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Recent proposals of classical relativistic two-particle systems with an interaction potential instead of a force field
are studied. These are local in an evolution parameter and are formulated as generalized gauge theories within
Dirac’s formalism for constrained Hamiltonian systems simulating reparametrization invariance. It is shown that
the solutions of the equations of motion in general are world sheets instead of world lines. Requiring world lines we
derive a set of conditions generalizing the world-line conditions usually given in the literature. Only a limited set of
gauge constraints is shown to satisfy these conditions, notably when the evolution parameter is chosen to be the time
of the rest frame of the system. A property of this gauge is that the total momentum at laboratory time is in general
not just the sum of the momenta of the particles; the missing part is normally viewed as a momentum carried by a

force field.
I. INTRODUCTION

One of the outstanding problems in particle phys-
ics is the construction and understanding of rela-
tivistic particle bound states. In distinction to
nonrelativistic theories it is generally thought to
be necessary to introduce a field as force media-
tor. However, since the field in general has de-
grees of freedom of its own, any many-particle
system can exchange energy and momentum with
the field, and thus is expected to radiate at the
classical level. One way to escape this conclusion
is effectively to suppress the field degrees of free-
dom by imposing unconventional boundary condi-
tions on the field such that it does not radiate.
This leads to action-at-a-distance theories! which,
however, are nonlocal in time and therefore al-
most impossible to quantize.? Stable bound states
of particles can be expected to exist within a quan-
tum-field-theory framework, in which case we
have to rely on the Bethe-Salpeter equation; but
this is difficult both to solve and to interpret phys-
ically.

Faced with this situation one may try to extend
the idea of an interaction potential between parti-
cles from the nonrelativistic to the relativistic do-
main and then attack the bound-state problem.
Now, however, one must contend with the well-
known no-interaction theorem® which, under cer-
tain conditions, forbids the possibility of interac-
tions in a relativistic many-particle system. It
is worth recalling explicitly these conditions.

They are as follows: (i).the theory is set up within
the classical canonical formalism so that the effect
of any element of the Poincaré group is represent-
ed by a canonical transformation; (ii) the set of
three-dimensional position coordinates of all the
particles at a common physical (or laboratory)

time forms one half of a system of canonical vari-
ables in the phase space of the entire system;

(iii) with respect to the elements of the Euclidean
group these position variables behave as expected,
with the geometrical and canonical rules of trans-
formation coinciding; and (iv) the world lines of
the particles in any given state of motion, when
imagined drawn in space-time, have an objective
reality. This last statement means that if one
passes from the description of the system as given
in one inertial frame to that in another frame by
applying the appropriate canonical transformation,
the world lines remain the same and only their nu-
merical description changes in the manner dictated
by the geometrical relationship between the two
frames. This requirement is expressed through
a set of so-called world-line conditions,** and
these conditions together with the structure rela-
tions of the Poincaré group entailed by the canoni-
cal formalism combine to rule out any possibility
of interaction, ?

It is clear that the relativistic bound-state prob-
lem is part of the more basic problem of intro-
ducing any interactions at all between relativistic
classical particles in an acceptable way. Recent-
ly, there have been several action-at-a-distance-
type models which seem to solve this problem. 58
They are constructed to be local in a single “time”
parameter and thus can be quantized.® In fact,

. their quantum counterparts have been considered

for a long time. % These models are set up in the
generalized Hamiltonian formalism devised by Di-
rac for the description of constrained dynamical
systems. 1% 1 Now Dirac’s method has the proper-
ty of bringing in several independent parameters
each playing the role of a time variable!® in con-
trast to the single-evolution parameter of a La-
grangian theory. Hence, the recently presented
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models appear to leave the questions of the exis-
tence and properties of particle world lines in a
vague and unsatisfactory state. We will examine
these models from a formal as well as a physical
point of view by insisting that an acceptable clas-
sical relativistic particle theory must have the
following feature: in any state of motion of the
system, howsoever defined, there must be definite
rules permitting the construction of definite world
lines, one for each particle, and these must be ob-
jectively real. We shall show how in the con-
straint formalism based on a Hamiltonian approach
one can develop equations that serve as world-line
conditions, and how one may check in any specific
case if they are obeyed. This will clarify the con-
ceptual basis of the models under consideration.
The results will be that these conditions impose
severe restrictions on the presented models and a
physical reason for this is that these models con-
tain traces of a force field.

In Sec. II we remind ourselves of the description
of a free relativistic particle. This section is in-
serted for pedagogical reasons as an introduction
to Sec. III, In Sec. III we consider a class of
models for two interacting particles previously
given in the literature. These models are then
thoroughly studied within Dirac’s constraint for-
malism with special attention to the question of
determining individual particle world lines. Sec-
tion IV describes the relativistic harmonic oscil-
lator as an illustrative example, and the final Sec.
V contains a discussion and general remarks.

II. FREE RELATIVISTIC PARTICLE

The purpose of this section is to illustrate, by
using the constraint formalism to describe the fa-
miliar and elementary free particle, how one may
maintain complete freedom in the choice of an evo-
lution parameter; and how, for each given choice,
one can develop a corresponding world-line condi-
tion that guarantees the objective reality of world
lines. Of course for this system we shall find that
the world-line condition is always obeyed.

We choose as Lagrangian the expression

L(7) =%(’%€A+sz>, (2.1

with m the mass, x* the space-time position vec-
tor, and V the so-called einbein variable. (We use
a timelike metric.) The dot denotes differentiation
with respect to an independent parameter 7 which
is, at this stage, invariant under Poincaré trans-
formations. That is, under a Poincaré transfor-
mation (A, a), x*(7) and V(7) transform as

() =N v (1) +a*, V()=V(7). (2.2)

The above Lagrangian avoids an expression with

square roots but maintains invariance of the equa-
tions of motion under arbitrary changes in the
choice of T a property implying the unobservability
of 7.

The Euler-Lagrange equation corresponding to
a variation of V is a Lagrangian constraint as it
involves no accelerations, In the Hamiltonian for-
mulation the vanishing of the canonical momentum
conjugate to V is a primary constraint, which by
the equations of motion induces a secondary con-
straint, the mass-shell condition on the four-mo-
mentum p, conjugate to x*:

K=p,p* —m?=0, (2.3)

(The symbol = denotes an equality that is not ne-
cessarily satisfied inside the Poisson brackets be-
low.) The intrinsic reason for this constraint is
the above-mentioned reparametrization invariance
of the equations of motion.

On eliminating V and its conjugate momentum by
means of a gauge choice on V, one has an eight-
dimensional phase space I', say, with canonical
coordinates x*, p, obeying the usual Poisson
bracket (PB) relations

2 ={pu,0}=0, {*,p}=08. (2.4)

On T the Poincaré transformations (2.2) are rea-
lized as canonical transformations R(A, a) gener-
ated by

Jup =XuPy — %Pu ( )
' 2.5
P,=p,,

which satisfy the Poincaré algebra via their PB’s.
The region in I"' where K vanishes defines a hy-
persurface, X say, of seven dimensions. (We re-
strict the following discussion to the branch of Z
where p°=>m.) It is obvious that the canonical
transformations R(A, a) map X onto itself. On the
other hand, the one-parameter family of canonical
transformations generated by K also has the prop-
erty of mapping Z onto itself. Starting with any
point (x,p) in = and applying this family of canoni-
cal transformations to it, we generate a one-di-
mensional line in =, the orbit of (x, p) under this
family of transformations. X is evidently the
union of these orbits, which must form a six-pa-
rameter family; we shall denote a general orbit by
L. These lines L are obtained as solutions to the
generalized Hamiltonian equation of motion

ax’ [ P
F’“v{xu,K}: dTNU{psK}“O- (2-6)

By allowing v to be chosen at will, we have a situ-
ation in which the line L passing through any point
(x,p) in T is determined, but the value of T as-
signed to each point of L can be chosen differently,
even though we may assign 7=0 to the point (v, p)
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itself. Since K is invariant under the canonical
transformations R(A, a), such a transformation
will map a line L onto another line L’ exactly ac-
cording to a Poincaré transformation in space-
time. The canonical and geometrical rules of
transformation for x* coincide, and a world line
(2. 6) is objectively real.

The concept of a world-line condition arises if
one now imposes a gauge constraint

X(x,p,7)=0 2.7

intended to assign a definite value of 7 to each
point on a line L. To achieve this it is evident
that x must be explicitly 7 dependent. The imposi-
tion of this constraint together with Eq. (2.3) en-
ables us to reduce the phase space to a six-dimen-
sional one. The appropriate PB on this “physical”
phase space is then given by the Dirac bracket!% !
(DB) ({x, K}+ 0 is required):

{r, et ={r, g}~ {TIKT(V’ K v, g}- {f, K, g})
' (2.8)

for any two phase-space functions f and g. Since
both K and x have vanishing DB with all functions,
they may be set to zero inside the DB. Since, fur-
thermore, K has vanishing PB with the ten quanti-
ties J,,, P,, it is clear that these quantities give
a realization of the Poincaré algebra through their
DB’s just as they did through the PB. One thus
has another realization of the Poincaré group, by
transformations R*(A, a), say, which are canoni-
cal with respect to the DB. It can be seen that,
acting on a line L in Z, R(A, a) and R*(A, a) yield
the same new line L’. However, a given point
(x,p) on L is generally carried by R(A, a) and
R*(A, a) to different points on L’. Since y is un-
changed by a Dirac canonical transformation, it
follows that R*(A, a) carries a point (x,p) on a line
L, with a value of 7 determined by (2.7), to that
point on L’ that is assigned the same value of 7.
On making the gauge choice (2.7), we switch to
R*(A, a) as representing the change of inertial
frame O — O’ determined by the element (A, a) of
the Poincaré group.

In order to set up a world-line condition within
the canonical formalism we must pick six indepen-
dent functions of x, p, 7 which may serve as ca-
nonical coordinates for the DB (2.8). Any function
of x, p, T can be rewritten, when both constraints
(2. 3) and (2.7) hold, as some function of the six
new variables and 7; clearly the meaning of the
phrase *“explicit 7 dependence” can change in this
process. Denote partial derivatives with respect
to 7 in the new sense by 39’/07. Before imposing
(2.7) the general equation of motion for f(x, p, 7) is

d
L Lol k. - (2.9)

with v arbitrary. When (2.7) is imposed, v is de-
termined by the condition x =0, i.e.,

axl

Y= kLK)

since (2.7) must be maintained for all 7. The gen-
eral theory assures us then'” that a new Hamiltoni-
an J¢ can always be found such that in place of (2.9)
we have

(2.10)

4.2 nin
dT 9T 0T {
This is all we need to formulate the world-line
condition. Let O and O’ be two inertial frames re-
lated by an infinitesimal element (A, a) of the Poin-

caré group, with A differing from unity by an in-
finitesimal antisymmetric tensor w. Let the
phase-space point x(7), p(7) on a line L lead to the
world point with coordinates x* (1) in O. R*(A,a)
applied to x(7), p(7) yields a point x/(7), p’(7) on a
line L', which then leads to a world point with co-
ordinates x™ (7) in O”:

%" (1) =2 (1) +{G, #* (N},

G :“‘%—w)‘f’J)‘p - aRP)‘ o

+{f,3c}* @.11)

(2.12)

The describtions in O and O’ refer to the same ob-
jectively real world line if there is some point on

. the world line as plotted in O, say, x*(7+ 67),
- whose (geometrical) Lorentz transform is x"™(7):

(2.13)

Thus the world-line condition is the feqmrement
that there exists an expression for 67’ linear in w
and a, such that we have :

()= (T+07) + wpn” (T + 07) + a* . -

s ) .
{G,»V=wts +a* +(aa—f_ +{x“,3(_:}"f>67. (2. 14)

This is the general form of the world-line condi-
tions written entirely in terms of the final “physi-
cal” DB’s for the system. In terms of PB’s by
means of (2.8) and (2.11) it acquires a more prac-
tical form, namely,

b, KHG, xb= e K} X o 2.15)
Hence,
o7 = {G, x}/g—f (2. 16)

ensures that the world-line condition is obeyed,
for any choice of x.

A more familiar form of the world-line condition
is obtained for the specific gauge choice
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x=x"=71. (2.17)
Equation (2. 16) yields here
07=—a’- w';,. (2.18)

As a consequence, that part of condition (2. 14)
which refers to the Euclidean group is trivially
satisfied. The remaining part becomes

{Jogs #FF = = 087 — x,{ak, 3c}*, (2.19)
where the Hamiltonian is
H=—p'=- (m?+pH)2. (2. 20)

These are usually referred to in the literature as
the world-line conditions, and are satisfied for the
free particle. |[Note that the DB’s in (2.19) are
actually the same as ordinary PB’s among three-
dimensional variables that occur in the traditional
statement of the world-line conditions;]

Another interesting gauge choice is the proper-
time gauge

X=p-x=—mT. (2.21)
From Eq. (2.16) we have here

a .
0T = — ap . (2.22)
m
As is to be expected in this gauge the part of con-
dition (2. 14) that refers to the homogeneous Lor-
entz group is trivially satisfied and the nontrivial

part refers to the effect of spatial translations:
b p ¥ = 8- LL {5, (2.23)

where the Hamiltonian now can be shown to be
3 =—mln(p?/m). (2. 24)

These conditions are satisfied by the free particle.
Notice that x* and p, are not canonical coordinates
within the DB in (2. 23) in distinction to the case
for the previous gauge choice in (2. 19).

These two examples show that the nontrivial part
of the world-line condition depends on the choice
of gauge constraint. This is expected, since the
Dirac canonical transformation R*(A, a), which
represents a Poincaré group element in the final
form of the theory, is built to preserve the value
of 7, and 7 has different space-time meanings in
different gauges. All this is notwithstanding the

fact that in building up a world line we assign spa-

tial position x 7(7) at physical (or laboratory) time
%°(7), whatever the gauge.

IIl. THE TWO-PARTICLE SYSTEM

If one tries to construct an action describing two
relativistic particles interacting via action-at-a-
distance forces and requires invariance under in-

dependent reparametrizations of the two world
lines, one is compelled to use two independent pa-
rameters, one for each world line; and the “equa-
tions of motion” are integrodifferential equations
which are nonlocal in (physical) time. Conse-
quently, no conventional Lagrangian and Hamil-
tonian formulation is possible for such a system
(see Ref. 2, however). In a local description one
can instead try to simulate the presence of the two
reparametrization invariances. Had these inde-
pendent invariances occurred in a single Lagran-
gian, one would have ended up with two independent
first-class constraints. Thus, due to the difficul-
ties with the Lagrangian approach, one can take

up Dirac’s suggestion!® and use the constraint for-
malism within the Hamiltonian formulation as a
starting point. This is the essence of the approach
of Refs. 5-8.

Considering the two-particle system we define a
sixteen-dimensional phase space I' with canonical
coordinates x5, p,,, @ =1,2, the only nonvanish-
ing PB’s being

{xt, bat=800p. 3.1)

x§ and xj represent the space-time position vec-
tors of particles 1 and 2. A canonical realization
of the Poincaré group via canonical transforma-
tions R(A, a) is given by the action

xo' =Ayxg +d, py =M, pg. @.2)

The generators for this realization are sums of
the momenta and angular momenta of the two par-
ticles

oy =ai::1 (xuapva— vapua): P, 2;1%«(3-3)

and through their PB’s they satisfy the Poincaré
algebra.

We must now choose two independent first-class
constraints. In the literature the following pro-
posal is made® (see also Refs. 6 and 7):

UMY
K, =P2+q2—2(m12+m22)—8mV(12— (P—Q’—’—)zo,

P
Ky=P-q-m?+m’=0. @.4)
Here, relative and “center-of-mass” variables
have been used according to
¢ =pi-py, 7=%10i-x),
S (3.5)
41 ° — 17702
X* =504 +x5), m_m1+mz'
The motivation for this particular form is that V
shall correspond to the usual classical potential in
the nonrelativistic limit. K; and K, are manifestly
invariant under the canonical transformations
R(A, a), so they have vanishing PB’s with J,, and
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P,. Moreover, they are first class since
{x;, K,}=0. (3.6)

The region in I" where both K; and K, vanish is
a fourteen-dimensional constraint hypersurface to
be denoted by =. (We deal in the sequel with just
one connected branch of £.) Clearly, the canoni-
cal transformations R(A, a) map T onto itself.
Moreover, the first-class property of K; and K,
means that the canonical transformations generat-
ed by each of these functions also map Z onto it-
self. Denote by ¢ the collection of coordinates for
T, If to some point £ in Z we apply all the canoni-
cal transformations generated by K; and K,, we
get a two-dimensional region in Z; this is the orbit
of £ under this two-parameter Abelian set of ca-
nonical transformations. It is clear that Z is the
union of such two-dimensional orbits, so the or-
bits form a twelve-parameter family. We shall
refer to orbits as sheets S. A way to build up
these sheets is to solve the generalized Hamiltoni-
an equations of motion (the derivatives on the left-
hand sides are partial):

% = 1)1{5, K1}+ UZ{E; K2} ’

d
Ef'. b Ili{g, K1}+“2{£y Kz},

(3.7

where vy, v, and uy,u, may be chosen at will pro-
vided vuy— vyuy # 0. The solutions of these equa-
tions are sheets and if one point of such a sheet
lies in T the entire sheet lies in Z. The canonical
transformations R(A, a) can now be seen not only

to map Z onto itself, but to carry each sheet S onto
another sheet S’. .

All the above steps are direct generalizations of
what was done in Sec. II. The eight-dimensional
phase space is replaced by a sixteen-dimensional
one; the seven-dimensional constraint hypersur-
face is replaced by a fourteen-dimensional one,
since the single constraint K is replaced by the
first-class pair\K,,Kz. The lines L of the last
section become the sheets S. ‘

Owing to the form of K in (3.4) the total momen-
tum P, is constant on each sheet S. The way P?-
enters the argument of V requires P?+#0 and from
a physical point of view we demand P?> 0.

Consider now a general solution of the equations
of motion (3.7). Since the sheet S is two dimen-
sional it requires two independent variables to
serve as coordinates over S; and it is intuitively
clear from the forms of K and K, that x} and xJ
could be used for this purpose. Each point of S
then determines two world points in a space-time
picture. However, except in the noninteracting
situation, we expect that each of x{ and x{ will de-
pend on both of x{ and xg as we wander over S.

Hence, it seems as if x{ and x§ in general will
trace out world sheets instead of world lines.
Therefore, some conditions must be adopted in or-
der to get (a unique pair of) world lines if all
points of S are used in the space-time reconstruc-
tion. Such conditions will then be part of a com-
plete theory. We shall now analyze the situation
explicitly.

A set of gauge conditions has the general form

Xa(xhx25p1,p2’ T7U)zos OZ'-‘—‘].,Z (3'8)

with explicit dependence on both the parameters 7
and 0. For each value of 7 and 0 these two gauge
constraints pick out one point on S, and as 7 and ¢
vary this point traces out the sheet S completely.

The conditions for (3. 8) to be gauge constraints is

Det{XaaKB}¢0’ (3- 9)

i.e., the x’s and K’s must form a second-class
set. 15,16

Before imposing the gauge constraints (3. 8) the
equations of motion are determined by (3.7) which
contains arbitrary functions v, and u#,. Imposition
of (3.8) now determines these functions by the’
conditions

axe _ dXe _
ar =0, do =0. (3.10)
We find
0 X
Vo = = Qqug aX:: Uy = = Qg ao‘B’ ' (3.11)

where a,; is the inverse to the matrix appearing
in (3.9), i.e.,

aaB{XB’Kr}zéar- (3.12)

The general theory now assures us that suitable
Hamiltonians 3¢, and 3¢, can always be found such
that the equations of motion for any function f take
the forms

a xs . 'f *
dar aT- {f,Ku}aaﬂaT FLs +{f33cr} ’

(3.13)
g— = ?i % ~ _al *
do 30 - {f, Ka}aaﬁ 0 30 + {fys(:y} ’

where {, }" is the DB relative to the x’s and K’s
given by

{f,g}*z {frg}'— aaB({f, Ka}{xﬂig}" {f’ XB}{Ka;g})

- {era aaB{Xm XB'}aa'B’{Ka'; g}' (3° 14)

These final DB equations of motion describe the
evolution with respect to 7 and ¢ determined by

(3.8). The condition that these equations deter-
mine world lines and not world sheets is
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o ax
axj _dxp
ar  do’ 3. 15)
ar  dg
ar do °

Using Egs. (3.13) one finds that

0 d
{x‘;’Ka}aaB';(_TB = c,{x‘;,Ka}aaB?)éﬁ , v=12

(3.16)
which implies
o o NXa

ar <30 (3.17)

unless the matrices {x},K,}, {4, K,} considered
as matrices in p and ¢ all have rank less than 2.
Thus (3.17) is not implied when either of the fol-
lowing conditions is satisfied:

(1) V=const, no interaction,

(2) P v=0, (3.18)

(3) other, stronger restrictions on phase space.

Any one of the last two conditions will make the
particles lose their Newtonian degrees of freedom

if it is not implied by the imposed gauge conditions.

This feature is unsatisfactory and leaves only the

two possibilities no interactions or Eqg. (3.17).
Equation (3.17) implies, on the other hand, that

the gauge constraint (3. 8) must have the forms

Xa (g, X9, Pi, g, TV)=0, a=1,2 (3.19)
where 7’ is a function of 7 and 0. Calling 7’ just T
from now on, the equations of motion will only be
with respect to 7 and explicitly follow from

V- _yf Ko~ L wfrad™. 620

dr ot 8ot
We have thus lost one gauge degree of freedom. A
“state of motion” is only defined by a curve instead
of a sheet.

Effectively, only one of the gauge constraints
(3. 19) has an explicit 7 dependence. The other
constraint determines then a curve C on the sheet
S and the choice of such a condition can no longer
be viewed as a gauge choice giving different de-
scriptions of “the same theory” since in general it
leads to different pairs of world lines. Rather,
such a choice is a part of a complete theory.

In order to set up the conditions for the objective
reality of the world lines we must switch from the
realization of the Poincaré group given by the or-
dinary canonical transformations R(A, a) to one in
terms of Dirac canonical transformations R*(A, a).
The generators J,,, P, of R(A, a) can again be
used for this purpose since via their DB’s they do
provide a realization of the Poincaré algebra (be-
cause their PB’s with K, vanish). If R(A,a) maps

a sheet S onto the sheet S/, so will R*(A,a); but on
individual points of S the effects of R(A,a) and
R*(A, a) may not be the same. In particular, if C
and C’ are the curves on S and S’, respectively,
determined by the gauge conditions (3.19), R*(a, a)
will map C onto C’ (preserving the T value), while
R(A, a) in general will not do so. Once the gauge
choice has been made, we are only interested in
the curve C on each sheet S and not in the rest of
S, so a change of inertial frame O — O’ is here-
after to be represented by R*(A, a).

The world-line conditions are now easy to set
up. Let the point 7 on the curve C on a sheet S
lead to the pair of world points x4 (7), x5 (7) in an
inertial frame O. Let O’ be related to O by an in-
finitesimal transformation (A, a). Then the ex-
pressions

2o (1) +H{G, xa(M}*, a=1,2

G=%w”J,, - P, 8.21)
are the space-time coordinates, in O’, of the two
points on the world lines to which O’ assigns the
common parameter value 7. The world lines are
objectively real if we can find quantities 0,7, 0,7
such that the above expressions are the (geometri-
cal) Lorentz transforms of x} (7+ 0;7) and x4 (7
+8,7), respectively. [So x%(T+ 6,7) are the
space-time coordinates in O of the point on world
line @ with parameter value 7+ 6,7: two world
points to which O’ assigns equal parameter values
may possess different parameter values in O. |
Thus the world-line condition is the requirement
that there exist expressions 8,7, 5,7 linear in w®
and a* such that

() +1G, s (D)} =T+ 8,7) + Wl A% (T+ 8, 7) + @

(3.22)

Retaining only first-order terms and using (3. 20)
we get -

’

x4
aTa +{xiy5c}*)5a73 a=1,2

6, = gy vt + (2

(3.23)

which are the world-line conditions for a two-par-
ticle system in the present formalism, stated in
terms of the final physical DB’s. By means of
Egs. (3.14) and (3.20) and using the fact that the
PB’s {G, K} vanish, these conditions become in
terms of PB’s

0
{xi, KB}aBY{G’ )(7'}z {xi9 KB}aﬂraiTyﬁa T, a= 1’ 2.

(3.24)

If none of the restrictions in (3. 18) are satisfied,
these conditions reduce to



23 RELATIVISTIC POTENTIAL MODELS AS SYSTEMS WITH... 2207

{6, 4= 25,7, a=1,2 (3. 25)
which imply 8,7=0,7=07 and the gauge condition
which has no explicit T dependence must be mani-
festly Poincaré invariant.

The consequences for some natural gauge
choices are easily worked out. Consider first the
gauge choice when the physical times x}, x) are
both set equal to 7:

X1=7", Xg=X"-T. (3. 26)

Since x; is not Poincaré invariant this choice is
only consistent with the world-line conditions if
one of the restrictions in (3. 18) is satisfied and
the only choice consistent with Newtonian degrees
of freedom is to have no interaction between the
particles. We have therefore recovered the result

of the no-interaction theorem in the present model.

Notice that the space components of the positions
may be chosen as canonical coordinates. Like-
wise, for gauge constraints of the more general
type

X{=N-7, X2=N-X-7, (3.27)

where 1 is a constant numerical timelike or light-
like vector, the world-line conditions can be satis-
fied only if the interaction vanishes since yx; is not
Poincaré invariant.

However, when we choose to describe the parti-
cles in terms of the time in the rest frame of the
system, i.e., when the gauge constraints are

Xy=P+7, xg=P-X-M1, M=(P)'?, (3.28)

the world-line conditions can be satisfied for any
“potential” V. Here Xx;=0 fixes a curve C on each
sheet S in a Poincaré invariant way [cf. (3.18)],
and the space components of the positions are no
longer canonical coordinates and hence the no-in-
teraction theorem does not apply.

In conclusion, the world-line conditions are not
always violated in the presence of interaction, but
the situation depends on the gauge chosen and this
gauge choice is then part of the specific theory
(cf. the statements in Ref. 18). '

IV. THE RELATIVISTIC OSCILLATOR MODEL.

In this section we shall explicitly solve a simple
model to illustrate the results of the previous sec-
tion. This is the relativistic oscillator model with
equal masses and is characterized by the pair of
constraints

( p- 7)2)
- T pz )

KI:P2+q2-4m2+Bz('rz 5

(4.1)
K,=P‘q.

Denote the set of four-vectors », X, g, Pby £&. A
sheet S in Z, the hypersurface for which K; and K,
vanish, is obtained when the canonical transforma-
tions generated by K; and K, are applied to a

phase-space point £ 9’ lying in . We may assume
that £ depends on two parameters 7 and o such that

d d
E%.z {gy%Kl}y £ = {g,KZ}’

4.2)
Elr=g=0=£7.

This is just a particular choice of (3.7). The solu-
tion for the total momentum P is immediate: it is
independent of both parameters. (P is the genera-
tor of translations and is gauge invariant.) It is
then convenient to split each of the other vectors

7, X, q into components parallel and perpendicular
to P (P*>0):

r:.‘:%;{ipu, P=r =7 et (4.3)

The solution to (4.2) may then be written as

singT
7(1,0) = rﬂ”+P0+rT’cosBT+q‘f’————BB ,

Pey®
X(T,U):X(O)———P—-: q O+ Pt

y P,,},(O) .
+ (o +— )(q‘f’cosBT— Br ' sinpT),

(4.4)
q(1,0)=q ¥’ cospr - Br’ sing7.

" One may check that K, and K, vanish at any point

£(r,0), and that J,, are independent of 7 and 0.

The set of points £(7,0) in phase space gives the
sheet S containing £©’, Now different gauge
choices correspond to different parametrizations
of the sheet S. Let £’(7/,0’) be another parametri-
zation of S. £’ is then a solution to (3.7) and
g'(',0") =E[f(r’,0"), g(",0")] provided v; =40f/3T,
v, =0g/37, uy=+9f/80", and u, =29g/30’. Thus

(4. 4) is implicitly the solutions of the equations of
motion for any gauge choice.

We shall consider the gauge constraints (3. 28)
which are compatible with the world-line condi-
tions. We impose this gauge choice on the solution
(4.4), i.e.,

P-y(r,0)=0, P-X(r,0)=tM, (4.5)
which then determine 7 and 0. We find
1 «as(0)
T:I—D—Q(Mt—PX“”), o:-—P—F’;——. (4.6)

Setting this back into (4. 4) we obtain the solution
of the equations of motion in the gauge (4.5):
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t P .X(O)
I (1}
V(t) = 1’1) COSﬁ(M —T)

1 . [t P-x©
+Eqﬁ”smﬁ(~“-——z—w )
o P r® o, P
X@t) =x7 iy a4 +tM, 4.7

t P.X(O)
) =2 cosa(5-

.t P-Xx©
- Br‘i”smﬁ(ﬂ—f—w— ,
where ¢ is the time of the rest frame of the system
as implied by (3.28). In this form, the point £’

may not lie on the curve £(¢). If we agree to
choose £’ =£(0), we have the additional conditions

P X©=0, P-y©=x0, (4.8)

so the curve £(¢) is now described in the simpler
form
© t ol 0rginal
r(t) =7} COSBA_/I+E‘I v’ sinf—,

¢
X = X‘L‘”+M , 4.9)

t t
(1)) 20 s
qgt) =q?' cosBM Bry s1nBM .

The world lines for particles 1 and 2 are then giv-
en by '

t t 1 ot ’
©) l ©) ©) s
xl'z(z‘)_XL +MP:}: ry cosBM+ qy smBM .

(4.10)

This is a uniform motion in the direction of P su-
perimposed on circular motion in the hyperplane
perpendicular to P.

If one repeats the same procedure for the unsat-
isfactory gauge choice (3. 26), one will obtain solu-
tions which are different from (4.10).

The generators J,,, P, of Poincaré transforma-
tions are “constants of motion.” Each of J,, and
P, is the sum of a contribution from particle num-
ber 1 at the point x,(¢) on its world line and a con-
tribution from particle 2 at the point x,(f) on its
world line, and these points are not simultaneous
in the frame in which the world lines are plotted.
Still it is such sums that are conserved and act as
generators of the physical transformations R*(A, a)
in the present formalism. Having obtained an ac-
ceptable system of world lines we may of course
examine them at points which are simultaneous in
the physical sense. For a given state of motion,
we can find parameter values #; and £, for which
we have

) =x3t,) =1". (4.11)

The important thing to observe is that if we sum
up the individual particle momenta at simultaneous
points on the world lines we get

P(%) =py(t)) + b, (t;)
=P+4gt) - q(t)], (4.12)

i.e., the conserved total four-momentum P is ex-
pressible in terms of quantities at a common phys-
ical time #° in this way:

P=P() ++lgty) - qt))].

A similar expression obtains for the total con-
served angular momentum J,,. The last term in
(4. 13) represents an interaction momentum which
we normally would interpret to be carried by a
force field. Such expressions are typical of ac-
tion-at-a-distance theories, as was pointed out by
van Dam and Wigner.!® It is this property that in-
hibits a satisfactory Hamiltonian formulation of
relativistic many-body systems in terms of dy-
namical variables “at one time,”

(4.13)

V. CONCLUDING REMARKS

In the present paper we have examined recent
proposals of relativistic particle action-at-a-dis-
tance theories for two-particle systems that are
local in an evolution parameter. We have analyzed
their structure within Dirac’s formalism for con-
strained systems not necessarily based on a La-
grangian. We have shown that the solutions of the
equations of motion in general are world sheets in-
stead of world lines. Taking the point of view that
the theory must give rise to world lines, we have
derived a set of conditions which generalize the
world-line conditions usually given in the litera-
ture. In order to satisfy these conditions in the
presence of interaction we had to restrict the class
of solutions x,(7, o) by fixing the parameter 0 in a
Poincaré-invariant way. This we could do, e.g.,
by means of the constraint

P-r=0, (5.1)

which by the way leads to a theory which has a

‘simple Lagrangian, namely,

L(7) :% 2 (%’;—?—+ma2Va>— m(Vy+ Vz)V("’z) s

(5.2)

where V; and V, are two einbein variables |cf.
(2.1)]. [When the equations of motion of V, are
set back into (5. 2) the Lagrangian acquires the
form proposed in Ref. 8.] Since the form of the
constraints K, cannot be fundamentally different
from (3. 4) for a physically understandable model,
we think our results are rather general. Of
course, there could exist completely different ways
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to construct world lines by, e.g., averaging over
one of the evolution parameters which would yield
nonlocal theories. '

In the theory (5.2) the gauge choice

P X=TM, M=(P)'? (5.3)

has a natural interpretation because the evolution
parameter T is then the time in the rest frame of
the two-body system. We have tried to interpret
this theory by expressing the conserved Poincaré
generators in terms of dynamical variables at a
common physical time; and in doing so we have
found that the conserved total four-momentum con-
tains a piece in addition to the sums of the individ-
ual particle momenta. Hence in a sense the idea
of a force field has not been completely eliminated;
its remnants appear if we analyze the particle the-
ory in terms of its components at equal times.

It is interesting to compare the above interpre-
tation with the properties of a quantum version of
a two-body system of essentially the type we have
considered in the present paper. In Refs. 11 and
12 the Green’s function and a generalized scatter-

ing theory were constructed. The Green’s func-
tion is nonlocal and this nonlocality is built up by
coherentlike states of zero-mass particles. In
Ref. 12 these states were considered to be built
up by gluons—the force field of strong interactions
according to quantum chromodynamics. This in-
terpretation agrees well with the result of the
present paper since this nonlocality may be identi-
fied with the remnants of the force field above.
Furthermore, it is easily seen that the Green’s
function is indeed local in the rest frame P;=0.

Note added: After the completion of this work
we learned about a paper by Molotkov and Todor-
ov? in which the frame dependence of world lines
is discussed.
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