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The definition of the energy-momentum tensor as a source current coupled to the background gravitational field
receives an important modification in quantum theory. In the path-integral approach, the manifest covariance of the

integral measure under general coordinate transformations dictates that field variables with weight 1/2 should be
used as independent integration variables. An improved energy-momentum tensor is then generated by the

variational derivative, and it gives rise to well-defined gravitational conformal PvVeyl) anomalies. In the flat-space-
time limit, all the Ward-Takahashi identities associated with space-time transformations including the global

dilatation become free from anomalies in terms of this energy-momentum tensor, reflecting the general covariance of
the integral measure; the trace of this tensor is thus finite at zero momentum transfer for renormalizable theories.
The Jacobian for the local conformal transformation, however, becomes nontrivial, and it gives rise to an anomaly
for the conformal identity. All the familiar anomalies are thus reduced to either chiral or conformal anomalies. The
consistency of the dilatation and conformal identities at vanishing momentum transfer determines the trace anomaly
of this energy-momentum tensor in terms of the renormalization-group P function and other parameters. In
contrast, the trace of the conventional energy-momentum tensor generally diverges even at vanishing momentum

transfer depending on the regularizati'on scheme, and it is subtractively renormalized. We also explain how the

apparently different renormalization properties of the chiral and trace anomalies arise.

I. INTRODUCTION

The Ward-Takahashi (WT) identities are formu-
lated by means of the variational derivative in the
path-integral formalism without referring to the
equal-time commutator nor equations of motion.
All the known anomalies are then identified as the
nontrivial Jacobian factors in the path-integral
measure. " The anomalies are thus related to the
incompatibility of classical symmetry properties
with the quantization procedure. The integral
measure is generally defined by using a complete
set of basis vectors'; we thus effectively intro-
duce the notion of "representation" into the path
integral, and it is formally shown that the mea-
sure is independent of the basis vectors chosen.
The appearance of the anomaly, however, signals
the failure of this naive unitary transformation
among different sets of basis vectors (or different
representations in the operator formalism), as
the Jacobian factor is strongly dependent on the
basis vectors chosen. ' For example, the choice
of the plane-wave basis corresponds to the inter-
action picture, and all the Jacobian factors be-
come physically trivial in this basis. As the cor-
rect choice of basis vectors for nonlinear sys-
tems is not known in general, the explicit evalu-
ation of the Jacobian factor is not possible except
for several simple cases.

It is, however, important to recognize that all
the known anomalies' have been identified as the
Jacobian factors. In the path-integral method,
therefore, we can anticipate all the possible an-
omalies in WT identities by keeping track of Jacob-

ian factors. Moreover, those %T identities, such
as the original vector %T identity in electrodyn-
amics, which do not contain any Jacobian factor,
are expected to be free from the anomaly: Those
%T identities hold irrespective of the choice of
basis vectors (or the representation) and, in
particular, they hold in the interaction-picture
perturbation theory without losing any information
contained in the Jacobian.

In this paper we first define the path-integral
measure which is invariant under the general co-
ordinate transformation by using the weight--',
field variables. "%e then show that the energy-
momentum tensor, which is defined as a source
current for the background gravitational field by
the variational derivative, gives rise to a well-
defined conformal anomaly in curved space-time.
In the flat-space-time limit, this tensor exhibits
satisfactory high-energy behavior. In particular,
the "dilatation identity" is free from the anomaly
essentially due to the general covariance of the
path-integral measure, and the trace of this ener-
gy-momentum tensor becomes finite at vanishing
momentum transfer for any renormalizable theo-
ry. However, one cannot simultaneously remove
the Jacobian factor corresponding to the conformal
(Weyl) anomaly. ' ' All the familiar anomalies are
thus reduced to either chiral" or conformal an-
omalies, which share the interesting algebraic
characterization. ' It may be worth noting that
both chiral and conformal symmetries are strongly
dependent on the space-time dimensionality, while
the general covariance is not.

The consistency of the dilatation and conformal
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identities in the flat-space-time limit determines
the conformal anomaly at vanishing momentum
transfer by means of the renormalization-group
equation. The conf ormal anomaly thus determined
is consistent with the direct estimate of the Jacob-
ian factor. This indicates the self-consistency
of the path-integral formalism.

II. SPACE-TIME PROPERTIES
OF THE PATH-INTEGRAL MEASURE

In the path-integral formalism, it is rather easy
to incorporate manifest covariance under space-
time transformations. Vfe first recall that the
path-integral measure for the fermion field g(x}
is defined in flat space-time as

d p =-„., Sq(x)uy(x) (2.1)

px p x g x=6„ (2 5)

and the coefficients a„and 5„arethe elements of
the Grassmann algebra. " Then

d p =, .. .u((x)S&(x)

da b
1

det[gi/4p (x)'l] det[gl/4p (x)] .i. n n
n m n (2 7)

by noting that the translation-invariant integral
over the elements of the Grassmann algebra is
equivalent to the left derivative. " The Jacobian
factor in (2.7) may be regarded as consisting of
matrices whose rows and columns are specified
by& and n, respectively. The Jacobian is then
evaluated as

which differs from

(2 2)

det[g'/'q „(x)']det[g '/'y„(x)j= det Q Mgy„(x)'y (x)
x

=det d gyp ty g
by a Jacobian factor associated with the y, matrix.
Although (2.2) is more closely related to the can-
onical quantization scheme which suggests"

dp -.„,~v(x}ag(x),

= det[5„]= 1. (2.8)

The measure (2.7) thus becomes (up to a trivial
normalization factor)

dP=-. .. , S)((x)uy(x) (2.3)

with the field variables with weight —,

j(x) =-g'"q(x), /I/(x) -=g'"q(x) . (2.4)

The choice of (2.3) is dictated by the manifest
covariance under the general coordinate transfor-
mation as can be understood as follows.

We first expand p(x) and p(x) in terms of a com-
plete set of spinor basis vectors (in Wick-rotated
space B'):

((x) = Q a„q„(x)= Q (n
~
x)a„,

n n

q(x) = Pb„y„(x)~= g(x ~n)b„

with~2

(2.5)

we prefer (2.1) on the basis of the manifest Lor-
entz covariance. Note that tt/(x)~ ha, s rather com-
plicated transformation properties under the Lor-
entz transformation. The difference between (2.1)
and (2.2) is a trivial Jacobian factor in a finite
theory, but (2.1) is better suited for maintaining
manifest Lorentz covariance in the field theory
with an infinite number of degrees of freedom. In
fact the chiral anomaly, for example, can be de-
rived in a natural manner' on the basis of (2.1).

In curved space-time, (2.1) is now replaced by"

dp=. .. , dumb„.
n

(2.9)

The general coordinate and internal SO(3, 1) [or
80(4) in the present Euclidean theory ] transfor-
mation properties are carried by y„(x)in (2.5),
and the coefficients a„and b„are scalars under
these transformations.

This argument shows that we should use the
fields with weight —, in (2.4) to define the man-
ifestly covariant path-integral measure. This
argument of manifest covariance is quite general
and it applies to other fields such as the scalar
field,"as the weight factor g' essentially arises
from the covariance of the volume vg d'x. (The
manifestly covariant measure generally differs
from the measure derived from the naive phasespace
path integral by a Zacobian det[( g"(x)) ' '5(x —y)]
for each degree of freedom. ) It is formally shown
that the path-integral measure is independent of
the choice of basis vectors in (2.5), and a change
of basis vectors corresponds to a change of the
representation in the operator formalism; we can
thus specify the path integral more precisely by
means of the expansion (2.5).

The important implication of the choice of (2.4)
as integration variables is that the energy-mo-
mentum tensor defined as a source current for
the background gravitational field becomes in
quantum theory"
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vg T„„(x)—= h, ~(x) h„l,S(h,",g, ~), (2.10) S(e'h", e ' 'jtj, e "g)= S(h' jtI ~)

which differs from the classical energy-momen-
tum tensor

~gT,„(x)= h„(x)-„„S(h,",P, g) . (2.11)
5

Q x

Here S(h, (, ()= S(h—, jtj, ~) is a classical Euclidean
action and h,"(x) the vierbein field h,"(x)h'"(x)
—=g""(x). We note that the quantized energy-mo-
mentum tensor (T„„(x))transforms as a well-de-
fined second-rank tensor. [At the classical level,
where the equations of motion may be freely used,
the difference between (2.10) and (2.11) is trivial.
At the quantum level, however, the equations of
motion when locally multiplied by other operators
cannot simply be set to zero, and this gives rise
to a difference, for example, between (4.19) and
(4.20) below. ]

III. GRAVITATIONAL CONFORMAL ANOMALIES

The gravitational conformal anomaly associated
with a quantized scalar field has been discussed
elsewhere. "We here illustrate the path-integral
method for two simple examples. The discussion
in this section also serves to fix the notation for
the discussion of spinor electrodynamics in the
next section.

A. Fermion field

We consider the free fermion field inside the
background gravitational field

+ dxoxm x

in terms of the variables (2.4}, or equivalently,

h(x)T„"(x)= ', f(x—) = S+ ' f(x) S

jtj(x) - jtj'(x) =- e- '"'"jt(x),

Yj(x) —7jj'(x) =—e '"'h-q(x) .
(3.5)

Under this transformation, the measure (2.9) is
transformed as

I

dp, -dp exp n x A, x h x dx (3 5)

with

A, (x)-=+q.(x)'q.(x) (3.7)

if one remembers that the coefficients a„in (2.5)
are transformed as

a„'=Q J
y„(x)te '"' qj (x)h(x)dxa

(3.8)

under (3.5); the Jacobian in (3.6) corresponds to"

(3.4)

by remembering the defintion of T„„in (2.10).
We next derive the local identity associated with

the change of integration variables

S= g x gdx—= hx s D„-m dx, [detc„]' = exp n( )Ax, ( )hx( )dxx (3.9)

where

( )-=h"( ) ', ( ', "] = 2G'",

Smn Sam [+ nt ~ &]

for infinitesimal o,(x).
The variational derivative (the change of inte-

gration variables does not change the integral it-
self}

C „„=hj,(&,h"„—e,h„),

(y", y "$=2h;h,"G"=—2g' "(x),

(3.2)

with

( )
Z(ji, ji) ~—= 0 (3.10)

h(x) =- det[h:(x)] = &-g . z(jje= —f du exp s+ f,(jjij+ jjqjdx (3.11)

The metric for the local Lorentz frame is G"
=(1,-1, -1,-1) which becomes G"= (-1,-1,-1, -1)
after a suitable Wick rotation in the local I.orentz
frame, e.g. , h", ih,", h- -ih (thus S---iS), and y'
--zy with y =—y y y y .

The action (3.1) satisfies the local conformal
(Weyl} symmetry property

gives rise to (by discarding source terms)

+

From (3.4) and (3.12), we obtain the WT identity



ENERGY-'MOMENTUM TENSOR IN QUANTUM FIELD THEORY 2265

h(x)( T„"(x)}= a(x)A, (x) +m(P g(x)) . (3.13)
It is formally shown that the path-integral mea-

sure is independent of the choice of basis vectors
(2.5). But this naive unitary transformation among
different sets of basis vectors fails in VfZ iden-
tities with the anomaly, as the anomaly factor
(3.V) strongly depends on the basis vectors chosen.
From our experience in the case of the topological
chiral anomaly, "we evaluate A, (x) by means of
the basis vectors for P= y "D„in (3.1) (the "Heis-
enberg representation""):

A, (x}= lim gq7„(x)e-&',~»'&&& (x)
N-+~ n

(s.15)

There are various ways'" to evaluate (3.15);
quote here the result which appears in the inter-
mediate stage of the f regularization":

4q „(x)= X„q„(x), Jt y (x)'y„(x)h(x)dx=6„
(s.14)

We sum the series in (3.7) starting from small
eigenvalues

I y„ls~ as

(3.16)

(T„"(x)),=m(gg(x)), + 2(~~D"D„R+& R2 —& R„„R~"— 7 R& '&'R„„,).1 (s.lv)

We note that 8„„is symmetric, whereas T, „and
T„„arenot. We do not symmetrize T„„andT„„
at this moment, as the antisymmetric part of T~

„

and T„„generatesthe "spin-rotation, " and it
simplifies the derivation of the basic identity (4.26)
below.

The tensor 8„„is manifestly gauge invariant and
satisfies the relation

B. Electromagnetic field

We consider the Euclidean action

S= ' dxh(x)(-'g "g ~Z..Z„,)
with

(3.19)I„„=8„A„-8„A„.

The second term in (3.16) depends on how to sum the series in (3.7), and it is customarily eliminated by
a suitable regularization scheme such as the f regularization. " We thus obtain the conformal identity
for the connected components"

a(x)e„„(x)=- h„.(x) „„,—,S(a".,A„)

=h&x&~ ""g"g"E„E„-g"F„,E„,),
I 4

(3.20)

a(x)r„„(x)=-a„.(x),„„}S(a:,A.)
Q S

= a(x)e„„(x)—a„.a"„A,(x), ,S, (S.21)
Q X

h(x)r. „(x)=h„.(x) „„,,S(h.",A.)

where

= h(x)r„„(x)+',g.„A,(x) &, -, S, (3.22)
yh&J

S(h, A„)=-S(h, A.) = S(h, A, ),

and (3.23)

A.=h."(x)A„(x), A.(x)=Ma(x)A. (x).

We obtain various energy-momentum tensors de-
pending on the choice of independent variables in
the action (3.18):

e. (x)=o (3.24)

which is a result of the invariance of the action
(3.18) under the conformal (Weyl) transformation

h". (x)- e &*&a".(x),

A„(x)-A„(x).
(3.25)

The tensor T„„(3.21) corresponds to the canonical
energy-momentum tensor, as A, (x) -e '"&A,(x)
under (3.25) and the conformal weight of A, (x) co-
incides with the naive canonical dimension: The
choice of the variable A, (x} is also consistent with
the description of the spin degrees of freedom
with respect to the internal SO(3, 1) [or SO(4) in
R4] symmetry. The tensor T„„(322) is dictated
by the manifest covar iance of the path- integral
measure [see (3.34)], and A, is transformed as

A.(x) —e- & "&A.(x) (3.26)

under (3.25). Although T„„andT, „arenot mani-
festly gauge invariant, it is not a drawback in
quantum theory where the gauge symmetry is re-
placed by the Becchi-Rouet-Stora (BRS} sym-
metry. ~6

To quantize the theory, we choose the Feynman
gauge
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(S;").,-=(-i)(5.5", —5;5."). (3.29)

The scalar fermions c(x) and c(x}are the Faddeev-
Popov ghosts. The action (3.27) satisfies the
local conformal-symmetry relation

S(e™h.",e 'A, ; c, e ' c) = S(h", ,A. , c, c)

+ dxhx e, e xJ'x,
(3.30)

where

J'(x) -=2[A~(D„A')—ig""cs„c] (3.31)

and c(x) =3(h c(x), c(x) =3(h c(x} The .relation (3.30)
gives rise to an identity after quantization (by dis-
carding the source terms):

h(x)( T."(x))+ h(x)D. (J"(x))

= A.(g) A (
)3)+2(3(x)

( )3). (3.32)

The right-hand side of (3.32) is converted into the
anomaly by the variational derivative (3.10) asso-
ciated with the change of integration variables

A, (x) -A, (x)' = e "*'A,(x}, (3.33)
c(x)-c(x)'=e-' '"'c(x).

We note that the covariant integral measure is de-
fined by

S=- JI dxh(x}[ '-g-""g ~~F„F —-'(D g""A„)'

+ ic(x)D"e„c(x)]

dx h(x)( -', A.(x)[(D"D„)"—R"]A,(x)

+ i c(x)D' D„c(x)), (3.27)

where D~ acting on A, (x) i,s the full covariant de-
rivative

D„=-S„+ir, U.' -'A „„S;" (S.26)

with U ~ an appropriate genera, tor of GL(4, R) and

S," a generator for the Lorentz vector representa-
tion

with c„the ordinary number, and n„and P„the
elements of the Grassmann algebra. We thus ob-
tain the conformal identity

(T,"(x)&+D„(J"(x))= -A, (x)+2A, (x) (3.36)

with the Jacobian factors [see Eqs. (3.8) and (3.9)]

A, (x) =- g V„(x)'V„(x),

A, (x)= g S„(x)S„(x).
(3.37)

The sign difference on the right-hand side of (3.36)
arises from the fermionic nature of c(x).

In the explicit evaluation of anomaly factors
(3.36), the basis vectors V„arechosen to be the
eigenvectors.

[(D"D„)," —R, ]V, „(x)= A„V,„(x),
(s.ss)

Jt dxh(x) V„(x)'V.(x) = 5„.
with D„the full covariant derivative (3.28}. Sim-
ilarly, we use &'D,S„=A.„S„for the scalar basis.
Following the standard procedure (3.15) and (3.16),
we obtain (see Brown and Cassidy' )

(s.s9)

4A ( } +( } (—+R — DD R+—

—3'2R„„„R'""),(3.40)

and finally the conformal identity for connected
components"

(3.41)

IV. ENERGY-MOMENTUM TENSOR AND
ASSOCIATED IDENTITIES IN

RENORMALIZABLE THEORIES

(T„"(x)),+D (J~(x)),=
( )2 (36R +~~~D~D„R—g~~~R„„R""

where

.„dc„do.'PP„,
n

A.(x) = g c„V.„(x),

c(x) = Qo.„S„(x),

c(x) = QP„S„(x),

dp=—„,.SA,(x)uc(x)X)c(x)

(3.34)

(3.35)

The treatment of conformal anomalies in the
preceding section crucially depends on the eigen-
value equations (3.14) and (3.38). For renormal-
izable theories in the flat-space-time limit, one
deals with nonlinear systems for which the "cor-
rect" choice of basis vectors is not known in gen-
eral. As a result, the explicit evaluation of the
Jacobian factor is not possible except for several
simple cases. Nevertheless we show here that the
path-integral method is powerful enough to prove
several fundamental renormalization properties of
T„„(x)and other tensor quantities. The strategy
we employ is to use suitable tensor quantities so
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that the resulting %T identities do not contain the
(basically unknown) Jacobian factors. We illus-
trate this for spinor electrodynamics.

A. Spinor electrodynamics

%e start with the Euclidean action defined by the
I'eynman-type gauge in the background gravita-
tional field

S= dg h x iy'5,"D„-m,
,' g""g—~F„F„q— (D„A")2],

0

(4.1)

where z""=a" =1 and 4 stands collectively for
weight- —,

' fields [see Eqs. (2.4) and (3.23)]:

e(x) =- (g(x), f(x),A. (x)). (4.6)

The tensor T„„(4.5) gives the quantized source
current for the background gravitational field in
the covariant path-integral formalism. The expli-
cit form of T„„in the flat-space-time limit is
given in Appendix A.

The general covariance of the action (4.1) gives
rise to an identity (in the flat-space-time limit)

dxx„x"(x)T {»)="f„dxx (x)[9 e(x)] e5C x

where D, acting on g is defined by

(4.2)

+l[x.x (x)]e(x) ee

(4.7)

by considering the variations

See also Eqs. (3.2) and (3.27). As we are eventual-
ly interested in the flat-space-time limit in this
section, we ignore the Faddeev-Popov ghosts in
(4.1). Various energy-momentum tensors, corre-
sponding to (3.20)-(3.22), are defined from the ac-
tion (4.1) by"

e,„(x)=„()
a„.(x)5„„() S(h"., y, q, A„)

= 2]T)i(y„D„-D„y„)g—g ~F F„z
+ ,' h,„h,„h,e'™—D'(gy„y,P) —g„P(x)

5h."(x)= —e'(x)s.h". (x)+ [s,~" (x)]a'.(x),
5C (x) =-e™(x)s.e(x)

——eg„.[s,~')g'"+ (s,~")g"'] C (x)

(4.8)

corresponding to the general coordinate transfor-
mation

x"-x'" -=x" +g" (x). (4.9)

e(x)- [1+{)'(x)]e(x) (4.10)

We next derive two local identities associated with
the change of integration variables

+—(A„B„+A„B„)(D A ) — ~ "D~ (A D~A~),

(4.3)

and

C (x)- [1+~"(x)S.] 4 (x) (4.11)

h(x)T„„(x)-=a,„„S(a:,q, y, A.) by means of the variational derivative (the change
of integration variables does not change the inte-
gral itself)

=h(x)e„„(x}-a, .a„'A,(x),A, , S,
Q

X

(4.4)
with

( )Z(J) —= 0 (4.12)

h(x)T„„(x)-=a„.,„„,)
S(h:,y, y, A.)

=h(x)T„„(x)+-'.g„„4(x)5@( )
S,

(4.5)

Z(d)-g~ f ',
, ; ee(x) exp(S+ J[d(x)e(x)

dxJ
.

(4.13)

%e thus obtain, respectively,

N
~ ~ ~ ~ ~ ~e(») e{» ) ~ ~ ~ e(xx) )e ([d(x)e{» ) ~ ~ ~ e{»„)])+ g d(x-x ){[e(x)'' ' e(x ) ''' e(x„)])={)

e l=i

(4.14)

and
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[ .4'( )] @(,) "c'( ) +-, s.&[&( )c'(,) 4'( )].)~ ~ ~
~s

+

N

5(x-x )& ([4(x ) '''C'(x )'''4(x )] )=0. (4.15)

Here [ ~ ], corresponds to the covariant T* product in the operator formalism. ' The Jacobian factor
(anomaly) is defined by

&(x) =- -2&,(x)+&,(x)

with [cf., Eqs. (3.V)-(3.9)]

(4.15)

&,(x) -=g q„(x)'p„(x), (4.1V)

~,(x) =- P V„(x)'V„(x) {4.18)

(4.19)

in terms of the complete sets of basis vectors introduced to define the path integral [see Eqs. (2.5) and
(3.35)]. The minus sign in front of &,(x) in (4.16) arises from the fact that a„and 5„in (2.5) are the ele-
ments of the Grassmann algebra.

Combining (4.'I) with (4.14) and (4.15), we obtain the loca/ WT identity

s„&[T"„(x)e(x,) "~ C (x„)]g= g [5(x -x,)s„--.'s„5(x-x,)]([C(x,) ~" C (x,) ~" C (x„)].).

+ —.'s„([&(x)C(x,)"~ e(x„)],) {4.20)

and the finiteness of the left-hand side cannot be

We emphasize that the possible anomaly terms
completely dropped out of this final result, re-
flecting the general covariance of the path-integral
measure (i.e., the quantization procedure is com-
patible with classical space-time symmetries).
This cancellation of the anomaly for T,

„

is there-
fore quite general and it takes place for any theo-
ry such as gauge theory. The left-hand side of
(4.19) is thus finite up to the ordinary wave-func-
tion renormalization factors (for any regulariza-
tion scheme) in renormalizable theories. " In con-
trast, the tensor T„„(x)(4.4) in the flat-space-
time limit satisfies an identity with the anomaly
(4.15}:

s, &[T"„(x)C(x,)" C(x„)],&

N

6 x-x, e„' 4 x, '''4 x, '''4 x„

proved from this identity.
We next derive identities associated with the in-

variance of (4.1) under local Lorentz transforma-
tions

C(x)- 1+-~„(x)S"C(x),

a". (x)- 1+-~„(x)S"I (x)
a

(4.22)

with S»' the appropriate generators of SO(3, 1) [or
SO(4) in R~] for the Lorentz spinor g(x) and the
Lorentz vectors A, (x) and h", (x). We have the
symmetry relation

(S"I'(x)).5„„+(S"4 (x)). = 0.&S ~s
' &h". x '5C, x

(4.23)

This relation when combined with the variational
derivative associated with the change of variables
(4.21) gives rise to the local WT identity

{S")'&[T;(x)C(x,) "C(x.)] )= g &(x-x.)([C(x ) ~ ~ (S"'C(x )) ~ ~ ~ 4(x )] )
m=1

with

(4.24)

(4.25)T(»)=xh;( )x5, )
.5S

g x

The Jacobian (anomaly) for the non-Abelian symmetry (4.21} identically vanishes; X)f and Dg give rise to
Jacobian factors with opposite signs, and the Jacobian for &, vanishes due to the antisymmetry property
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of 8»' (3.29). In the flat-space-time limit T„is identified with T„„,and (4.24) together with (3.29) shows
that the antisymmetric part of T„„is a finite operator for renormalizable theories. By decomposing T„„
into symmetric and antisymmetric parts by T"„=T~~„+T„"„in (4.19) and using (4.24) for the antisymmetric
part, we obtain

s, ([T'„(x)C(x ) ' ' ' 4(x„)],&= Q [&( x-x, ) S„' +—'is, &(x -x,)S"„(I)——S„5(x-x,)]

x ([C (x,) ~ "C (x,) ~ ~ @(x„)].&. (4.26)

B. Global space-time symmetries

By integrating (4.19), we obtain

QS.' ([4(x,)" C(x, ) "C(x„)],) =O, (4.27)

I

from the anomaly, whereas T„„in (4.4) gives rise
to an identity with an anomaly due to the second
term in (4.20). Equation (4.29) shows that the
trace f dx T "(x), is a finite operator in renor-
malizable theories.

which is a statement of global translation invari-
ance. By multiplying (4.26) by x" in an antisym-
metric manner and integrating over x, we have

g[(x,„e„'x,„s„')-iS„„(I)]

x ([4'(x,) ~ c' (x, ) . ~ @(x„)]) = 0, (4.2S)

which is a statement of the global Lorentz invari-
ance in the flat-space-time limit. We can derive
the same set of identities (4.27) and (4.28) starting
from T„,in (4.20), as the second terms in (4.19)
and (4.20) do not contribute to these identities; in
other words, the Poincare invariance alone
cannot exclude the anomaly in (4.20).

Multiplying (4.19) by x" and integrating over x,
we obtain"

a: (x) —e""'a;(x),
y(x) —e ~'"'"$(x), P(x) —e I'"'"y(x),

A, (x) —e '"'A, (x) .
(4.so)

The action (4. 1) under (4.30) gives rise to the re-
lation (in the flat-space-time limit)

J)dxc.'(x) T, '(x) = dxn(x) vp(x) + v'g(x)-

+A.(x) +m, gy( )

C. Conformal anomaly

We next derive the "conformal identity" associ-
ated with the local conformal (Weyl) transforma-
tion

dx T ~xcC xi '''4x +J( dx &,a(x)&'(x) (4.sl)

N

, 8„—2N 4 C', '4
(4.29)

with [see Eq. (3.31)]
Z" (x).=- (2/~, )A' (8,A") . (4.sa)

I

We call this the global "dilatation identity" asso-
ciated with x —eI'x in the following. The dilatation
identity' expressed in terms of 7

„

is thus free
I

Equation (4.31) combined with local identities sim-
ilar to (4. 14) gives rise to the local "conformal
identity"

([T„"(x)C(x,). e(x,)1.& = — Z
l = feonions

—,&(x —x, )&[C (x, ) C (x,). 4 (xN)ID

l =yhotons
x xl @ xy @' xl '4 xN +

+ma([ jy(x)@(x,) ' 4(x»,)].& +(([A,(x) -A2(x)le(xl)' ' '@(xg63

(4.33)
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where the anomaly factors are defined in (4. 17)
and (4. 18).

Although we cannot evaluate A, (x) explicitly
[A, (x) corresponds to the familiar trace anomaly'
as will be explained in the next section], we can
determine the combinationA. , (x) —A, (x) at the zero-
momentum-transfer limit by the consistency of
(4.29) and (4.33):

d A., x -A., x +m, x,@x, @ x„

Nf Ng x$ B~ @ xl @ x+
)=1

(4. 34)

or in terms of the renormalized Green's function

(
B +D~ G„x„.. .-, x„=0, (4.38)

B BD„=P(e)—+ 5(e)m + ~[X,);(s) +X„y„(e)]Be Bm

B+~(e)(—
ap

fixes the right-hand side of (4. 35) as

where p. and m stand for the renormalization point
and the renormalized fermion mass, respectively.
The dimensional identity (4.37) combined with a
particular form of the renormalization-group
equation"

G„x„.. . )x„) dxA, x -A, x +m, x, G„x„.. . , x~; dxA. , x -A., x +m, x,
fNi —-N —Q „x,'B,')G, (x, , . . . , x ), (4.35)~ ~ ~

~=1

where Nz and N~ stand for the numbers of fer-
mions and photons appearing in the Green's func-
tion, respectively; X&+N„=Nwith ~z ari even
integer. Equation (4.35) shows that the connected
component

~ ~ ~ ~ ~

B
-mB +D~ G„x„.. . , XN . 4.40

This relation operationally determines the con-
formal anomaly A, (x) -A, (x) at the vanishing mo-
mentum tra, nsfer. By combining (4. 40) with (4. 29)
or (4.33), we obtain (in Euclidean metric)

dxA, -A x +m, x,

G„(x„.. . , x ) =x '"~" "&f(px,m/y).
which suggests

(4. 38)

gx, a)G („.. . , x„)

~ ~ ~

~

B B—32' —t)t~ + p—+m G (x„.. . , xs),a jL(. Bm

(4.37)

is a finite operator.
We next recall the dimensional structure of

G„(x„.. . , x„).

G„x„.. . , xN; dx T
4

~ ~ ~ ~

B
DN —m- —pN~ —N~ G„x,, . . . ,x„,4.4],

where the conformal weights in (4.30), -& and -1
for (I) and A„respectively, explicitly appear.

From our derivation, it is clear that the identity
(4.41) is quite general. and we can derive a cor-
responding identity for any renormalizable theory
including gauge theory. It is gratifying that the
quantized source current T

„

for the background
gravitational field has satisfactory high-energy
behavior.

D. Connection with the conventional perturbation theory

In the fiat space time limit, the—ordina-ry field variables and the weight-~ variables (4. 6) become in-
distinguishable in the path-integral measure. We can thus convert (4.19) and (4.33) into WT identities
for 8 „(4.3) by remembering the definitions (4. 3)—(4. 5) and the identities similar to (4.14). We thus
obtain

a,&[e „(x)e(x,). . A (x,). e(x„)].&=+5(x—x, ) „&[e(x,). . A (x,) . e(x„)]&

and

Cx . . A x Cx„
k=photons

—.5( —,)&[e(,) e(,) e( )],&
l =fermions

+m.&I(t(t(x)e(x, ). e(x )],&+&([A, (x) -A. (x)]e(x,). .e(x„)],&

—a,&[~'(x)e(x,) . e(x„)].&,

(4.42)

(4.43)
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(4.44)e (x)=8 (x)- '"A(x)+A„„(x)

with a new (symmetri- tensor) anomaly

A„„(x)=a„a'.g V, „(x)I,„(x) (4.45)
he

in terms of the basis vectors (3.35). We also have
an identity corresponding to (4.24). In this rear-
rangement, it is important to notice that all the
possible anomalies are locaL objects. In (4.42)
and (4.43), @ is regarded to stand for (P, g,A, ) in-
stead of (4.6), and we specified the index of the
representative A in (4.42).

From (4.42), we have the dilatation identity"

dx([e."(x),C (x, ) @(x„)],&

= ( N„—-Q xf B' ~([@(x,) @(x„)].&, (4.46)

where the factor N~ [and also 2N in (4.29)] arises
to compensate for the difference between the con-
formal weight and the naive canonical dimension
of independent field variables appearing in the de-
finition of the energy-momentum tensors in (4.3)—
(4.5). The consistency between (4.46) and (4.43)
gives rise to the same condition (4.34) as before,
and we finally obtain

~„xg,~ ~ ~, x~', i dxO

a 3D —m +gN 6 x~, . . . , x~ (4.47)

where the conformal weight factors of g and A

& and 0, respectively, instead of the naive canon-
ical dimensions appear. This is the result of the
conventional perturbation theory"written in the
Euclidean metric starting from (a suitably sym-
metrized version of) 8,„.

Although the above procedure appears to be

V. RENORMALIZATION PROPERTIES OF

somewhat unorthodox, we emphasize that this is
. in fact the procedure taken in conventional pertur-
bation theory. To understand this point, we note
that WT identities such as (4. 19) are derived
from the symmetry property of the theory. Once
WT identities are fixed, all the perturbative cal-
culations are now performed by imposing these
identities. ' Note that there is no "anomalous"
WT identity as such in the present formulation.
The WT identity (4.42) is trivially true in the tree
level where 8,

„

is reduced to 8 „asthe anomaly
factors vanish to this order. Therefore, it is
immaterial whether one started with 8-„or8„„in per-
turbation theory, once one adopted the identity
(4.42) as a guiding principle at each stage of per-
turbation theory ', one always ends up with the
tensor quantity which satisfies (4.42), namely
e,„(4.44), in our approach. When dne imposes
(4.42), the trace of B„„atvanishing momentum
transfer is uniquely determined by the renormali-
zation-group (or Callan-Symanzik) equation by
means of the dilatation identity (4.46). The con-
sistency of this result with the conformal identity
(4.43) then uniquely fixes the anomaly factor ap-
pearing in (4.43}at vanishing momentum transfer.

Et is significant that the path-integral method
provides a proof of the existence of e„„whichsat-
isfies (4.42) consistently In t.he path integral, it
is also possible to evaluate some of the Jacobian
factors such as A, (x) in (4.43) directly, ' as will be
explained in the next section. The agreement of
this estimate with (4.47) indicates that the path-
integral method is self-consistent. The advantage
of T,„over8„„is that one can explicitly evaluate
T„„by(4.5). See Appendix A.

From the renormalization-theory point of view,
the quantity f dx T, (x), in (4.29) is finite and not
renormalized, whereas f dx 8„'(x),is subiraciive
ly renormalized as is understood from the rela-
tion (4.44) and the fact that f dx[ —2A(x) +A, "(x)]

0. We shal. l explain this point in the next sec-
tion.

CHIRAL AND TRACE ANOMALIES

The chiral anomaly' is derived in the path integral by considering the variation

q(x) -e'"i"»~ q(x),

y(x) —q(x)e'"&"»5 (5.1)

with other variables fixed in the action (4.1}in the flat-space-time limit. The result is, ' for example,

s„([j",( )g(y)p(z)], ) = 2 o ([',( )0( )g( )],) -ib( — )([,g( )0( )],)

—ib(x -~)&[4(y)q(z) ~,],& + i([A, (x)4( y)tI (~)],),
where the gauge-invariant currents are

j",(x) -=tj(x)y"y,y(x),

q, (x) =-y(x) y,tj (x)

(5.2)

(5.3)
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and the anomaly factor

(5.5)

A, (x) -=Q y„(x)~y,y„(x). (5.4)
n

The corresponding identities can be derived by considering
I

g(x)-e &" l+p(x),

q(x) -y(x)e "'"'t'

with other variables fixed. We then obtain, for example,

&[8(x)g(y)((z)],& =~,&[j(x)y(y)y(z)], &
—«5(x -y)&[4(y9(&)l.& ——.'5(x-~)&[g(y)V(z)].&+ &[A~(x)4(y)V(z)J.&

(5.6)

where

5$ , Q$
8(x) -=-,'$(x)

( )
+ —,'y(x)

= —.'g (x)iy'y(x),

j(x) -=g(x)g(x)

and

(5.7)

A~(x) = gy„(x)ty„(x) (5.8)

which coincides with A, (x) in (4.17).
A careful evaluation' ' of (5.4) and (5.8) gives,

respectively,
2

24g2

(5.8)

(5.10)

See also Appendix B. Identifying 8(x) as the trace"
of 8,„(x),

8,.(x) =.0( )iy„8--.4(x), (5 11)

Eqs. (5.2) and (5.6) correspond to the well-known
chiral" and "trace"' identities, respectively.

As is well known, (5.2) is exact although (5.2)
as it stands corresponds to = ~ for nonvanishing
momentum transfer (the Adler-Bardeen theorem").
Incidentally this theorem provides a partial sup-
port for the path-integral manipulation. The der-
ivations of (5.2) and (5.6) and the evaluations of
(5.9) and (5.10) are completely on an equal footing.
We therefore expect that (the connected compo-
nent of) (5.6) is also exact, although it again be-
comes ~ = ~. (In the lowest nontrivial order,
this can be confirmed by following the procedure
in Ref. 23. )

There is, however, an important difference
between (5.2) and (5.6). The left-hand side of
(5.2) vanishes at the zero-momentum-transfer
limit in the presence of the explicit chiral-break-
ing mass term. This observation when combined
with the identity

8,([j;(x)A (y)A (z)],&= 2m, i &[ j,(x) Ajy)A ( )] )

+ i ([A (x)A (y)A (z)] )

(5.12)

written for the isovector current gives rise to the
well-known formula for z'- yy via the partial con-
servation of axial-vector current (PCAC) rela-
iOn "24

In contrast, the left-hand side of (5.6) does not
vanish even at vanishing momentum transfer, and
one cannot extract useful information from the
relation among divergent operators. Fortunately,
the identity (4.33) at vanishing momentum trans-
fer provides a finite WT identity which includes
A~(x) [=A, (x)], and it illustrates the validity of
(5.10). As we cannot evaluate A, (x) in (4.33) di-
rectly, we have to rely on a suitable regulari-
zation scheme" to learn the role of A, (x).

A. Pauli-Villars regularization

We introduce a negative-metric vector field
B (x) to regulate the photon propagator: We add

~g~ "g «(8~B —8 B )(8„B«—8«B„)

M2 g""B B„+ (D„B~)2(5.13)

to the Lagrangian (4.1) and replace A by A + B
inside the interaction term. (The one-loop vacuum
polarization diagrams for vector fields are treated
in the customary way. ") Based on the experi-
ence in perturbation theory, we assume" that the
interaction picture (i.e. , the use of plane-wave
basis) is well defined for gauge fields A and B,
after this regularization. We thus neglect the
anomaly A, (x) in (4.33) as the Jacobian becomes
physically trivial in the plane-wave basis, but we
obtain an extra contribution on the right-hand side
of (4.33) from the regulator mass term. [The cur-
rent (4.32) is also modified. ] Thus the anomaly
factor [A, (x) -A, (x)J, in (4.33) is effectively re-
placed by [we use Eq. (5.10)]
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2
', [S„(A„+B„)—a„(A„+B„)]+ M B„B

(5.14)
As has been analyzed in detail by Adler, Collins,
and Duncan, " (5.14) defines a subtracted (finite}
operator and it gives rise to P(e)e/&e and other
factors in (4.40) in the zero-momentum-transfer
limit. We thus see that the Adler-Bardeen-type
theorem for (5.2) and (5.6) and the appearance of
the renormalized (subtracted) anomaly in (4.41)
are consistent with each other. We note that mass
terms (including the regulator mass) do not appear
in T„„(4.5); this partly accounts for the good high-

energy behavior of T„„regardlessof the regular-
ization scheme. (See also Appendix A. )

This exercise also shows that A, (x) in (4.40)
cannot be neglected and, in fact, it is a "hard"
operator, as A, (x), is a divergent operator and the
fermion mass term is known to be finite~ in (4.40).
The subtraction term in (4.44) gives rise to

~e J aux)g4q(x)dx (5.16)

on the right-hand side of (4.31). Note that the con-
formal weights in (4.30) are independent of the

space-time dimensionality z. This extra term
(5.16) replaces the anomaly factor A, (x) -A, (x)
in (4.33), as the Jacobian is absent in this regu-
larization. [The current (4.32) is also slightly
modified. ] It is known" that (5.16) together with

[-2A(x)+ A, (x)],= ([A,(x) -A, (x)]+ 3A, (x)). (5.15)

in the trace 8„(x),; this combination (5.15}gives
a divergent operator. We thus conclude that the

trace fdxe„(x},is divergent in this regulariza-
tion and it is subtractively renormalized ' to
give rise to the finite J dx8„"(x),in (4.47) .

B. Dimensional regularization

In dimensional regularization, "all the Jacobian
factors are expected to be discarded: A partial
justification of this is given in Appendix B. The
identity (4.26) holds as before, as it is independent

of dimensionality. The dilatation identity (4.29} is
thus valid with 2N replaced by nN/2. The con-
formal symmetry (4.31) is, however, spoiled by

the dimensional continuation just as the chiral
symmetry, and we pick up an extra term

the mass term in (4.33}give rise to the correct
anomalous factors in (4.41) as is expected from
the consistency with (4.29). The path-integral
manipulation is thus self-consistent.

There is one peculiar aspect with dimensional
regularization, however. As the Jacobian factor
is absent, 8„,in (4.3) satisfies the same set of
identities (4.42) and (4.43) as 8„,with the con-
formal anomaly factor in (4.43) replaced by (5.16).
In other words, the dilatation anomalies in (4.44)
are automatically subtracted away by the assump-
tion of the smooth dimensional continuation,
whereas the conformal anomaly is not. This is
presumably related to the fact that the general
covariance, which includes dilatation, has a
natural dimensional continuation but the conformal
(and also chiral} symmetry is generally spoiled
by the continuation. " We note here that the Poin-
care invariance alone cannot remove the possible
anomalies in, e.g. , (4.20) as was explained in

Sec. IV 8.

VI. CONCLUSION

We illustrated the advantage of the formal
treatment of the path integral with a specification
of the "representation" by means of basis vectors.
The anomalous behavior of WT identities is al-
ways anticipated by the nonvanishing Jacobian
factors in the integral measure. In this sense,
there is no anomalous" WT identity in the pres-
ent formulation, although the explicit evaluation
of the Jacobian is not always possible; this may
restore our confidence in WT identities as a
guiding principle for perturbative calculations.

The definition of the energy-momentum tensor
as a source current for the background gravita-
tional field receives an important modification in

the quantized theory because of the choice of the

general covariant path-integral measure. An im-
proved energy-momentum tensor is thus obtained,
and it exhibits satisfactory high-energy behavior.

By using this energy-momentum tensor, we were
able to identify the trace anomaly as the con-
formal anomaly. All the familiar anomalies are
thus reduced to either chiral or conformal anom-

alies, which share the interesting algebraic char-
acterization. '

APPENDIX A

The explicit form of T „(4.5) in the flat-space-time limit is given by

T„„(x)= )2iy&D„g- A„-eQo„g 8+„F"&+ —&„(8+) —F „F"„+—[A„s,(& „A")+A„&„(&„A")]

eopgg —& (A F 8)+—s„(A"88A. ) + ,'g „„s(pygmy y)—
0
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vrith D„=e„+ieoA„.In practical applications, it is sufficient to consider the symmetric part of 1'
„

which satisfies the identity (4.26).

APPENDIX B

The Jacobian factor A, (x) [=A~(x)] in (4.17) is evaluated in Euclidean space by using the eigenvectors
(the "Heisenberg representation" ")

)(rp, (x)=&.y.(x), fV.(x)'(, (x)dVx= a, , (81)

with $f =y)) (s„+ie,A„).We sum the series in (4.17) starting from small eigenvalues (I A, ~

s M) in n dimen-
sions as

A, (x) = limps, (x) e ~'~ "& y, (x) = limp@, (x) e (&~~) y, (x)

= lim Tr -„e''"exp —D"D„+—[y",y']E„, M e'
(2w)" " 4

d "k fe I

= lim M" Tr „exp —
~

(ik" + D"/M)'+
4

'2 [y "~ y"]&» (82)

sphere ere transformed the basis vectors to plane
waves for the well-defined operator exp[-(g/M)'],
and the trace runs over Dirac matrices. By ex-
panding the exponential factor in (82) in powers
of 1/M, we obtain

2 d"k

(83)

where the higher-order terms in 1/M are ne-

I

giected. Evaluating (83) at sufficiently small n,
we may conclude that A. ,(x) =0 (by discarding the
disconnected constant term) in dimensional regu-
larization. The chiral Jacobian factor (5.4) also
vanishes in this scheme. The same conclusion
holds even if exp[-(X, /M)'] is replaced by any
smooth function" f(y, '/M ) in (82) with f(0) = 1

and f(+m) =f'(+ ~) =0.
If one sets n =4 in (83), one recovers the

familiar result (5.10). The Jacobian factors gen-
erally have the nonanalytic dependence on the
dimensionality such as 5„~.
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