phenomenological importance of finding a definition of the QCD expansion
parameter which reduces the magnitude'of high-order corrections. We give explicit arguments suggesting that a
choice of coupling based on momentum-space subtraction can be phenomenologically useful. Examples from QCD
and QED are used to illustrate these arguments, and we also discuss possibilities for refining them.

I. INTRODUCTION

The process of proving or disproving the validity
of quantum-chromodynamics (QCD} perturbation
theory involves the use of certain experimental da-
ta to extract a fundamental parameter, the strong
coupling, and the insertion of this parameter into
calculations for other physical processes. How-
ever, a brief survey of the literature~+ makes it
apparent that there are many possible definitions
for the strong coupling. The procedure for defin-
ing the coupling experimentally is sometimes re-
ferred to as choosing a prescription. Establishing
conventions or choosing prescriptions is necessary
even for very simple systems. However, in quan-
tum field theories the issue of prescriptions is tied
to the problem of infinities. Consistent compari-
sons with experiment require the specification of
infinities which occur in the calculation and the re-
normalization of physical quantities.

Most physicists are aware of the fact that the
choice of renormalization procedure defines the
coupling which occurs in the perturbation expan-
sion. %hat we would like to stress here is that
this is not just an empty formal exercise. The
precise definition of an expansion parameter can
have impor tant phenomenological consequences.
It can affect the magnitude of high-order correc-
tions and, hence, the agreement between experi-
ment and low-order calculations. Some papers
which find uncomfortably large corrections in per-
turbative QCD (Refs. 7, 8} merely reflect an un-
fortunate choice of prescription.

The salient features of prescription dependence
have nothing to do with the complexities of QCD.
They are simply properties of perturbation theo-
ry —any perturbation theory. We will therefore
begin our discussion by imagining a make-believe
world whose dynamics is governed by an imaginary
field theory, QID (quantum imaginary dynamics),
which is exactly soluble.

Two high-precision experiments are conducted

in the QID world. The first is a measurement of
the "QID Josephson effect, "

J~=O. 200000000(13) . (1. la)

The second experiment measures the anomalous
magnetic moment of the QID electron,

a„=0. 333 333 33(12) . (1.1b)

The exact solution of QID is given in terms of a
parameter x (to be measured) and as predictions
of the theory we find

r=x (1.2a)

x0 i-2x ' (1.2b)

x =y(1+ 10y), (1.3)

but the physicists are unaware of that. In fact,
they attach absolutely no significance to x since
this parameter arises only in the exact solution of
QID—about which they know nothing.

By substituting Eq. (1.3} into Eqs. (1.2) and then
making a Taylor expansion we easily see that

J~=y + 10y2, (1.4a)

a, ~=y+ 12y2+ 44y + (1.4b)

This expansion is extremely difficult for the physi-
cists to obtain with QID perturbation theory, but

Then, if the para. meter x is measured by J, (so that
x=0. 2000 ' ') we see that indeed a, z ——0. 3333
This is in splendid agreement with experiment.

Unfortunately for the inhabitants of this imagin-
ary world, they have not succeeded in solving QID.
The physicists in this world are forced to resort to
"QID perturbation theory. " The way they do this is
with complicated diagrams. The answer is written
in terms of a parameter y which appears naturally
in the calculation of these diagrams. It happens
that y and x are related by
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J~=x+0(x ),
a„=x+2x'+ O(x') .

(1.6a)

(1.6b)

[We can also obtain these expansions directly from
the exact solution, Eqs. (1.2). ] By fitting J, to
experiment, the physicists find x =0.20 and pre-
dict a„=0.28. Although this is not in perfect
agreement with the experimental result of
0.333, it is a large improvement over the pre-
diction that was made with the expansion in terms
of the y variable. Furthermore, the correction
terms now have reasonably behaved coefficients
and the reliability of the perturbation expansion
appears less questionable than the results ex-
pressed in terms of y.

This dependence of coefficients and predictions
upon the choice of expansion parameter is known
as "prescription dependence. " The scenario de-
picted above illustrates a number of important
points which we list here.

(1) Unless we know the exact solution to a field
theory, we have no way of being certain which pa-
rameter is likely to lead to the most reliable per-
turbation expansion.

(2) An inappropriate choice of parameter can
lead to apparent disagreement between theory and

they manage, after a while, to compute the leading
term in the above expansions.

The leading term of (1.4a) and the experimental
value of 41 give a measurement of y—namely, y
=0.20. By substituting this in the equation a„
=y+ ', the physicists arrive at a prediction, a, I
= 0. 2, in bad disagreement with experiment.
However, by perseverance they finally compute
the next-to-leading terms of Eqs. (1.4a) and

(1.4b). They solve (1.4a, ) to obtain

y + 10y2 = 0. 200 00 ' ' '

~y=0 10' ' '

Substituting this into a„=y+12y'+, they pre-
dict a, I= 0. 22. This still disagrees with experi-
ment despite the fact that y = 0. 1 seems like a
fairly small expansion parameter. The problem
is closely related to t'ie fact that the correction
terms in (1.4a) and (1.4b) have large coefficients.

It is that realization which eventually saves the
day in this imaginary world. Some physicists
realize that y may not be a sensible expansion pa-
rameter. By careful inspection of their calcula-
tions and "diagrams" they guess that they should
reexpand all of their answers in terms of a new

parameter, x =y+ 10y . This new parameter is
just the x of Eq. (1.3). A reexpansion of Kqs.
(1.4a) and (1.4b) through next-to-leading order
gives

experiment.

(3) An inappropriate choice of parameter can
lead to large coefficients for correction terms. In
fact, this may be the most obvious symptom of the
bad choice.

(4) Even though a reexpansion may lead to a
larger parameter (y = 0. 10 becomes x = 0. 20 in
the example above), it can still yield a more re-
liable expansion.

(5) If the y expansion had been carried out to the
third term [O(y )], the agreement with experiment
would have been better. However, by an appropri-
ate choice of parameter (x) one can get equally
good agreement without going beyond the second
term. This is an obvious advantage since it is ex-
cruciatingly difficult to compute beyond the second
term.

The real world, where QCD is assumed to gov-
ern the strong interactions, is rather similar to
the imaginary world described above. The value
of the QCD expansion parameter (n, jw) is of order
0. 1. Also, since we have no idea how to solve
QCD, we do not know which expansion para, meter
is "best. " Many recent calculations of next-to-
leading coefficients" seem to give large numbers.
This has sometimes been interpreted as a signal
that the QCD asymptotic expansion is failing, but
it may simply be a consequence of using a "bad"
parameter. Unfortunately, the real world is un-
like the imaginary world in that there does not yet
exist any high-precision QCD measurement, so it
is difficult to test improvements in perturbation
theory.

Nevertheless, there are two independent pieces
of information which make us believe that reexpan-
sions can improve our predictions. First of all,
experimental evidence in many processes supports
the leading-order predictions of the scale-breaking
parton model. If the series truly began to diverge
at the second term, then there would be little rea-
son to trust the leading predictions to even an or-
der of magnitude. Secondly, and more compelling,
is our success in understanding QED through many
orders (the fourth order correct-ion to the elec-
tron's anomalous magnetic moment is almost com-
plete ). The perturbation expansions appear well
behaved and the agreement with experiments is
spectacular. QED is, of course, less complicated
than QCD and unlike QCD, there is a unique Physi-
cally motivated choice for the QED coupling con-
stant. Furthermore, ~+ED «n, . However, what
is relevant is the size of coefficients rather than
the size of the expansion parameters. From a
purely mathematical viewpoint the two theories
have rather similar perturbative structures, so it
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would be surprising if QCD perturbative theory
were intrinsically much less well behaved than
QED. If we can understand the mathematical rea-
son fox' the success of ~~ED as an expansion pa-
rameter, then this may lead to a choice of o,
which might be expected to give a series with
small coefficients.

The plan of, this paper is as follows. In Sec. II
we review the machinery for defining a prescrip-
tion and discuss explicitly three distinct schemes:
minimal subtraction (MS), modified minimal sub-
traction (MS), and momentum-space subtrac-
tion 4 (MOM). The two "minimal" schemes are
conceptually simple and convenient. The goal be-
hind momentum-space subtraction is to suppress
the contribution of high-order diagrams at a given
momentum. We compare these QCD prescriptions
with the more familiar case of QED.

Section III discusses the choice of a prescription
for physical calculations. We review the proce-
dure of extracting the coupling from one experi-
ment and using it in an asymptotic expansion for
other processes. Arguments based on the analysis
of high-order diagrams suggest that the proce-
dures behind the technique of momentum-space
subtraction might give a well-behaved perturbation
series. We show how important it is to make a
good choice for the coupling.

Sections IV and V contain all our examples from
QED and QCD. We show that the difference be-
tween a good and a bad prescription should be con-
sidered when comparing experiments to theory.
Not all experiments are equally sensitive to pre-
scription. We compare explicitly expansions in
the MS, MS, and MOM schemes for several pro-
cesses. We discuss calculations for the decay of
paraquarkonium, the total e e annihilation cross
section, and structure functions. These results
provide support to the point of view that momen-
tum-space subtraction provides the most useful
expansion. We also reexamine the calculation for
the decay of parapositronium in QED.

In Sec. VI we consider the possibility of gener-
alizing our arguments for how to choose a best
prescription. Is it possible to turn the "art" of
choosing a prescription into a "science" ~ Final-
ly, in Sec. VII we give a summary of our results.
Appendices are included on the asymptotic expan-
sion of the Euler I function and on the prescription
dependence of the QCD P function.

Z~ Z, Z,
Z2 Z3 Z3 (2. 1)

Apart from these constraints, the Z's are com-
pletely arbitrary. This arbitrariness naturally
leads to different possible definitions for the re-
normalized coupling given by

3/~g=Z1 Z3 g (2. 2)

where g~ is the "bare" coupling which appears in
the Lagrangian. For example, two different pre-
scriptions for the Z's related by

z( = z, (1+ag'+ ~ ~ ),
z,'=z, (1+ tg'+ ~ ~ ~ )

(2. 3)

22

2

2

24

IV

23

integrals which are formally divergent. We can
illustrate this process of "renormalization" for
the theory of QCD with nz flavors of massless
quarks. The Feynman rules for the perturbation
expansion of the theory in covariant gauges can be
found in the review articles in Ref. 1.

There are seven primitive divergences which
must be specified in the theory. Diagrams for
these processes through one loop are shown in
Fig. 1 where we define the related counterterms.
The seven counterterms are, of course, not all in-
dependent but are constrained by the Ward identi-
ties

II. SIMPLE PRESCRIPTIONS FOR .

RENORMALIZATION

In order to calculate matrix- elements for physi-
cal processes in a renormalizable field theory, it
is necessary to assign values to a finite number of

F

zl

FIG. 1. The primitive divergences in covariant-gauge
QCD and their counterterms.
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will give different renormalized couplings related
by

Z -&Z sl 2(Z ~-Sl 2Z ~)g ~

g=g'[1+g'(a —3/2b) + ~ ]. (2 4)

The form of the relationship (2. 4) demonstrates
that it is not possible to specify the value of the
coupling without specifying the renormalization
prescription in which it is defined. We are going
to discuss explicitly three common renormaliza-
tion prescriptions for QCD. These are minimal
subtraction2 (MS), modified minimal subtraction
(MS), and momentum-space subtraction (MOM).
The starting point for each of these prescriptions
will be the technique of dimensional regulariza-
tion. 2 ~ In dimensional regularization the infini-
ties in the momentum integrals for the diagrams
in Fig. 1 are displayed as poles in e —= (N —4),
where N is the dimension of space-time. Renor-
malized quantities are constructed by subtracting
these poles through the ir, troduction of counter-
terms with the appropriate singularities. A re-
normalization prescription is defined to be a com-

A. The gluon propagator and Z3

The expression for the gluon propagator through
O(g ) in QCD can be written (in 4+ & dimensions)

+ 8 'u"/p']I", (2. 6)

where p. is an arbitrary mass parameter and the
function h(p~) is given by

piete specification of the primitive diagrams in
Fig. 1 and the associated Z's. The counterterms
in the three prescriptions we will be discussing
each differ by finite amounts and, from (2. 3) and
(2. 4), they will each lead to the definition of a dif-
ferent coupling. We hope to show that the useful-
ness of a perturbative expansion is sensitive to the
precise definition of the expansion parameters.
The motivation behind the different prescriptions
is best explained through examples, so we will ex-
amine some of the primitive divergences through
O(g ).

j'z(p2) —1 = — — + + n —+ye —in(4v)+ln —— + —+—+ n ———(Z&p, '-1)g 13 3$ 2 2 p2 97 3$ 3)2 10
16&2 2 2 p2 g 12 2 4 9

(2. 6)

where y~ = 0. 5772 is Euler's constant. The
minimal-subtraction procedure defines the count-
erterm in (2. 6) so that it removes only the 1/e
pole,

Z, p
' —1 =, (-13+3]+—,n~)—.4 1

16m
(2. 7)

The procedure for the modified minimal-subtrac-
tion procedure (as introduced by Bardeen et al. )
subtracts the pole in the variable

1 1/2
—.= —

~

—+y, —ln(4w)} .
2(&

(2. 6)

The construction of the modified minimal-subtrac-
tion prescription is based on the observation that
the combination

y —1n(4n') = —1.954 ' ' ',
which appears in several Green's functions in the
minimal-subtraction scheme, is an "artifact, " of
dimensional regularization and that the perturba-
tion expansion may be better behaved if it is re-
moved. Both minimal procedures are defined in
such a way as to make theoretical calculations in
dimensional regularization convenient and
s tr aightf orward.

For comparison, the counterterm for the mo-

mentum-space-subtraction prescription (MOM) is
defined so that h(p ) —1 vanishes at p' = —p, '.
From (2. 6) we have

MoM 2 13 3 2
P (P2) 1]MOM (g ) + hP 1 P16' 2 2 3"' " p2'

(2. 9)

Hence, in contrast to the two minimal procedures,
the expression for Z3" is more complicated. The
general philosophy behind momentum-space sub-
traction is to specify desirable properties for the
renormalized Green's functions at an appropriate
momentum and then implicitly define the Z's to
realize them. The properties themselves are cho-
sen in order to lower the contribution of high-order
corrections to physical calculations. The MOM
prescription has as its goal a usable asymptotic
expansion. The way in which the zero from the
logarithm in (2. 9) can suppress the contributions
from high-order diagrams will be discussed in
Sec. III.

B. The triple-gluon vertex and Z&

At the symmetric point P =qa=r the vertex
function I'„'„"„(p,q, x) coupling three gluons is given
through order g' by'
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)".'.(9, 9, r) =87. .I(g .(9 —q). +g..(q - r). +g..(r-(t). ](Ge(9') 7 Z» ')

+ (q —r), (r —9)„(9—q),—2G, (9 )+(r, („q,—rq, q, )—2G2(P )I»',"p '"" """p
with

Gg(P ) =—
2IH (5 —155 —95 —9+ 8»r) +—(852 —275 + 29 —Vnr)

+r(17 —95 —qnr) —+7 —1n(4»)+1n ——7 I,
8 p'

~In

g2
G3(P') =

2
—PI+ 4

——,
' + 6( —~2'"f + 72

—
4 +

816m

(2. io)

(2. ii)

(2. 12)

G2(P ) 2I( 8+V%+Th Irk +Qf)+( iI+ 4 5 2( +T&f)fl
16m

(2. iS)

where

nx x
~

x —x+1 (2. i4)

In analogy to the case for Z„ the MS prescription defines Z, to cancel only the I/e poles in (2. 10) and
(2. 11):

(g ')'
1671 e

(2. 15)

The modified minimal-subtraction procedure gives the same form for Z( with the I/e in (2. 15) replaced
by I/e as defined by (2. 8). In defining the momentum-space-subtraction procedure we have some flexi-
bility because of the tensor structure of (2. 10). The idea behind momentum-space subtraction is to re-
move (as much as possible) the contribution of higher-order terms. One feasible way to achieve this aim
is to define Z~&oM to cancel Go(p2} at the scale p2 = —p2,

Z3 "=V'll —Go(- ~') 1,

so that at the symmetric point p =q =x,
MOM Ir:.(p, q, r)=(g"'"7. .I(g..(p-q). rg..(q-r). +g(r 9)J:'+ ',8,2

('4' -45 l /n-»))—.~-
p

+(q —r)„(r—9)(9—r))—2G&(9')+ (r ,qq, —rqq, ) —2G(9')I . ,"p """ """
p

(2. Io)

(2. 17)

C. Fermion-propagator renormalization

We can write the correction to the fermion
(quark) propagator through one loop in the form

p(23 (p) 5 g(23 (p2)~ 8

p' " (2. iS)

We will discuss possible modifications of the MOM
scheme in Sec. VI, but all our examples will be
based on the definition (2. 16).

order. )
By now the procedures for removing divergences

in the three regularization prescriptions should be
familiar. In the minimal-subtraction prescription
we choose

Z' = 1+ ~$—133(8 8 (g ) 1 5

16m
(2. 2o)

For the MS prescription we change the factor 1/e
in (2. 20) to I/e as given by (2. 8). The momentum-
space subtraction procedure is defined so that

where

2

Z' '(3() ) =Yg 2
—+y~ —In(4w)+In 2

—1
16m e

( MOM)2

D. Ghost-propagator renormalization

(2. 21)

—(Z2 P' —1) . . (2. 19)

(In the Landau gauge, $ =0, Z(23 vanishes to this
The ghost propagator in the covariant formula-

tion of QCD can be written as
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f1shast (P2) ati [P(P2)]~ s

MB ( ) 9
Z3 —— 1 —

2 (2 —p $)—
16m

(2. 23)

to remove the & pole while the MS prescription re-
moves the pole in e. In the MOM prescription,

where
2 2

f(p ) —1 =
2 (-I + —.'$) —+yz —in4m+ing 8 3 2 —P

16v2 p2' J

+t —(z, a '- i)I. (2. 22)

The MS prescription defines the counterterm

four, and five flavors in Table I. We will return
later to the question of gauge dependence. In what
follows, we will choose f = 0 (Landau gauge) unless
we specify otherwise.

2. Scale dependence of n,fp) and prescription dependence
of the P function

We can also rela, te coupling constants whose
definitions differ only in that the Z's were sub-
tracted at different mass scales. The one-loop
result for this is

a;(a') =;(a) i —
t ')a(~)( ',"-)

( MOM)2 f 2

f(P') -1 = - (- —'+-'&)l. —
16m2 ' ' p2

(2. 24)
For instance, when there are four flavors,

(2. 26)

the corrections to the ghost propagator vanish at
—p =p2 2

A
O., =a,' 1+ 8m2a —2b —' +''' (2. aS)

E; Relating the different couplings

1. Converting between AO(M, NS, and NS

We have specified, in three different ways, the
four independent Z's needed to completely define
the theory. The other three counterterms can be
defined by using the Ward identities in (2. 1).

We could have chosen a different set of four in-
dependent Z's in order to specify the prescrip-
tions. This would not affect the two minimal
schemes since the pole terms satisfy the Ward
identities. It would, however, change the MOM

prescription since it is not possible to make all
one-loop "corrections" vanish at p2 = —p. 2 while
maintaining the Ward identities. We return to this
problem in Sec. VI. From Eqs. (2. 3) and (2. 4)
the renormalized couplings in each of these three
schemes can be related to one another. We can
write the expansions for n, (p. ) =g ()t()/47) through
first order

TABLE I. The conversion matrix A. ;,. Which relates
@CD couplings in different prescriptions, as defined in
Eq. (2.26).

Three flavors
MOM MS MS

n, (p. ') = n, (p. ) 1 —4. 171n — ' . (2. 29)o;(I )

P 7T

This scale dependence of 0, can be derived from
the definition of Z's in just the same way that the
formulas in Table I are derived. However, Eq.
(2. 28) can also be derived by noting that the right-
hand side consists of the first terms in an expan-
sion of the solution of the well-known renor maliza-
tion- group equation

do, (V)
(
'

2
——— 4~p, o-.,'(p, ) —167('p,ct,'(p)+ ~ ~ ~,

(2.30)

where

Pp
——(11—sn~) j16n2

where a and b relate Z's as in (2. 3) and the Z s
are taken from the previous section. We may then
construct a conversion matrix A,.& which relates
the coupling constants by

MOM
MS
MS

0
-8.45
-4.38

8.45
0
4.07

Four flavors
MOM MS

4.38
—4.07

0'

MS

(2. 26)

For instance, when there are four flavors and the
Landau gauge (f =0) is taken in the equations for
the Z's,

MOM
MS
MS.

0
-7.29

3s22

7.29
0
4.07

Five flavors
MOM MS

3.22
-4.07

0

MS

o oM(MP) o s(l ) M1 + 7 ~ 29 +MOM(P ) t
(2. 2'7)

Other entries in t;his matrix are listed for three,

MOM
MS
MS

0
-6.09
-2.02

6.09
0
4.07

2.02
—4.07

0
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P, = (102 —~n, )/(18m')'.

Equation (2. 30) can be solved numerically as a,

function of p,
' by solving the equation

f(u')
=in/ p (2. 31)

and specifying (or measuring) the boundary value

g(u).
The resulting curve is plotted in Fig. 2. It is

interesting to make the following observation;
Through 0(o., ), nMS(p '), egg(p') and &MoM(p') all
have the same scale dependence (Po and PI are pre-
scription independent). It is likely, however, that
they will differ in the o, terms (the prescription
dependence of the P function is discussed in Appen-
dix B). If one were to assume that P (the P
function in the momentum-space-sub!raction meth-
od) had small coefficients beyond O(o, '), then the
same thing probably could not be said about P
If indeed P",. -0, for i&1, the solution to (2. 31)
gives the exact p. evolution of gMoM(p. ). To find the
evolution of ns, (p, ') we then use (2. 31) and Table I,
resulting in the curve labeled B in Fig. 2. Of
course, if P; -0 for i& 1, then the evolution of
nm(p, ) will be given by the "exact" curve of Fig. 2,
although the entire curve might be shifted to the
left or right depending on the boundary value
gm(p. ). We would relate g~(p. ) to g«M(p. ) at some
fixed p, but then allow as(p. ') to evolve according
to Eq. (2. 30).

The difference between curves A and B on Fig.
2 is an indication of the possible importance of
higher-order terms in the P function. In fact, the
well-known curve g(p, ') (known by many as the

0.4

0.3

as

0.2

0. ]

I I I I I I I I I I I I I I J I I I I I I I I I I I I I I

I.O 2.0 3.0 4.0
)~(Q/h j

FIG. 2. The QCD running coupling. Curve A is ob-
tained by integrating numerically Eq. (2.31). Curve 8
is obtained from curve A by a change in prescription as
in Eq. (2.27). Curve C is obtained using the approxima-
tion (2.34) to the exact curve.

g'=g(l+ag +tg + ''),
then

(2. 33)

)0 Ip~ J1 ~i

Pg
——P2 —2aP( + 2bPp —Sa Pp,

where P' is the P function appropriate to the
"prime" prescription. A calculation of the three-
loop P function (in various prescriptions) would be
very interesting since it would show which pre-
scription gives the smallest P&.

It is worth noting, while on the subject of the
scale dependence of o, (p. ), that the solution to
(2. 30) can be approximated by the formula

1 P, ln in(p. '~/A2)
s

P In(~ r2/A2)
—

P
3 I 2 (~ i2/A2)

'(."r '~) (2. 34)

where A is a parameter to be measured and is re-
'lated to the boundary value g(p. ) [in Eq. (2. 31)] by
simply letting p, '= p. in (2.34), and solving for A.
In Fig. 2 we show the comparison of the exact so-
lution to (2. 31) and the above solution in terms of
A. The curves are quite similar. However, from
the point of view of controlling coefficients in per-
turbation expansions, we believe results should be
expressed in terms of n, (p') rather than I/ln(p'/
A ). The reason is simply that A has only an indi-
rect physical significance through (2. 34). The
scale A does provide a convenient way of parame-
trizing the coupling constant (provided that a pre-
scription is specified) and is often quoted in QCD-
related calculations and experimental results.
From (2. 34) we can deduce that

A;/A; = exp(A;&/8w2PO), (2. aS)

where A, ~ is the matrix of Eq. (2. 26). In fact, if
A is defined through all orders so that dA/dp = 0
[that is true in Eq. (2. 34)] then (2. 35) is exactly
true through all orders of o,—only the one-loop
value for A,.& is needed in order to determine the
ratio A,./A&. Values for this ratio are given in

"running coupling constant") which solves (2. 31) is
valid in the low- p, range only for a prescription
where the high-order terms of the P function are
small. In Appendix B the prescription dependence
of P(g) is derived. If the P function is defined by

dg(p. ) 7

d in(p, )
= —Pog'(P) —PIg'(u) —P2g (P)+

(2. 32)

and g' is related to g through the prescription con-
version
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'MBLE II. The ratios &&,-/&&. =B,, for different pre-
scriptions.

which has the counterterm Z . In dimensional
regularization the Ward identities give the relation

Three flavors
MOM MS

Z, (pole) =Z, (pole) .

G. The QED photon propagator

(2. 38)

MOM
MS
MS

MOM
MS
MS

1
0.153
0.406

6.55
1
2.66

Four flavors
MOM MS

1
0.175
0.464

5.73
1
2.66

Five flavor s
MOM MS

2.46
0.376
1

2.15
0.376
1

MS

In the Feynman gauge and 4+ & dimensions, the
photon propagator can be written through one loop'
as

IA v h( 2) lk v

a~(q') = —i g'" —
2 + 4 p. ', (2. 37)

9' 0 0'

where

8 2 m2
h(q2) —1 = — —+ys —In(4a) + ln—

12'tl' p 2

+ (1+2m'/q')(1 —4m'/q')"'
MOM

-MS
MR

1
0.204
0.542

4.91
1
2.66

1.85
0.376
1

1+ (1 —4m'/q')" '
&& ln

1 + (1 —4m2/q2)112

Table II.
The choice of [4vp, ln(p'/A, .')] ' instead of n, '(p)

as an expansion parameter has occasionally been
advocated. It may sometimes be convenient in the
context of "leading-logarithm" and "next-to-lead-
ing-logarithm" summations. With the known scale
dependence given by (2. 34) there will obviously be
significant differences in the expansion of a physi-
cal observable in these two different ways. This
is a trivial example of the importance of a good
expansion parameter. The results are mixed.
Buras points out that [4vP, ln(p'/AMs')] ' is better
than a'its(p, ) for paraquarkonium decays, but Ab-
bott" has observed that a similar choice by Moshe
leads to large third-order corrections in deep-in-
elastic scattering. When we compare renormal-
ization prescriptions, we will compare expansions
in o, (p. ) and not in [4mP, ln(p. '/A; )] '

F. Prescription dependence in QED

It is clear. from the discussion above that the
question of prescription dependence is not unique
to QCD but exists also for QED. Here we describe
the result of applying our three renormalization
techniques to the primitive divergences of QED.
We will also introduce a "new" subtraction proce-
dure known as mass-shell subtraction. This, for
historical reasons, is the method used by all QED

practitioners.
In QED there are three primitive divergences.

These are as shown in Fig. 1 where the counter-
terms Z&, Z2, and Z3 are defined. Since most of
the QED measurements discussed are at low ener-
gies where the electron mass cannot be ignored,
we also must consider an additional divergence

4m2 5———(Z3p
' —1) . (2. 38)

3

In comparison with (2. 7) we define minimal sub-
traction to remove only the ~ pole,

2

z, (p. )p.
' —1 =Ms -' 8 1

6n e' (2. 39)

and modified minimal subtraction to give

g „~ ~ 2
Z3 p,

' —1 =
2

—-ln4~+y~
12 tT

(2. 40)

The usua/ mass-shell subtraction in QED defines
Z3 so that in Feynman gauge

lim q'a,'"(q) = —ig'" .
q 0

That is,
zmass zMOM(p)

Expanding h(q ) around q = 0 we find

(2. 41)

(2. 42)

8 2 Pl

p
127t' 6 jJ,

limb(q') = 1+ — — —+1 ——In(4r)+y,g

—(Z3u '- 1). (2. 43)

Zmass = Zmra (2. 44)

The identification (2. 44) combined with the for-
mal similarity of many QCD calculations with their
QED counterparts may help explain the relative
success of QCD calculations in the MS prescrip-
tion. It should be noted that we can, as usual, de-
fine the momentum-space- subtraction procedure
away from q = 0 by

Choosing Z, ' to cancel the entire O(e~) correction
in (2. 43) and c'hoosing j.= m in (2. 40) and (2. 43),
we see that
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Z3 (q)m
' —1=, ——In(4))) +ys + (1 —4m /q } (1 +2m /q )lnMoM e 2 1+(1—4m /q )" 4m 5

12m .-1+ (1 —4m' q') ' q' 3

(2. 45)

which may be useful for processes with nontrivial momentum transfers. This will be discussed in more
detail later.

H. @ED electron propagator

We can write the expression through one-loop for the QED electron propagator" ' as

16'' e m' p' (p'/m')' m'

e2 2 4~p2 m2- p' rn2- p'
+

&
(3+ $) ———ye+In 2 +

&

—ln 2 +4+ 2$ m] 6p2 g
E ~2 P2 ~2

—(Zqp,
' —1)(p —m)+ (Z p.

' —1)m, (2. 46)

where Z(p) is given by

i iz(p)
p —m (P-m}' (2. 47)

Z2 and Z2"' differ only in the term with In(A/m).
Z ' is defined to cancel the constant term in
(2. 49). In any gauge the mass counterterms are
given as

Minimal subtraction and )modified minimal sub-
traction are defined as before. The problem is a
bit trickier due to the fact that we must unravel
those divergences which are associated with mass
counterterms and those which are associated with
wave-function counterterms. We obtain

2
Z' '"

rn
' —1 = —— 3 ——y +—+ ln47t

16m

Of course,

(2. 52)

2

Z2 (p)p. ' —1 =
16m

(2. 48) m 2

and

zi (n, )n,
' —1 = —

2 2
—+2 —ln42).I ~ e 2

167t
(2. 49)

2

Z yy
' —1= 23 —+yE —ln4m5N -e

16m2

The mass-shell subtraction requires that we ex-
pand Z(p) as a series in (p —m). (The usual tech-
nique for regulating infrared divergences in QED
is to give the photon a small mass &. This will be
assumed in what follows. ) For instance, (p2 —m')
= 2m(P —m) + (P —m)'. Picking out the coeffi-
cients of (p —m) in Z we get S~ '(p' = —p') = —i(p m). — (2. 52)

We now turn to momentum- space subtraction.
Again, because of the fact that the electron is
massive, one has some flexibil. ity in defining the
MOM prescription. We choose our counterterms,

(((4) and Z ()n}, so that the Georgi-Poiitzer" '

renormalization condition is satisfied:

lim X'(p) = constant+ 0((p —m) )
P~m

—22
—(p —m)—,& —"——y~+2]6p q

E
4m JL(.

2

+ ln——
rn2

Then

M.OM
2 2

Z, (p )m ' —1 = ——
q ] ———y~ + 1 + In4)T ——

2

m
16m2 e p

—21n—+ 6 ln-
rn . m

(2. 5O)

m4 —p4 m2+ p.
2

+ —ln
p4 m2

(2. 54)

—yE + ln4m —2 ln-
m

+6ln— (2. 51)

2Z--m-' -1=-—
16m2 e

and (in Feynman gauge)

Z"„'"( )
' —1=— 22 ———2 +1 4ii+2 ——, 122).16m2 e

(2. 55)
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Similar definitions can be made for Z&'s. It fol-
lows from the Ward identities that Z& ——Z2 and

Z&
——Z2 . It also can be shown that Z&

' ——Z& "'.
However, we have some flexibility in defining
Z& . To achieve an optimal prescription we
would have to compute the massive-electron vertex
at the symmetric point. In principle, this can be
obtained from Karplus and Kroll'6 or Matsuki and
Yamamoto, ' but those results are expressed in
terms of complicated integrals which presumably
must be dor. e numerically (also, see 't Hooft and
Veltman~'). We have not done this computation but
will indicate, in a later section, how one might de-
duce an optimal definition for Z& from QED cal-
culations which have been done. For our present
purposes here we will use our flexibility to define
z =zf 2 ~

I. Relating coupling constants in QED

The renormalized QED change is defined by

1/2 -1
8 —Z3 Z2Z1 e bare

Therefore, much as in QCD we can relate cou-
plings in different prescriptions. In all the pre-
scriptions above we have Z& ——Z2 so that

1/2
ebare .

We can therefore relate different prescriptions by

= Z 1/2Z I-1/2
3

Take, for instance, Z3 ——Z3
' and Z3 ——Z3 (q):

1+a——
where a=0. 24 if q =rn, a=0. 77 if q =2m, and a
=0. 06 if q =

2 m. We now have a running coupling.
As another example of this, take Z3'=Z, (m).
Then

In Sec. IV we will consider a process where we
choose Z& "4Z2 ". We will also see in that sec-
tion how the use of momentum-space subtraction
helps reduce the importance of higher-order cor-
rections in QED.

III. CHOOSING A PRESCRIPTION

We have seen in Sec. II that the procedure for
extracting numbers from a perturbation theory for
comparison with experiment necessarily involves
a prescription for handling infinities which occur
in the calculation. The choice of prescription spe-
cifies the definition of an expansion parameter and
influences the interpretation of the results. To
understand this influence we must first consider
what it means to compare theory and experiment.

A. Comparison of perturbative calculations with
experiment

+inexact) +(n) 0(& n+I)
S 7 (3. I)

whereP '"""is the exact solution. Except for un-
usual cases where there exist nonperturbative
estimates, we do not know P"""".We can make
the identity

P""""=M~ ~M (3.2)

where M is the experimental measurement and &M
is the experimental error. We can express the
comparison between theory and experiment by in-
terpreting (3. 1) and (3.2). There exists a neigh-
borhood near o', =0 and a constant C~ such that

~
(M+ ~M —I"')

~

- C",o.,"". (3.3)

There apparently does not exist a general proof
of the universal applicability of the perturbative
approach to quantum field theory. The necessity
of handling infinities through complicated renor-
malization procedures is one of the reasons why
such a general proof is unlikely to exist. Feyn-
man, who has probably done more to further the
cause of perturbative quantum field theory than any
other single individual, has frequently expressed
misgivings about the approach.

However, most physicists currently have a lot
of faith in perturbation theory. In the absence of
formal proofs this faith relies on quantitative ex-
perience with specific QED calculations and with
the example of certain "toy" systems which can be
solved both exactly and by a perturbation expan-
sion. It is not always clear that these experiences
are transferable to a new situation such as that
presented by QCD. A large component of the be-
lief in QCD perturbation theory can be attributed
to the amount of formal similarity between QCD
calculations and QED calculations. In the same
vein, the skepticism which still greets perturbative
QCD calculations can be partially attributed to the
vastly different spectra in QCD and QED. It is
possible to argue that a perturbative field theory
of quarks and gluons is too remote to have anything
to do with the properties of hadrons. ' In this pa-
per we take the view that it is possible to consis-
tently separate a calculation into a piece which can
be calculated perturbatively and some infrared
sensitive pieces which cannot be calculated but can
be measured. ' We assume that it is possible to
test QCD perturbation theory experimentally.

Experience with QED suggests that a perturba-
tion series is valid as an asymptotic approximation
in terms of the expansion parameter a, =g, '/4w.
This means that if we make a prediction in the the-
ory calculated through nth order in the expansion
parameter, then
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The @ID model discussed in the Introduction gives
a simple example of how the right-hand side of
(3.3) can be reduced by an appropriate choice of
an expansion parameter. In Appendix A we give a
more complete example of how the behavior of a
familiar asymptotic expansion can be influenced
by the choice of an expansion parameter.

From the form of (3.3) we can see that a per-
turbative prediction is not completely useful with-
out an estimate of C~. There are several possible
ways to obtain such an estimate.

(a) Calculate the next-order term. For n, & 1

this is a good way to estimate the contribution of
higher-order terms.

(b) Bound the next-order term using unitarity or
some other property of the quantity to be calculat-
ed.

(c) Use semiclassical or other nonperturbative
estimates for P""""in (3. 1).

(d) Use guesses based on intuition and/or experi-
ence with similar problems.

(e) Inspect the diagrams which are likely to con-
tribute to the higher-order corrections.

An estimate for C22 in (3. 3) can give a feeling for
why one prescription will be more useful than
another. We will give some arguments based on
(d) and (e) which suggest that nMpM is the parame-

-ter most likely to minimize the effects of higher-
order graphs.

8 (q, p)

/
+ ~l

+ see(). + JR' X-GRk

FIG. 3. Schematic of Feynman diagram where an
internal line of momentum p is subjected to propagator
renormal ization.

the effect of the choice of prescription on the rest
of the diagram. Assume, for simplicity, that the

p integration in Fig. 3 is convergent. We calcu-
late in the Landau gauge. In the momentum-
space-subtraction prescription the contribution of
a diagram such as shown in Fig. 3 is of the form
(for three flavors)

~ MOM 2
~MOM( )

p 2 s (2 )
(

9
)

—p
(2~)' 4~ '

p.
'

xB,(q, ,p), . (3.4)

B. Why momentum subtraction might work

Any perturbation- theory calculation which relies
on the evaluation of Feynman diagrams is eventu-
ally hampered by the fact that the number of rele-
vant diagrams grows factorially with the order of
the perturbation expansion. Unless there are sig-
nificant cancellations among different diagrams,
the explosion of numbers makes it almost inevita-
b12t' that the coefficients of high-order terms in the
perturbation expansion will be large.

Because of the specific properties built into the
Green's functions in the momentum-space-sub-
traction prescription, we can give some crude ar-
guments which indicate that such cancellations can
occur. (In Secs. IV and V explicit examples are
shown where the contribution of high-order terms
in momentum-space subtraction are, in fact,
small. ) The starting point for these arguments is
the structure of high-order diagrams. Consider,
for example, all those diagrams which have a
topology like that shown in Fig. 3 where an inter-
nal gluon line contains an insertion with a primi-
tive divergence. In order to make the contribution
of each of these diagrams finite, we have to regu-
larize and renormalize the Jd4(f) integration in
Fig. 3 as discussed in Sec. II. Let us consider

xa, (q, , p) . (3.5)

In this prescription, the propagator factor does
not have any special properties near —p2= Ij2 and
the integrand is not suppressed.

By considering the analogy between Feynman di-
agrams and electrical circuits, it is obvious that
all internal lines do not carry the same mean mo-
mentum. However, if we isolate x diagrams at a
given order with the configuration of Fig. 3 and
find that the remaining factors in the integrands

where we have isolated in square brackets the fac-
tor associated with the d I integration. We still
have to perform the d p integration. Because of
the design of the momentum-subtraction prescrip-
tion the factor in square brackets vanishes at —p2
= p, 2. If we are clever in choosing p to be a typi-
cal magnitude for a spacelike momentum carried
by an internal gluon in this process, then the con-
tribution of the diagram will be small. An exam-
ple of how this cancellation can suppress an inte-
grand is sketched in Fig. 4. It is important to
compare with the MS and MS schemes. In the MS
prescription, the 'same diagram will give

d'p 2o, (2') —91„-p' 19
(2~)'
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ing momentum-space integrals at a "typical" point.
A clever choice of p. can therefore make the con-
tributions of diagrams small or can make dia-
grams cancel against each other. These argu-
ments cannot be made rigorous because, in the
final analysis, each perturbation-theory calcula-
tion is a special case. A given calculation may
be so perverse that no obvious renormalization
prescription will give a useful perturbation expan-
sion.

In the calculation of a given set of diagrams, the
value of p. will be determined by the external mo-
menta. We can therefore connect our considera-
tions above with the usual renormalization-group
equation. If Q2 is some large invariant in the
problem, the calculation of the anth correction to
some observable can give factors

da( )~ ,o(p')[bin(q'/p. ')+C+ ] . (3.8)

FIG. 4. If the d p integration is peaked atP =-p as
indicated in the top figure, the propagator renorlnaliza-
tion in the MOM prescription will give the integrand
shown as a solid curve in the bottom figure. Renormali-
zation in the ME prescription will give the integrand
shown as a dashed curve.

for each diagram are sharply peaked near —p' = p, &'.

B&(q,, p ):—2B&(p2)e '&+ '"& ', j=l, . . . , r, (3. 6)

then we can sum this class of diagrams in the
MOM prescription to get a factor proportional to

A= pd p B p e'&' '&' ln —p p.

-jLL. B —
j(L Q. lIl p, . p, . 3. 7

If we now choose the subtraction point p,
'

= mean(p, &') we find that the logarithmic factors
are positive or negative depending on whether

p, .'& p,
' or p, .'& jtL'. In this case, the construction

of the momentum-space-subtraction prescription
tends to introduce cancellations among different
diagrams as we sum at a given order.

We have simplified the argument above by pre-
tending there is only one kind of primitive diver-
gence to be renormalized. We can repeat the
steps above on those diagrams with other types of
divergences: the fermion propagator, the ghost
propagator, the triple-gluon vertex, etc. From
the renormalized Green's functions defined in
Sec. II we can see that the momentum-space-sub-
traction prescription is designed to systematically
introduce. zeros into the integrands of the remain-

For Q /p»1 this is unacceptable since the coef-
ficient of a high-order correction can be huge.
The renormalization-group analysis solves this
problem by introducing the running coupling which
has a well-defined behavior with Q~. If we choose
p. =a@ in (3. 8) the bad behavior of the observable
vanishes,

do( &~o, (aQ')[- bin(a)+C+ ' ' '] (3.9)

and the coefficients are now Q independent. What
we have shown above is that in the MOM prescrip-
tion a judicious choice of p,

2 should exist which
makes the contribution of high-order diagrams not
just Q independent, but small. It is therefore im-
portant in the context of the argument above that
we understand a process well enough to guess what
a typical internal momentum might be. If p'=@2
is the subtraction point which minimizes the high-
er-order corrections, then choosing p. =2@ can
introduce potentially large factors in (3.7).

The potential advantages of using the momentum-
space-subtraction procedure to create a well-be-
haved perturbation expansion are discussed in
more detail in Sec. IIIC. It may be useful to con-
sider briefly some of the obvious limitations of the
technique. If the process under consideration has
two distinct large-momentum scales, it may not
be possible to find a single subtraction point for
which the necessary large cancellations occur.
Another special situation can occur if there are a
large number of, diagrams for which the typical
momentum is timelike rather than spacelike.
Then the factor

ln(- p'/p. ')' = (ln
~
p'/i(. '

~
+ it()'

p t ime Like

introduces into the various Green's functions some
factors of ~2 which are not small compared to 1.
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In a calculation for this type of observable it may
be useful to first calculate an amplitude for space-
like external momenta and consider afterwards the
continuation to the timelike region.

renormaliza, tion prescription on the size of QCD
corrections. Consider a physical process, to be
denoted P, whose leading behavior (in QCD per-
turbation theory) is

AP (3. 12)
C. How important is a good prescription?

We have introduced three different prescriptions
for doing QCD calculations. The advantages of the
MS or MS schemes are that the Z's are easy to
calculate and that the constraints implied by the
Ward identities are automatically satisfied. One
must keep in mind, however, that their usefulness
is tied to the technique of dimensional regulariza-
tion —a formal theoretical procedure —and not to
any intrinsic relationship to experimental mea-
surement. In defining the momentum-space-sub-
traction prescription we made several decisions
designed to minimize the importance of higher-
order corrections to physical observables at a giv-
en momentum. Since this technique is more com-
plicated, the question naturally arises "How im-
portant is it to choose a good prescription?" In
Appendix A we give a simple mathematical exam-
ple of how the choice of an expansion parameter
can be important in the asymptotic expansion for
I'(x) (Stirling's approximation). In this section we
will attempt to answer the question in a way which
has phenomenological meaning, and so, we must
consider some physical observables.

One specific requirement for a physical theory
is that we can use it in calculations relating differ-
ent processes. However, in making comparisons,
it is important to keep in mind that the sensitivity
of a calculation to the specific choice of prescrip-
tion can vary from process to process. We can
demonstrate this dependence quite easily by hy-
pothesizing the existence of a "good" prescription
and considering the calculation of various observ-
ables in the framework of the "QCD-augmented"
parton model. The elements of any calculation in
the extended parton model are the QCD coupling,
parton distribution functions, and parton decay
functions. We have already discussed in Sec. II
the existence of a relationship between the cou-
plings in two different prescriptions for o!, (renor-
malization-prescription dependence):

n u) ——a (2)I1+ a(n a) + a2(n &g)) + (3. 11)

Similarly, the parton distribution and decay func-
tions are quantities related to physical observables
and these relationships are also subject to the pre-
scription used to specify singularities. This we
call factorization-prescription dependence and it
is discussed in detail in the sequel to this paper
(Ref. 21).

We will restrict our attention to the effects of

Po might be, for instance, some convolution such
as

@xgx'do' x, x',
where Q(x) is a parton distribution function. In
Secs. IV and V some explicit examples of P will be
given. The perturbation expansion for P is then
written Iin scheme (1)] as

P =n P 1+N —+N -- +'A (1 ) (i )()
(3.14)

If we have chosen a good prescription, the coeffi-
cients N& and N, of the higher-order terms should
be small —say of order 1 or 2. Notice that we are
following fashion (and some hints from high-order
expansions22) by choosing the expansion parameter
to be (n/))) rather than &. Let us now reexpand by
expressing the formula in terms of the quantities
defined in prescription (2):

P=a~+"P, 1+(N, +a,Atr)( "')
A (A —1)+ N+ ——a g+aAm2

Q(+ (A+1)X(a()) ' ' +

A bad prescription where a&, a&, . . . are the same
sign as N&, N2, . . . can give a very different looking
expansion; for instance, if a,.=2, A =3 then

n1+1 (t& +1 (i)
~ +.. .(1) 7t' 77 )

Q Q1+19 8 (» + 2P4 (» g ~ ~ ~

.. r
(3. 16)

The meaning of the two different expansions for
the same physical measurement has been dis-
cussed above. One important fact to remember is
that the comparison of experimental data and cal-
culations usually involves the implicit assumption
that corrections of higher order than those expli-
citly displayed are negligible. If the a,. and A are
large, this cannot be simultaneously true for both
(3. 14) and (3. 15). We now turn to an examination
of specific calculations where we will attempt to
demonstrate the assumption that momentum-space
subtraction is indeed a useful prescription.
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A. The anomalous magnetic moment of the electron

One of the most accurately predicted and mea-
sured quantities in QED (indeed, in any quantum
field theory) is the anomalous magnetic moment of
the electron. This process involves the scattering
of a zero-energy photon from an electron. To be
specific, consider the photon-electron vertex
I' (k), where the off-mass-shell photon has mo-
mentum k and the electrons are on shell. I'(k)
can be decomposed into two invariant functions,

I'(k) =eu'y'uFt(k')+ u'~""
„k uF(2 'k). (4. 1)

The anomalous magnetic moment is F2(0). Mass-
shell subtraction defines the charge so tha, t F&(0)
=1. We might expect that with this subtraction
method, F2(0) would be a very well-behaved per-
turbation expansion. Indeed it is:

1& D
a, —= F2(0) =———0. 328 478 445—

21r m

(4. 2)

From the Josephson effect the value for & is found
experimentally to be2

n„„„„„=137.035987(29) . (4. 3)

Inserting this value into Eq. (4. 2), the theoretical

IV. EXAMPLES FROM QED

In spite of the possibility for different renormal-
ization prescriptions, results in QED have (for
historical reasons) always been presented using
mass-shell subtraction. In this prescription the
low-energy limit of Thomson scattering is equal,
through all orders in o.', to the Born term. That
is, as q -0, the QED asymptotic expansion to
Thomson scattering becomes the ultimate in a con-
vergent series with all higher-order terms vanish-
ing. This fact suggests the possibility that calcu-
lations for similar low ene-rgy QED processes in
the mass-shell-subtraction prescription will re-
sult in well-behaved perturbation expansions. So
far, this expectation has been realized.

The reason why a discussion of prescription de-
pendence in QCD is so pertinent and the reason
why so many prescriptions are found in the litera-
ture is related to the absence of any theorems
analogous to that for low-energy Thomson scatter-
ing. However, because of the large amount of for-
mal similarity in the two theories, a study of pre-
scription dependence in QED can be expected to
provide some guidelines for choosing a good pre-
scription in QCD. We now examine two examples
of high-order calculations in QED.

prediction becomes

a,'"= 1.159 652 359(282) x 10 '

compared with the experimental value2 of

a',"' = 1.159 652 410(200) x 1 0 ~ .

(4. 4)

(4. 5)

The splendid agreement between theory and exper-
iment is now taken for granted, but as was shown
in the QID example of Sec. I, such agreement
should only be expected if the expansion parameter
is known to be "optimal. " Mass-shell subtraction
is (as explained in Sec. II) just o.'uou(0) and our ar-
guments of Sec. III suggest that &uou(0) is indeed
the best expansion parameter for F2(0). That,
then, is the true reason for the excellent agree-
ment between (4. 4) and (4. 5). In order to see that
a different QED parameter could lead to a worse
result, 2' we redefine a by

o. '=n 1 —10— (4. 6)

From (4. 3) the value (o.") is determined to be

(o. ') ' = 140.294 78 .
The expansion of a, in terms of o."/v is

1 0. ' 2

a, = ——+4. 6715215—
2 m jr

0 l 3

+94. 61354 —+ '

(4. 7)

(4. 8)

Upon substitution of (4. 7) into (4. 8) the new pre-
diction is

a,' = 1.159 585 x 10 (4. 9)

This is not at all in agreement with the experimen-
tal va.lue (4. 5). The large coefficients in (4. 8)
give a hint that the expansion is inadequate.

It should also be pointed out that the issue of
"reliability" of a series is evidently not necessari-
ly connected to the smallness (or largeness) of the
coupling constant. In the high-precision measure-
ment just discussed, the poor choice of expansion
parameter leads to disagreement in the fourth
decimal place, whereas the good parameter leads
to disagreement only in the eighth place.

B. The decay of orthopositronium

It is interesting to examine a QED process where
the typical momentum transfer is not zero and
therefore where one might expect mass-shell sub-
traction not to be optimal. The decay of ortho-
positronium is such a process. Orthopositronium
decays into three photons. The most recent cal-
culation of this process was done by Caswell
et al. 26 They obtain
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Zmass ) ~X a s
S

(4. 11)

20'mI'(o-Ps-3y) = '(m2 —9) 1 ——(10.35+ 0. 07)
9n' m

(4. 10)

The leading order is called I'0. In order to change
prescriptions a decision must be made on what are
the optimal Z,.'s. In Sec. II, Z ", Z3 ", and

Z2 were defined. However, Zi was not. In
order to decide on a best definition for Zi, con-
sider the vertex-insertion diagrams calculated by
Caswell et al. [see Fig. 5(a)]. If the configuration
in which they appear at this order is typical of that
for higher orders, then it is reasonable to define
Zi ' so that the vertex-insertion diagrams add up
to 0. That will be the approach taken here.

The Zi counterterm appears at each of the three
vertices shown in Fig. 5. The counterterms used
in Caswell et al. are just the QED counterterms

11).
From Eqs. (2. 42), (2. 45), (2. 51), and (2. 54) we

is related by (4. 13) to X&
' ——X2 ', we also now

know the value of Xi ". All that is left to be de-
termined is the subtraction scale used to define
X3

' and X2 . We choose this to be at the Eucli-
dean point p~= —m2 [so in (2. 53), p. =m, and in
(2. 44), q = —m, ]. This choice of scale is best ex-
plained by referring to Fig. 5(b). The typical val-
ues for P& and P2 are P& ——(m„0, 0, 0) and P2 ——(m„
m„0, 0). Then P3 ——(0, —m„0, 0). The reason for
guessing that I'2 has half of the photon momentum
is that it seems likely that the two remaining pho-
tons will "clump" together. Since Zi was deter-
mined from the Feynman-gauge calculation of Cas-
well et al. , the other Z,. are also taken to be in
Feynman gauge. The final result from (4. 14) is
that

Then the vertex contribution, including the Z
counterterm, is

&mass &MOM ] + ] 02
+

(4. iS)

V
'" = [-2. 868 + 0. 003 —61n(X/m)] —I'0. (4. 12)

X =X '+ —+ In(A./m) —.MOM ass 2. 87 Q
i i 6 jr

(4. 13)

Now,

Zi =—1+Xi will be defined by demanding that
the counterterm be chosen so that V=O. By sub-
stituting X&

" for 2P~' in Fig. 5(a) it is easy to
derive that with this definition of X,

m ~'=m ' 1+——ln 2
3A
2r (4. 16)

Finally, the expression for positronium decay is
ready to be rewritten using (4. 15) and (4. 16) and
the fact that o. and m, in (4. 10) are actually n
and me

The definition of mass also depends on prescrip-
tion through m =Z 'me. From (2.51) and (2.54)
(using Feynman gauge and p, =m, ),

&MoM & [1+(X3 X3

+ 2X2" —2X( )], (4. 14)

where we have used the fact that X~
' ——X2

' (Sec.

P

I" (o-Ps -3y) = I"
0 1 ——(3.26+ 0. 07)

~e

where

FMOM 2(o ) mg
( g 9)

9~

(4. i7)

(4. 18)

= (-2.868+ 0.003-(ln ()t/mej ) ~ r,
(a)

F = Pp

=P
3

(b)

lc)

FIG. 5. (a) Diagrams for positronium decay from
Caswell et al. , Ref. 26. (b) Typical routing of momen-
tum, as discussed in the text. (c) Specific diagram
which gives a large contribution in Feynman gauge.

The coefficient in (4. 17) has been greatly reduced
from that in (4. 10). Some remarks are in order.
First of all, I'0 is proportional to ~, thus any
small change of prescription can result in a very
noticeable change in the size of the coefficient.
Secondly, the largeness of the coefficient in (4. 10)
is actually due26 to the graph shown in Fig. 5(c).
This graph is not one of those obviously affected by
our vertex and propagator modifications. How-
ever, the motivation for finding a best prescription
is that this reduces the size of higher-order cor-
rections. It is not necessary that it reduces low-
order coefficients. The fact that the technique
does, in many cases (including the present one),
make next to leading orders small is, of course,
pleasing.
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One final exercise that can be done with this pos-
itronium-decay result is to compute the predicted
value of I' based on both (4. 10) and (4. 17). The

value of o.„„„„„in (4. 3) is used in (4. 10). In
(4. 17), a'J„, „„„-o via (4. 15). Similarly, m,
—mMoM via (4. 16). The results are

I'(theoretical) [Eq. (4. 10)]= (7. 0379+ 0. 0012) x 106 p sec ',

I' (theoretical) [Eq. (4. 17)]=(7. 0396+0.0012) x106 psec '. (4. 19)

Unfortunately, experimental data2' is not yet suf-
ficiently reliable to distinguish between these two

predictions.

MOM
—o 94

&m=& 4&,

MS 5. 16.
(5. 3)

A. e+e annihilation

One of the cleanest calculations which can be
performed in perturbative QCD is that for the

quantity

R(s) = &(e'e -hadrons)/&(e e —p. p. ) . (5. 1)

Away from physical thresholds and resonances,
the process involves no small energy scale and,
hence, it is not necessary to separate short-range
and long-range effects. The QCD expression for
the quantity R can be written

R(s)=SZeq 1+( ' )+B,.(
'

)
+'''

(5. 2)

where the coefficient 8, depends on the renormal-
izationprescriptionand s= (P,+ +P, )'. In the five-
flavor energy range we have

V. EXAMPLES FROM @CD

By now, a number of calculations for physical
observables have been done using perturbative
QCD beyond the leading order. This enables us
to explicitly test the ideas discussed previously
about prescription dependence. In all the cases
we have found so far, momentum-space subtrac-
tion achieves a reduction in the size of the leading
correction. This is somewhat surprising since the
idea behind the MOM scheme is the suppression of

typical high-order diagrams. We must not expect
that, O'MoM will always lead to small coefficients in
leading or next to leading order. If there are in-
stances where it does not, we expect that the re-
sults will be both reliable and measurable. In the
examples we have looked at, the MS prescription
frequently leads to small corrections although we
have no good reason why this should occur. The
MS scheme always leads to very large corrections.
Perturbative calculations in the MS scheme should
therefore be considered a very unreliable guide to
the underlying physics.

There is no basis in the example for choosing
between the MOM and MS prescriptions. The co-
efficient in the MS scheme is already uncomforta-
bly large. The answers through second order in
all three schemes are close (see Fig. 6). How-
ever, MOM and MS are closer to each other than
to MS.

B. Paraquarkonium decay

The leading corrections to the decay g&
—had-

rons, where g+
——0 paraquarkonium state, have

been calculated by Barbieri, d'Emilio, Curci, and

Remiddi. They give the result in the form

&(n -zx) 2 ."'(& ))'
I (OB YY) 9eB +QED

x 1+2214' ' s +''
~

(o, '(2ms)
7T

(5. 4)

Inspection of the diagrams in Fig. 7 suggests that
a typical internal momentum is I

I' I
-=—m, = tm~,

so that a candidate for a good expansion parameter
is o." (ms). Because the lowest-order expres-
sion starts out proportional to o.~2, this calculation
is very sensitive to the prescription. The coeffi-
cient of the leading correction for t;he three differ-
ent prescriptions is given in Table III both for p,

=m and for p. =2m. We can see that with momen-
tum subtraction at p. =m, the coefficient, 1.78, is
substantially smaller than with MS(2m), which
was quoted by Barbieri et al. ' In fact, the coeffi-
cient 22. 14 of the MS(2m) scheme has prompted
some reviewers to regard this as a "debacle" of
perturbation theory. Clearly, all of this appre-
hension was caused simply by using a bad pre-
scription.

We can pursue the speculation that the MS pre-
scription is ill suited to the calculation by consid-
ering the possible range of coefficients for the
terms proportional to (o),/n)~ in the two schemes.
We assume temporarily that the basic design of the
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TABLE III. Coefficient of leading correction to Eq.
(5.4) for paraquarkonium decay (four flavors).

1.06—
MOM

Sc re scription MS MS MOM

1.05 2m 22.14
16.36

14.00
8.22

7.56
1.78

I.04
C)

1.05
C)

CL

1.02

1.01

I.00—

ORDER

FIG. 6. The value of Pl&p for five flavors through
second order in the three prescriptions.

MOM scheme is successful and that the procedures
for cancellation and suppression of diagrams in the
second-order calculation described in Sec. III ac-
tually work to produce a small coefficient in the
MOM scheme at scale nz&. We can then parame-
trize the relation

P MS

(m)=. , (2m) 1+10.18 ' —)

where the number 8 depends on the two-loop cor-
rections to the Z's (Ref. 9) as well as the P func-
tion and is not yet known. The expansion for mo-
mentum-space subtraction is transformed,

[n, (m)]~ 1+1.78 ' —+C ' —+
MOM(

)
MOM(

jt'

MS

=-(," (2 )]2 1+22. 14 ' —)
+ (158.0+ 2B+C) —'oMs(2m) &'

m )
(5. 8)

Clearly there needs to be a substantial conspiracy
with 8 and C both large and negative in order for
the perturbation expansion in a', (2m) to be well
behaved at this order. Theoretical estimates for
the convergence of the two expressions for I„are
compared in Fig. 8.

This simple exercise quickly demonstrates the
importance of choosing a renormalization pre-
scription for which there is some indication that
the contribution of higher-order diagrams is

0.16

+B — +'''

0.12—

0.08

0.04—

I

OtI1

I

1st 2nd

FIG. 7. Diagrams for quarkonium decay. From Bar-
bieri et al. , Ref. 7. '

ORDER

FIG. S. r/rp for quarkonium decay. Estimates
through second order in the MOM scheme (scale m)
and in the MS scheme (scale 2m).
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small. Note that the calculation for the hadronic
decay of the S, (J =1 ) 'F(9. 4) (Ref. 31) which
starts out proportional to 0, will be even more
sensitive to the choice of the expansion parameter.

C. Moments of deep-inelastic nonsinglet structure
functions

We now turn to one of the classical applications
of QCD—the calculation of the nonsinglet structure
functions in deep-inelastic lepton-hadron scatter-
ing. Consider the moment

From QCD perturbation theory we obtain the Q

evolution of M(n, Q ) in the form

(5. 8)

where A„ is not calculated and a„=—y„/2PO is the
usual leading-order expression for the exponent of
o', In (5. 8) we use the complete two-loop expres-
sion for the momentum dependence, of the QCD
coupling given by (2. 30) and do not reexpand in
terms of the parameter

1
4wPoln(Q /A, )

'

As was pointed out by Abbott, 2 large estimates of
the higher-order corrections to (5. 8) found by
Moshe can largely be attributed to the expansion
of o' (Q ) in terms of &. Our point of view is
that, since we are able to solve the renormaliza-
tion-group equation, the two-loop corrections to
cv(Q'} (in any renormalization scheme) should be
treated as part of the leading-order expression.
With this convention, the values for the correc-
tions 5„ in Eq. (5. 8) in the three different pre-
scriptions are given in Table IV.

Once again, momentum-space subtraction leads
to small second-order coefficients. Minimal sub-

TABLE IV. Coefficients of corrections, b„, in Eq.
(5.8) for nonsinglet moments in deep-inelastic scatter-
ing.

traction gives second-order coefficients which are
systematically large while the MS prescription
gives coefficients of intermediate size. In all
three prescriptions, the coefficients will become
big at large n where it is also expected that cor-
rections from higher-twist operators will be sig-
nificant since these higher moments are sensitive
to the elastic and resonance regions.

F» (Q2)2n & (Q)
s (5.9)

As in the case of deep-inelastic scattering we ab-
sorb all of the two-loop P-function effects into

o( Q) d„ i.n Eq. (5. 9) is just the leading-order
result and all of the rest of the higher-order terms
are absorbed in 8,"'. The values of 8,'"' are given
in Table V. Momentum subtraction here seems
significantly more reliable than the other two
schemes presented.

It is worth mentioning here that it is not possible
to make a prediction for the next-to-leading cor-
rections to the second moment. (The leading-or-
der d2 can be predicted. ) Briefly, the reason for
this is that the anomalous dimension of the n = 2

operator is zero (by energy-momentum conserva-
tion} and therefore the unknown matrix element
(p IO2 ~p) does not die off as Q' -~. (For ~) 2,
the matrix elements die logarithmically in Q2. )
[Associated with this is the fact that the calculation
of the second moment also involves g(QO), where
Qo is arbitrary (and obviously related to how 02 is
renormalized}. 3~]

The fact that corrections to the second moment
are not calculated tells us te avoid making the pre-

D. Photon-photon deep-inelastic scattering

It was observed by Witten" that it is possible,
within the context of perturbative QCD, to predict
the structure functions of deep-inelastic scattering
of a photon off a photon. This prediction is valid
in the limit of Q2-~ whereas experiments have at
present been unable to achieve Q~ & 1.5 GeV2 for
yy scattering. '4 Nevertheless, the theoretical
prediction is interesting. F2"„(Q ) is the nth mo-
ment (for precise definitions of the structure func-
tion, see Witten and Bardeen ef al. '):

MOM MS MS
TABLE V. Coefficients of corrections, B~, in Eq.

(5.9) for deep-inelastic scattering off a photon.

-0.85
-0.85
-0.66
-0.41
-0.13
+0.16
+0.44

0.52
1.29
2.03
2.71
3.34
3.91
4.45

2.26
3.99
5.43
6.60
7.73
8.70
9.55

6
8

10
12

MOM

-1.04
-1.47
-1.85

2&1 7
-2.42

-4.26
-4.69
-5.07
-5.39
-5.64

MS

-8.33
-8.76
-9.14
-9.46
-9.71
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dictions in terms of distribution functions. The
low-x behavior of these is strongly influenced by

yy

VI. THE ART OF CHOOSING A PRESCRIPTION

We have described a particular approach to re-
ducing the effect of higher-order diagrams. The
approach led to the definition of o'MoM. In the ex-
amples of Secs. IV and V we saw that this ap-
proach successfully improved the perturbation ex-
pansions for some physical processes. It now

makes sense for us to ask whether it is possible
to improve our analysis by becoming more sys-
tematic and quantitative in our quest for the "ulti-
mate" parameter. That is, can we find a tech-
nique which will enable us to absorb the maximal
amount of physics into, low-order predictions?

In any given process one could, in principle,
more carefully scrutinize the nature of high-order
diagrams and perhaps improve upon the &MoM pre-
scription. Furthermore, such scrutiny might en-
able one to guess at the "most typical" momentum
flow. It would of course be desirable to find some
example of a QCD process where a theorem could
be proven about the nature of higher-order terms.
This would be the analog of the low-energy theo-
rem for Thomson scattering in QED.

Even without such a theorem it is probably
worthwhile to try to extend the concept of momen-
tum-space subtraction beyond what we have done
in Sec. II. In this section we will describe several
possible methods for doing this. It i.s not our aim
here to answer all the questions that we pose or to
completely develop all the techniques which we de-
scribe. Rather, we wish to set. up guidelines for
the in-depth investigation of prescription depen-
dence. The subject requires a detailed qualitative
analysis of high-order Feynman diagrams and at-
tention must be focused in this direction if pre-
scription dependence is to become a "science. "

A. The general principles

There are at least two possible approaches to the
problem of improving perturbation theory. The
first of these is well known and involves the iden-
tification of logarithms in high-order diagrams.
Various summation and renormalization-group
techniques exist for doing this and the resulting
improved series are written in terms of new im-
proved parameters such as the "running coupling, "
the "running mass, " etc. The second approach is
more difficult and has been the subject of most of
our discussion in this paper. In that approach,
which we will refer to as "choosing a prescription"
(though strictly speaking, the identification of log-
arithms can be included as part of this subject),

one attempts to identify certain terms which are
common to many high-order diagrams and which
can be "summed" by absorbing them into the defi-
nition of the coupling. Such terms typically are
associated with subdiagrams such as propagator
and vertex insertions.

We described in Sec. III how we try to choose the
renormalization constants so that the above-men-
tioned subdiagrams have very smal1. values. It is
interesting to consider the effect of choosing a re-
normalization constant which differs from the
"good choice" by a value V. Consider, for exam-
ple, the gluon propagator II. Then

ll~(Q) =IIG(Q)+ U, (6. I)

where IIG is the value of the propagator renormal-
ized using a good renormalization constant (so that
typical high-order diagrams are small) and IJs is
the propagator in the bad prescription. Since the
number of diagrams in QCD grows factorially, it
is not unreasonable to imagine that the number of
propagator insertions grows factorially with the
order of the calculation. If one assumes that the
diagrams are uncorrelated and that their contribu-
tions are statistically distributed around zero with
a standard deviation which is smallest when V=0,
then the "expected" magnitude of the nth coefficient
will be increased by - BVnI, where B is some
fixed constant. Clearly, unless V-O, high orders
will rapidly develop large coefficients and it is
therefore crucial to find a scheme (the "U 0
scheme") which assures that typical subdiagrams
are small.

We again emphasize that we are attempting to
control the high orders of the expansion. We do
this by studying high-order diagrams which have
subdiagrams whose values depend directly on the
prescription choice we make. Our choice is aimed
at reducing the size of a "typical" such high-order
diagram. It is important to point out that we do
not attempt to choose a prescription by reducing
the magnitude of low-order —already calculated—
quantities. Doing so would be pointless for it
could be at the expense of increasing the size of
un'calculated high-order coefficients. For in-
stance, we did not choose (in Sec. V) a coupling
constant by trying to eliminate the firs t- order cor-
rection to I" (q, —2g). Instead, we made a choice
which is likely to give small high-order correc-
tions to that process. It happens that this choice
also reduces the first-order coefficient. In fact,
for all our examples of Sec. V, when o«M was
chosen to reduce high-order corrections, the next-
to-leading-order coefficients were also reduced.

A specific, reasonable goal would be to inspect
each process individually and choose, a priori, an
o, most suited to that process. Expansions can be



246 WILLIAM GELMASTEB, AND DENNIS SIVERS

made in that n, and for purposes of comparing ex-
periments the different n, 's can be related to one
another. This is similar to the way in which scale
dependence is conventionally handled.

How well can we hope to do by using a judicious
prescription? The usual folklore 6 is that eventu-
ally the coefficients will grow combinatorially and
the series will diverge. This estimate is based on
diagram counting. However, it is easy to imagine
that with certain renormalization prescriptions,
the combinatorial growth can be avoided. This has
been conjectured by Cvitanovic ' for the case of the
anomalous magnetic moment in QED. He proposes
that gauge sets, rather than diagrams, should be
counted (these sets are bounded in magnitude).
This series would grow like n rather than the n J

which one gets from diagram counting. Of course, -

individual nth-order gauge sets become increas-
ingly complicated and it is highly desirable to find
some quantitative way of bounding these. That is
where it becomes crucial to have made an appro-
priate renormalization prescription. In the QED
Lnass-shell prescription Cvitanovic" finds that
gauge sets appear to be bounded by 2 (o./v)".

The possible convergence of a perturbation se-
ries in QED (and QCD) seems to contradict Dy-
son's argument about the breakdown of the physi-
cal vacuum signaling the nonanalyticity of Green's
functions. Landau pole diagrams may, in fact, be
the signal of eventual divergence of the expansion.
However, this may not happen until a much larger
order than is indicated by simple diagram counting.

B. Gauge dependence of @MOM

The definition of o MQM which we have presented
in Sec. II was obtained by subtracting the values of
propagators and vertices in the Landau gauge. It
is clear from Eqs. (2. 6) and (2. 16) tha, t other
gauge choices will lead to other definitions of the

coupling. Of course, this does not mean that pre-
dictions will become gauge dependent. The gauge
enters the final result only in the definition of the
coupling; that is, it enters as part of the prescrip-
tion dependence and so does not affect the physics.
Another way to see this is to notice that in mass-
less QCD there is only one physical parameter. In
principle, the measurement of one physical quanti-
ty will completely determine all other physical
quantities. True "gauge dependence" would intro-
duce a second parameter and two measurements
would be needed to determine the physics. Off-
shell Green's functions indeed do have this two-
parameter dependence (hence the options of gauge
in aMQM) but for on-shell processes only one pa-
rameter remains.

The gauge dependence of atMQM is derived to be

TABLE VI. A((;, $ ) where O'MQM(&i) =~MQM(&,.) [1
+A((;, (;)& ((;)/&l as in Eq. (6.3).

0
1
3

-2

0
-0.79

~32
0.66

0.79
0

-0.53
1.45

1.32
0.53
0

+1.98

-0.66
-1.45
-1.98

0

(6. 2)
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FIG. 9. Gauge dependence of the @CD couplings de-
fined by subtracting the three-gluon A((, 4), quark-gluon
A'($, 4), and ghost-gluon A"($, 4) vertices. The Landau
gauge has ( = 0.

where

&(f, o) = r~[(8 —
3 I) + $ (—4 +12 I) + h (24)], (6, 3)

where I=2. 343 907 2' ' ' and $ is the gauge param-
eter. [nMoM(0) is what we have'been calling aMoM. ]
In Table VI and Fig. 9 (see Ref. 3) we have tabulated
and graphed this gauge dependence. Evidently, for
small ( the dependence is quite weak. Neverthe-
less, one must address the question of "which
gauge c.an be expected to lead to the optimal defi-
nition of the coupling?"

In order to answer this question we recall some
remarks made in the previous section on "general
principles. " There it was noted that in QED,
gauge-set counting has been conjectured to provide
a reasonable estimate of nth-order terms. All of
this depends critically on the use of mass-shell
renormalization. Similar rules might be imagined
for QCD but first it is necessary to find an analog
for "gauge sets. " One promising idea is that we
should use gauge invariance to reduce the degrees
of freedom in the intermediate steps of the calcu-
lation. On-shell renormalization effectively elim-
inates unphysicaI degrees of freedom from the
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definition of the coupling and also allows for sim-
ple classification of QED gauge sets. The closest
we can come to this in covariant gauge QCD is to
use the renormalization scheme represented by
nMoM((=0). The use of the Landau gauge elimi-
nates the unphysical longitudinal degree of freedom
present in the propagator. This extra degree of
freedom would presumably proliferate in nth order,
causing the coefficients to grow as n I

More precisely, we imagine doing the calculation
in Landau gauge. (In practice, because the physi-
cal answer is gauge-independent, we do the calcu-
lation in Feynman gauge and then convert pre-
scriptions. ) We subtract our propagators and ver-
'tices (in Landau gauge) so that, as usual, high-
order diagrams are small. This then gives us a
result expressed in t'erms of o'MoM($ =0}. We see
that the diagrams involved did not carry the extra
propagator longitudinal degree of freedom.

Following this line of reasoning we might expect
that an even better choice of gauge would be an
axial gauge, where the ghost degrees of freedom
are absent. In these gauges the lowest-order glu-.
on propagator is

v, v( )
b ab lupv + 1vPv + "1 PvPv
P' '"

n 'P (n 'P)' '

(8. 4)

The gauge parameter q' represents an arbitrary
choice of direction and presumably one must
choose q' to be aligned along a typical direction of
momentum flow. This may require an extra de-
gree of insight which may be forthcoming from
those presently engaged in axial-gauge calcula-
tions. If we are to relate otMoM to O'MoM('g) the
axial-gauge-subtracted coupling, we must compute
the axial propagator and vertex. This is consid-
erably more involved than the computations whose
results are given in Sec. II. To date, those cal-
culations have not been done.

C. Other vertices and propagators

In Sec. II we chose to define the counterterms
Zg and Z3. By the Ward identities,

z„=(z, /z, )z, .
Therefore, if we also specify Z, then the quark-

— gluon vertex is completely specified. In particular,
if Zy Z2 and Z, are chosen to minimize high-order
diagrams containing gluon propagators, vertices,
and/or fermion propagator s (momentu m- space
subtraction), there is no guarantee that we have
minimized diagrams containing a quark-gluon ver-
tex. Z& might, in principle, be very different
from Z&~ . In fact, since quark propagators are
attached to quark-gluon vertices it can be shown

+ y,y„e""'P.r,a, ) ...
where, in Landau gauge, '

g2 9 85 85 9
a&

——
2

———+ I+ —(ya——1n4a}
16m' 2~ 12 72 4

+ (Z, b. - P. ')

(8. 5)

(8. 8)

and a2-a6 are invariant functions of the momenta
(at the symmetric point they are functions only of
p ). Lb„are the SU(3) generators of the fundamen-
tal representation. In analogy with Sec. II, we de-
fine Z, ~ to be (in Landau gauge}

g 9 85 85ZMoM
16m'2, 2e 12 72

9+ —(ya —In4a) p.
' . (8. 7)

It is also necessary to use Z2' as defined in Eqs.
(2. 18) and (2. 19). In the Landau gauge, the fer-
mion propagator can be written

&;,(p) = —2~;, (I —Z2v '- l)i '. (8. 8)

We see that in this gauge there are no O(g } cor-
rections to Z2. This is a result familiar from
QED. To be precise, Z2 is chosen so

~MORI —p. (8.9)

As in Sec. II we can now define a coupling constant
gMoM(p. ) which is related to gMoM(p, ) by

g' (p, )=(z 'M) 'z"'M(z '
) 'z '

(p. )

(8. 10)
The numerical result is (weakly) flavor dependent.
For four flavors,

M n(Po)MoMQM(p, ) 1'—0. 12+MOM(P') (8. 11)

It is indeed heartening that ~MoM and ~MoM are

that any physical result must depend only on the
ratio Z&z/Z2 ——Z&/Z3. Therefore, there is nothing
to be gained by doing a momentum-space subtrac-
tion of Z&.

However, if we suspect that high-order correc-
tions are dominated by diagrams with quark-gluon
subgraphs, then we could define a new renormal-
ization-prescription based on Z&~", Z2 ", and

Z3 . In this technique, Z& would be the unadjust-
able renormalization constant.

To define Z&~ we must compute the one-loop
corrections to the fermion-fermion-gluon vertex
shown in Fig. 1. The'result of this calculation
can be written

I"'g'„(y) = (- ig}L;,(y'a&+ pp a2+pr "a3

+Pp'a&+Jr a&
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numerically so close to one another. The practi-
cal consequence of this fact is that, in next to
leading order, results depend very little on wheth-
er they are expressed in terms of a «M or in terms

&MOM ~

Eventually, for high-enough orders, the dia-
grams involving only gluons can be expected to
dominate over those containing fermions. This
follows from looking at SU(3) group factors or,
put another way, — it is a result of the I/iV expan-
sion. For this reason we believe it best to do our
subtractions by defining Z& and Z3 rather than Z&,
Z2, and Z3.

There are, of course, other possibilities that
remain to be investigated. One of these would be
to specify the counterterm Z4 associated with the
four-gluon vertex. We have not computed this
vertex but it would be interesting to see whether
the resulting &MoM is numerically similar to &MoM.

As another alternative we can define Z& and

Z, . These are the ghost counterterms. That
was done in Ref. 3 and leads to

oMQM (p ) —AMQM(p) 1 + 0. 31— . (6. 12)

Again, the two prescriptions give very similar re-
sults.

In deciding which vertices to use in defining the
optimal coupling for a given calculation, we must
study in detail which subdiagrams are important
at high order. This may be process dependent, or
it may turn out that two primitive divergences
share their importance, in which case q might be
defined as some average of the different versions

+MOM.

D. Other combinations of the invariants

In Sec. II we defined Z&
' by subtracting the

term proportional to the tensor [g,„(P—q)
+g„„(q—r)~ +g„~ (r p)„] in -the decomposition of
the three-gluon vertex (2. 11). However, this need
not have been how we chose to make the momen-
tum-space subtractions of that vertex. Here we
will illustrate one of many possible alternatives.
Define three tensors

I';""=g""(p—q)" +g""(q —r)'+g"'(r- p)",
I'", ""= (q —r)'(r P)"(P -q)", - (6. iS)

r ""=~P"&"—~P
The three-gluon vertex at the symmetric point has
the general structure [see (2. 10)]

Now notice that

P I".'"."= [ —(P 'r) ](P"r"+P"P"+ &P")f. ~

(6. 16)

at the symmetric point (this formula can be
checked by remembering that p + q = —r and p =q
=r2). If Z&

' is defined so that

a& —(p ' r) a3 + (Z& p.
' —1) = 0, (6. IV)

then P„I „"," is equal to its "bare vertex value. "
This way of defining Z& could also legitimately be
called a "momentum-subtraction" definition but it
is easy to see from (2. 11) and (2. 16) that Z~

g ZMOM

From this example we see that in choosing a
prescription we must decide which invariants or
combination of invariants ought to be subtracted.
There seems to be a reason to prefer the pre-
scription (Z& ™)which subtracts the term propor-
tional to I 0'"'. the vector g, =&,„„p"q"s,where
s' is some arbitrary vector (chosen so q„&0), has
the property p, I'~""——0=q, I'2"". However, there
is no vector k satisfying k~ I'0" = 0, This is
reminiscent of our discussion of gauge dependence.
We preferred the Landau gauge because it elimi-
nates the longitudinal degree of freedom from the
propagator. Phrased another way, only in Landau
gauge can one find a vector k so that g""k„=0. We
see that by subtracting a& in (6. 14) we leave only
terms I,.""with the property I',.""q, =0. This ef-
fectively reduces the "degrees of freedom" in the
integrals and so, just as in the case of Landau
gauge, we expect that convergence of the series
has been improved.

Unfortunately, the situation is apparently more
obscure for the quark-gluon vertex. In the previ-
ous section we defined Z~&" by subtracting the
term proportional to y' in the decomposition of the
fermion-gluon vertex (6. 5). However, this de-
composition is not unique and could have been giv-
en instead by

r;J', „(I )=(- f)g;I„( 'yb+pp'b, +pub,
+gp'b4+gr" b, +p*"b6)0.

(6. 16)

The difference between this decomposition and that
of Eq. (6. 5) is that y,y„e" p r~ has been replaced
by p+ . Yet another alternative would be to re-
place p* by spy". Noting that p* = —spy~
+ 2p ~" we see that in this new decomposition,
b&, b3, b4 would remain unchanged, and

I' ""~(a I'"""+a I'~""+a31'~"")f

and a& includes the counterterm so we write

a, = 1+a, +(Z, p.
' —1) . (6. iS)

y' b&
—y' (b& + 2p ' r) and p+' bs —spy" (—b6) .

Clearly, the coefficient of y' depends on which
choice of decomposition is made for the vertex.
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(P}=~MoM(l } 1+2 4-o MOM(l (6. 21)

These ambiguities of the fermion-gluon decom-
position give us a further reason for choosing to
define Zf rather than Zf~. Even though there is
some possible question of which choice of invari-
ants to use in defining Zf ", we have seen that a
"natural" choice can be made —one in which a de-
gree of freedom is apparently removed by the sub-
traction procedure. Owing to spin complexities,
a similar natural choice has not yet been identified
for the ferrnion-gluon vertex. Fortunately, since
gluons generally dominate over fermions in high
orders, there may be no need to worry about Zf p

E. What to do when there is more than one
momentum scale

In the absence of other information we expect
that the typical inser tions in higher- order dia-
grams involve a rnomenturn distribution so that

p =q =r2= —Q2. There are presumably process-
es where this symmetric distribution might not be
expected. In that case it would be necessary (in
order to determine oMoM) to compute the value of
the vertex away from the symmetric point. The

Zf is proportional to y' and therefore its definition
seems rather arbitrary. Ross has suggested a
momentum-subtraction method for the quark-gluon
vertex which takes account of the fact that in ma-
trix elements fermions always appear in loops.
He considers the fermion-gluon vertex (at the
symmetric point —p. 2) with a gluon of momentum
q" and polarization e„(for off-shell gluons that
simply means replacing &, g by g,„ in the equation
below). Squaring the vertex and summing over
fermion spins,

r..—-' I")~'&i)u')
stains

p gv 2

- ~.(.*)(p. -'-,—,".)(u. -', ,'q.) .

(6. 19}

If we define, following Hoss,

Hi(v') =
2 [+2(u') —4+~(u')]

(6. 20)

H2(~') =
2 [&2(~') + 4&i(~')],

then in the tree-graph approximation (no loop dia-
grams), H2(p, ) =0 and H&(p, ') =1. In higher or-
ders, only IIf is affected by the counterterm, and
Ross defines this counterterm Z«' ' so that H&(p, }
=1, to all orders. The resulting n, (called o,~
by Goldman and Ross ) is related to oMoM of the
previous section by

calculation is considerably more difficult than the
one giving Eq. (2. 17). In principle, this computa-
tion can be done following 't Hooft and Veltman's
method for determining the value of any one-loop
diagram. ' An explicit formula for the three-gluon
vertex (with massless quarks) can be found in Ball
and Chiu.

A related issue is the problem of what to do when

the process of interest involves several large mass
scales. An explicit example of this can be found in
the calculation of high-p~ hadron-hadron scatter-
ing. Several "masses" appear there —for instance,
S and P~. It may be possible to determine that
dominant contributions could be expected to come
from one mass scale —as opposed to the other. If
it should happen that one mass scale is not easily
preferred over another, then the Z, ought to be de-
fined as an "average. " For instance, if the two

mass scales are p. f and p. 2 then

z,. = —,'[z; (g, )+ z,.(v, )].

QCD corrections of such multimass-scale process-
es can be expected to converge less well than for
single-mass processes (e. g. , deep-inelastic scat- .

tering). That is because no vertex (or subprocess)
has been subtracted at an optimal spot —instead,
a "compromise" subtraction has been performed.

F. Running masses

The entire question of prescription dependence
really amounts to "resummation" of the perturba-
tion expansion. However, it is certainly possible
to conceive of resummations that do not relate (in
any obvious way) to a reexpansion of the coupling
constant. The most obvious of these involves the
identification of logarithms and double logarithms.
Some are readily absorbed into the definition of
the coupling constant (yielding the familiar "run-
ning" coupling) and are therefore just the usual
prescription-dependent quantities. Others may be
related to quark masses or multiple scales (of the
kind described in the preceding section).

When there are particle masses in the theory
these act as parameters and so are subject to pre-
scription dependence. Much of what we have al-
ready said about choosing a prescription can be
carried over directly to the problem of defining
the mass parameters. Of course the introduction
of masses simply aggravates the effects of making
a bad prescription choice. The gluon propagator
in Landau gauge with massive quarks (quarks have
masses m, ) is

II,","(p) = —f6ab g""- "," —,h(p')p',P~P. &

p' p'

where
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3g 13 2 P2 97
k(P ) = 1+—

&
———+yz —In(4v)+In ——

&
+-

16m2 6 p. 36

g2 2 p2———yz + In(4w) + ln —
&m q

.(&+4m, '/p. ')"'+ I . (6.22)

The mass corrections have complicated this prop-
agator considerably but what is of most interest is
the fact that In(p. ~/m, ') appears. If we perform a
minimal subtraction so that only the pole is can-
celed from the propagator, then all propagator in-
sertions will contain the quantity In(y, /m, '). When
p. is chosen to be very large, this logarithm will
also be large. In higher orders the mass effects
will cause the appearance of terms ln" (p /m, '). It
is also worth noting that the QCD P function is, in
the minimal-subtraction scheme, proportional to
the coefficient of the & pole which, in turn, depends
linearly on the number of quarks. Even if some of
those quarks are extremely massive, they con-
tribute equally to the P function. This certainly
contradicts the notion that heavy-particle masses
should decouple from low-energy phenomena. ~ A

way of correcting this would be, presumably, to
define the masses and coupling by a momentum-
space subtraction. Georgi and Politzer~5 have done
this. They chose the renormalization condition
(on the fermion self-energy)

S~ '(~~= ~= —i(P —m).

This definition, combined with the momentum-
subtraction definition of g (based on the quark-
antiquark-gluon vertex in Landau gauge), allows
them to sum the leading logarithms associated with
masses. They do this by solving the coupled equa-
tion given by

16m
' ~ p' (1+4 '/ ')'~'

(1+4m,. '/p, ')'~'+1' dg
+In (1+4, ~/ apya I

=
V

&

(6. 23a)

This is seen to cross thresholds as expected by
the Appelquist-Carrazone theorem —that is,
large-mass quarks barely affect it.

A slightly modified version of the above equa-
tions is presented by Nachtmann and Wetzel, 2 who
do a momentum-space subtraction of the three-
gluon vertex. A comparison of methods is dis-
cussed in detail both by those authors and by Pol-
itzer. 4'

Prescription dependence of masses has been of
Particular interest to those who study grand unified
theories (GUT's). In GUT's it is necessary to re-
late interactions which take place at relatively low
energies (1-150 GeV) to parameters which involve
mass scales -10"GeV. (Examples are the calcu-
lation of the Weinberg angle and the prediction of
the proton decay rate. ) The mass logarithms are
typically - ln(m/10 ) and it is therefore appropri-
ate to sum those logarithms by means of the re-
normalization-group equations and Eqs. (6. 23).
Furthermore, as we have seen, it is important to
do a momentum-space subtraction as opposed to
a minimal subtraction. For grand unified theo-
ries, these methods are somewhat difficult to im-
plement and recently, an alternate scheme has
been suggested by Weinberg and by Ovrut and
Schnitzer. These authors propose using effectiVe
gauge theories in which the effect of heavy parti-
cles is totally absorbed into the renormalization
scale of the strong and weak couplings.

A simple explicit example of the effect of run-
ning masses can be found in Braaten and Lev-
eille. 46 These authors compute the QCD correc-
tions to the decay rate of the Higgs boson into
quarks as

4m2
& = —m'G„12M 1 —

&
(I+a)

8~
and

2 ( 2
—6 ~, I,' In~ 1+ ",p' ( m.', m. dp,

'

(6. 23b)

-=&,(I+(t), (6. 25)

where M is the Higgs-boson mass. Ct is first com-
puted by renormalizing the fermion on mass shell
and is found to be (in the limit m~/M~ —0)

The left-hand side of (6. 23a) is just the m-depen-
dent P function and is approximately given by

a(M)='"' '
—, 61 — .

, 3r ' m
(6. 26)

3

16m ~„~,„, 1+5yyg,. / p,

For large M it is easy to see that a(M) can become
large and negative. However, it is shown that the
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lea, ding logarithms in m/M can be summed, lead-
ing to

in(2m/A„, ) '4'"-'"
]n(M/Amen)

+ nonleading logarithms (6. 27)

which does not cause I' to become negative. The
authors point out that this result can be written as

m(M) 'I"=r, — + nonleading logarithms,

(6. 28)

where m(M) is the running mass. Further re-
marks on this example can be found in a recent pa-
per by Sakai.

voring one prescription over another. However,
it is important to keep in mind that we have only
addressed part of the problem in doing reliable
QCD calculations. For those processes involving
hadrons, calculations must be factored so that
certain divergences are absorbed into parton dis-
tribution functions. This introduces a factoriza-
tion-prescription dependence or a distribution-
convention dependence in addition to the effects we
have discussed here. In a separate paper we plan
to examine the combined effects of renormaliza-
tion-prescription dependence and factorization-
prescription dependence. We hope that this will
provide the framework for a critical evaluation of
QCD phenomenology.
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VII. SUMMARY AND CONCLUSIONS

The definition of an expansion parameter in per-
turbation theory involves certain choices. These
choices should be used to optimize the reliability
of the perturbation expansion. If we look at the
counterterms in three different renormalization
prescriptions for QCD we can see how the choices
used in defining o.'MQM(p, ) introduce zeros into re-
normalized Green's functions at p = —p. . To the
extent that it is possible to estimate the typical
momentum flow in Feynman diagrams, these zeros
can be used to systematically suppress high-order
corrections to physical observables.

Because of high-order effects, the difference be-
tween a good and a bad prescription can have im-
portant phenomenological consequences. We sug-
gest that theoretical predictions in QCD be formu-
lated in terms of nMcM(p. ). Since calculations are
often performed in terms of nM, (p, ) or op~(p. ) we
have provided tables which convert these to expan-
sions in o.MoM(p, ).

A number of explicit calculations in QCD have
been examined in all three renormalization pre-
scriptions. These examples tend to support the
arguments for using momentum-space subtraction.
In the cases studied, the expansions in Q. MoM have
the smallest coefficients. We can, on the other
hand, find several cases where the coefficients
for the expansion in o» are so large as to make
that series completely unreliable. To further test
the ideas beh1nd momentuDl-space subtl action, we
have examined an example in QED where it is pos-
sible to improve on the usual expansion in terms
of a mass-shell-subtracted coupling.

In view of the importance of obtaining reliable
predictions in perturbation theory we have inves-
tigated some of the options for refining the defini-
tion of momentum-space subtraction. This en-
ables us to examine critically the arguments fa-

APPENDIX A: ASYMPTOTIC EXPANSIONS
AND STIRLING'S FORMULA

In order to clarify some of the points presented
earlier concerning the interpretation of perturba-
tive expansions in quantum field theory, it is in-
structive to consider the properties of a well-
known asymptotic expansion. For example, Stir-
ling's approximation for the Euler I' function can

724

722—

720

718—

7I6—

7I4—

7I2—

7IO—

0

ORDER OF CORRECTION

2—"' 3—rd

FIG. 10. Stirling's approximation for I (7) = 720 in
Eq. (A5) as a function of order for different values of
~ and o.'= (y+ 1/G. ) ~.

In the course of this work we have benefited from
the advice and opinions of L. Abbott, A. Buras,
A. Carter, S. Gottlieb, and T. Gottschalk. This
work was performed under the auspices of the
United States Department of. Energy.
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be written 8

r()/ ) = r, ()/ )()
139

with

F (I/&) e-'(/ u&" ((/)).'-j/2)(n(u)(2&)(/2 (A2)

the integral which defines the I function. The ex-
pansion is known to be very good. For o & To, it
is possible to achieve better than 1/& accuracy by
neglecting all the terms in (Al) except the first.
The applicability of (Al) and (A2) can be seen to
depend on the "natural" choice of 0 as an expan-
sion parameter. If we write the expansion for
I'(1/n) in terms of the variable o."where

This is not a convergent series. It is obtained in
the limit e -0 by a saddle-point approximation to

n = o'/(I+ o'~),

the expansion (Al) becomes

(A3)

(36m" + 168y + 96r —36r + 1)
288

(1080r + 11 8802 + 30 780' + 11 520r —8010r + 450r + 139)
51 840

(A4)

For even modest sizes of r, the expansion (A4) is not very well behaved in that the contributions of the
higher-order terms make sizable corrections for all but miniscule values of n. This merely reflects the
fact that we are expanding in an awkward expansion parameter. The expansion can be improved somewhat
by noting that some of the terms in (A4) can be summed to give

r( +)/ ) = r, (,+)/ )(i+—, ,, — + ', , " ),
(. ' (24r 1) „—(432 0r' —360r —139)
12 (A6)

l 0000
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I 000
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which is better behaved. Some numerical compari-
sons of the three asymptotic series for I (1/o) are
given in Figs. 10 and 11.

The differences between the Euler I' function
and a field-theory perturbation expansion are also

impor tant. In ordinary field- theory calculations
we are not granted the knowledge of the (functional)
path integral which would enable us to decide what
expansion parameter is natural. Instead, once we
have decided on a definition for o, we have a com-
plicated set of procedures based on the Feynman
rules and the renormalization and regularization
prescription for calculating the coefficient of 0'",

in an expansion for a physical observable. %e can
change the definition of o, provided we reexpand
everything in the new parameter. Our criterion
for a good expansion is simply that it provides a
good estimate of a physical effect.

It is also instructive to compare the three expan-
sions for I (1/n) in the case when o(, o', and r
are given by

1—= clnt,
Q

1 = (c —1)lnt, (A6)

FIG. 11. Dependence on the parameter y of different
orders in Eq. (A4) for I (7) =720.

x= lnt.

The expansion (A4) has correction terms which
behave as
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C(n) cc r2ezzn 0(inf)n (Av) occur when

and the expansion gets worse as t grows. After
resumming to get (A5) we see the nth correction
term now behaves as

C (n) ~ ~-f& ln 1
lnt

(As)

c("'~~"-o ~
(A9)

which become progressively less important at
large t.

It is often convenient to multiply and divide
asymptotic expansions, but care must be taken
when doing so. For example, using the recursion
relations for the I' function we can write directly

I (r + 1/D) — 1= o. "[1+
2 or(r- 1)+ ' ']. (A10)

and, hence, gets better as t —~. However, the
ratio of the n and n+ j. terms remains constant as
f-~. The change from (A4) to (A5) is an example
of the procedure known as "summing leading log-
arithms. " In terms of the "natural" expansion pa-
rameter a, the series (Al) has correction terms

27'& —o (A13)

APPENDIX B: PRESCRIPTION DEPENDENCE
OF THE P FUNCTION

The per turbative expansion of the P function is
defined by

d,
= Pog' -Pig' -P2g'-+ "dg

If we define g' by

g' = g+ ag + bg" + —a=0= b-
dt dt

(a2)

and the P' function by

In doing perturbation theory for particle physics
we often have to continue from spacelike regions
(where amplitudes are well behaved and free from
singularities) to timelike regions. We have often
lost information about the analytic structure of
physical observables in making our approxima-
tions. A continuation such as (A12) which takes
into account the proper singularity structure (A11)
is bound to be better than one which does not.

This can also be recovered by evaluating (A4} at
n' = & and dividing by (Al). It is also important to
realize that the analytic structure of an asymptotic
expansion is not necessarily compatible with the
original formula. The I' function is meromorphic
with poles at the negative integers I/o.'= —N, N

=0, 1, 2, . . . . The expression (A2} does not have
these poles but does have oscillatory behavior with
& & 0. The expansion (Al) can be seen to be valid
for larg I/o I & m, We can observe the following
relation by multiplying (Al):

r(1/n)r( —I/n) I;, „=2 ioe '" "[I+O(a )+' '']
(A11)

[where I/n = Ie l(1 —ie) defines the branch of the
logarithm in (A2)]. We also have an exact expres-
sion

dgg pl gl3 Plgls Plg17 + ~ o ~

dt

then by (a2)
l

dt
= —Pt g —3t30ag ' —3~0bg —3a Po g

—P(g' —5Pfag' P2g'—
However,

dg d= —(g+ag + bg'+ )dt dt

= (1+3ag'+5bg )—4 dg

= —J308 —P8 —~2g —3a~og

—3ap&g —5bp0g + ' ' ' .

(a3)

(a4)
F(1/o. )r(-1/o) =—

= 2mine '" "(1—e"'/ )
'

Equating (a3) and (a4) we have the relationship
between P functions,

(A12) I 0 ~0~ Pg =0(, (a5)

The difference between (All) and (A12) is highly
nonuniform in e and (All) misses the poles which

p,
' =I-3, + 3aI3, + 5bp0 —3~ob —3a ~0 —5I-Ii

= p~ —.2apg+ 2bp0 —3a p0.
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