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We examine in detail the behavior of bound systems containing a spin-1/2 fermion (e.g. , atomic hydrogen or
positronium} in an external gravitational field. Starting with the generally covariant Dirac equation, we derive the

effective Hamiltonian for a fermion in a weak gravitational field correct through order v'/c', where v is the fermion
velocity. The resulting expression is then used to obtain the gravitational Hamiltonian for both hydrogen and
positronium including relativistic effects. It is shown that the form of the Hamiltonian for the bound system depends

on the choice of center-of-mass and relative coordinates, and several choices of these coordinates are considered. An
extensive discussion is given of the relativistic variables used to describe the bound system and their physical
significance. The principal focus of this paper is a relativistic gravitational analog of the Stark effect which arises
from a set of post-Newtonian terms in the bound-state Hamiltonian. These are shown to mix opposite-parity states
in hydrogen, such as S„,and P„„and lead to a correlation between the local acceleration of gravity g and the

photon polarization in electromagnetic decays. We discuss the possibility that a study of this polarization could be
used to discriminate among different theories of gravity at the quantum level through its dependence on one of the
parametrized post-Newtonian parameters. For a fermion-antifermion system such as positronium, the interaction
Hamiltonian can admix states with opposite values of P and CP, as we illustrate with several examples. Our results

apply specifically to the case of a hydrogenic system supported in a gravitational field by nongravitational forces.
The effects of these are not explicitly considered.

l. INTRODUCTION

The object of this paper is to study the mixing
of opposite-parity states which result when a rel-
ativistic quantum-mechanical system, such as
hydrogen or positronium, is placed in an external
gravitational field. This effect, which may be
viewed as a relativistic gravitational analog of the
Stark effect, is interesting for a number of rea-
sons among which perhaps the most important is
the suggestion" that it may lead to a test of gen-
eral relativity at the quantum level. The possibil-
ity of using the relativistic gravitational Stark
(RGS) effect for such a purpose is intriguing be-
cause at present our experimental knowledge of
the effects of gravity on quantum systems is quite
limited. The single most important result comes
from the experiment of Colella, Overhauser, and
Werner' (COW) in which the measured quantum-
mechanical phase difference of two neutron beams
induced by a gravitational field was shown to
agree with the prediction of Newtonian gravity and
the Schrodinger equation. However, since all
known theories of quantum gravity reduce to the
Newtonian result in the nonr'elativistic limit their
experiment, while important, does not lead to a
discrimination among competing theories at the
quantum level (e.g. , Einstein vs Brans-Dicks
theory). To effect such a discrimination it is nec-
essary to look for relativistic gravitational ef-

fects which depend in some way on the spins and/
or momenta of the particles being studied. This
would require measuring relativistic effects in
the COW experiment, or in other terrestrial ex-
periments, ' that are approximately 7-10 orders
of magnitude below present-day capabilities. The
significance of the RGS effect is that it may allow
us to obtain the same information from nonterres-
trial systems (such as white dwarfs) where the
gravitational fields are many orders of magnitude
larger than on Earth. We will discuss below ex-
actly how this might come about.

It should be emphasized at the outset that we
will restrict our attention exclusively to conven-
tional gravitational interactions which are deri-
vable from Lagrangians which separately conserve
all of the discrete space-time symmetries,
namely parity (P), charge conjugation (C), and
time reversal (T). , Apparent violations of parity
selection rules then arise, as in the case of the
Stark effect, when we ignore parity changes in
the external fieM which compensate those in the
quantum system being studied. Our starting point
should thus be contrasted with that of other au-
thors' who. have considered the possibility that the
basic gravitational Lagrangian itself violates some
discrete space-time symmetry. To make this dis-
tinction clearer we consider Rs an example parity-
violating gravitational interactions in a linearized
theory where the effective interaction Lagrangian
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T,„(x)= T,'„'(x)+ T„'„'(x),

h„„(x)= h„'„'(x)+h' „'(x) .
Combining Eqs. (1.1) and (1.2) it follows that

Z,"(x)= ([T„'„'(x)h„'„'(x)+T„'„'(x)h'„'(x)],

2,' '(x) = ][T„'„'(x)a,'„'(x)+ T,'„'(x)h'„'(x)j .

(1.2)

Z]" is thus analogous to the (VV+AA) term in
the weak Lagrangian while C~ ' is similar to
(VA+AV). It is evident that Zj '(x) can induce
P-violating (and analogously C-, CP-, . . .violating)
transitions, and the consequences of such interac-
tions are considered in Ref. 4. However 2~"(x)
can also induce transitions between opposite-par-
ity states which arise through matrix elements of
the form

&fl~~"( }I'&=&[(fl'l"(x) I'&""'(")

+ (flT,','(x)li&h„'„'(x)], (1.4)

where i and f are initial and final states of some
quantum system (such as the 2P», and 2S»,
states in hydrogen} and 8„"„'(x)is an external gra-
vitational field. Since T'„'(x) is odd under P it can
connect states i and f which have opposite parity
which is the case we wish to study. The analogy
of (1.4} to the Stark effect then follows by writing,
for example,

where 8 is an external electric field and e is the
electric charge.

In what follows we will focus almost exclusively
on opposite-parity transitions in hydrogen and
positronium, which in the latter case also lead to
CP-odd admixtures. To obtain the transition op-
erator (analogous to eh 'r) for the RGS effect we
begin in Sec. II by presenting two derivations of
the effective Hamiltonian for a fermion in a static
gravitational field. In Sec. III the interaction of a
bound system of fermions with a gravitational field
is discussed. The single-particle Hamiltonians
for two fermions (e and p or e' and e ) are com-
bined with the Hamiltonian describing the interac-
tion of their mutual electromagnetic field with
gravity. The resulting expression is then sepa-
rated into center-of-mass and relative coordi-
nates. Several choices of coordinates are consi-

(density) can be written in the form

2~(x)= )T„„(x)h „(x)= Si"(x)+S~ '(x). (1.1)

Here h~„(x) denotes the gravitational field, T,„(x)
is an appropriate source, and g is a coupling con-
stant. Zz"'(x) then denote the pieces of gz that
are, respectively, even and odd under P. We can
decompose T „and h,„ in an analogous way,

dered in the context of a detailed discussion of
relativistic variables. It is shown that the final
expression for the interaction Hamiltonian for the
composite system depends on which variables are
used. Consequently the coefficients of several
terms in the RGS operator cannot be specified un-
ambiguously at the present time. However, since
the form of the RGS operator is the same irres-
pective of which coordinates are used, we can
write this operator in an appropriately general
way and consider its matrix elements in various
bound systems. This is done in Secs. IV and V
for hydrogen and positronium, respectively. In
See. VI we present our conclusions, and some
additional technical details are given in two Appen-
dices.

It should be emphasized that the RGS effect
arises in a system which is being supported
against the gravitational field by nongravitational
forces. As an example one might consider He'
in an appropriate electromagnetic field. Clearly
the effects of these fields must also be taken into
account, as we mention briefly in See. IV, but a
discussion of this problem more generally is be-
yond the scope of the present paper. For a freely
falling atom in a uniform gravitational fieM the
RGS effect presumably vanishes.

II. EFFECTIVE POTENTIAL FOR A FERMION
IN A GRAVITATIONAL FIELD

We present in this section two derivations of the
effective potential V for a fermion in a weak gra-
vitational field. Although different assumptions
and approximations are made in each of these de-
rivations the final expression for V is the same
[see Eg. (2.44) below]. This verifies that V can
be specified in an unambiguous way in the weak-
field limit. For the sake of definiteness we con-
sider the case of an electron of mass m in the
field of the Earth (mass Me) whose spin we ne-
glect. In the first derivation we begin directly
with the Dirac equation' for the electron in gen-
eral relativity. In the second derivation we view
the Earth as a massive spin-0 (scalar) particle
and derive V from the covariant S matrix for the
elastic scattering of a spin-& and a spin-0 particle
via one-graviton exchange. Although each of these
approaches is in principle straightforward, care
must be taken in specifying the coordinate sys-
tem in which each result is obtained: In the S-ma-
trix approach the calculations are carried out in
the center of momentum (CM) of m and Me which
is an inertial coordinate system. In the limit
m/Me «1 this system coincides with the rest
frame of the Earth, which is the laboratory
frame. By contrast the derivation proceeding
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(y'8, + «)g(x) = 0, (2.1)

where «= mc/5, 8, —= 8/8x', and where the Lorentz
index a runs over the values a=1, 2, 3, 0. 'The y's
satisfy the anticommutation relations

(y', y'j= 2q"I, (2.2)

where 1 is the unit 4 x 4 matrix in the space of
Dirac matrices, and g~ is the metric tensor in
Minkowski space (dx'=cdt),

ds'=q dx'dx'

from the I'ock equation describes the electron by
a locally flat set of fields called tetrads which
are at each space-time point x essentially the
square root of the metric tensor g„„(x). We will
see that the results of these two derivations agree
and yield for V the expression given in Eq. (2.44)
below.

'To establish our notation we begin with a dis-
cussion of the Dirac equation in Minkowski space,

(y'(x), y" (x)j= 2g""(x)1, (2 9)

and V (x) is the covariant derivative of the Dirac
field which we discuss below. The form of Eq.
(2.8) is dictated by the principle of general co-
variance which states that the appropriate gen-
eralization of a Minkowski-space equation such
as (2.1) is obtained by replacing all Lorentz in-
dices by world indices (y'- y" etc. ) and all ordi-
nary derivatives by covariant derivatives (8,—V„).
To exhibit y" (x) and V, explicitly we introduce a
set of tetrad (or vierbein) fields e', (x) at each
space-time point x defined by'

dx'= e'„(x)dx" . (2.10)

The tetrad fields relate the world coordinate
system, characterized by the index p, to a locally
Minkowskian coordinate system erected at x,
which is characterized by the index a. 'The fields
e'„(x) are related tog„„(x) as follows: Combining
Eqs. (2.3), (2.7), and (2.10) we have

ds'= q,~
dx'dx = q„[e', (x)dx ][e',(x)dx "]

= [q~e'„(x)e'„(x)]dx'dx"
(2.3}

Hence,

-=g (x )dx'dx' (2.11)

dx, = g~ dx', etc. , (2.4)

Lorentz indices (a, b, . . . ) are raised and lowered
by q~ in the usual way,

g, „(x)= }~7e'( )x(ex)= »e( x) e(x). (2.12)
I

The tetrad fields can thus be viewed as the square
root of the metric tensor g~„ in the sense of a ma-
trix equation. Inverting Eq. (2.12}we find

and g~ is related to q~ via

(2.5)

q~ =g „(x)e~(x)e,"(x),

where e~(x) is the matrix inverse of e'(x):
(2.13)

y'- iPn' (k-= l 2 3)

y =-ipn = ip= iy--0 ' 0 ' ' 4 (2.6)

where 5', is the Kronecker symbol. When the ex-
plicit. forms of the Dirac matrices y' are needed
we have used the Dirac-Pauli representation,

e'(x)e~ (x)= 5,'. (2.14)

e,'(x)e„,(x) = q~ . (2.15)

The generalized Dirac matrices y'(x) are given
in terms of the tetrad fields by

For later purposes we will also need the relation

a

(e oi

t'1 0)
&0 -I)

y'(x) = e.'(x)y'.

Using Eqs. (2.2) and (2.12) it follows that

(2.16)

where o are the usual Pauli matrices.
The Dirac equation in an arbitrary (world) co-

ordinate system specified by the metric tensor
g„„(x),

ds2=g„„(x)dx dx",

is given by

[y"(x)&,(x)+ «]4(x) = o.

(2.7)

(2.8)

Here y" (x}are a set of Dirac matrices satisfying
the anticommutation relations

(y"(x),y"(x)j= e,'(x)e,"(x)[y', y'j

= 2q e,'(x)e,"(x)1= 2g""(x)1 (2.17)

which gives Eq. (2.9}.
The covariant derivative V', can also be express-

ed in terms of the tetrad fields. We define an op-
erator I' (x) such that

V, P(x)= [8„+I „(x)]g(x), (2.18)

where 8, = 8/8x'. Under a local Lorentz trans-
formation A which takes P(x) into P'(x'),

0(x)- 0 (x )
=&(it)4(x), - (2.19)
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I'„(x) must transform as'

I'„(x)-D(A)I' (x)D (A) —[B„D(A)]D '(A) .
(2.20)

For the case of infinitesimal rotations or boosts
D(A) is given by GME

PC
(2.27)

Earth. For our purposes it is more convenient to
use the expression for the Schwarzschild solution
in terms of isotropic coordinates, because the te-
trads corresponding to these coordinates can be
read off by inspection. In the weak-field case,

z
D(A) = 1+—e o

(2.21) we have'

where a~ are the infinitesimal parameters. Com-
bining E(ls. (2.19)-(2.21) we find after some al-
gebra that I'„(x) is given by

g„„(x)= 5„„(1+24 ) —25„,5„,,

g""(x)= 5 „(1—24)) —25„,5„, ,

e~(x) = 5,(1 —4)+ 26„5„4),
e~„(x)= 5,„(1+4)) —25~05„0 .

(2.28a)

(2.28b)

(2.28c)

(2.28d)

I'„(x)= ~oe-",( )x,e„,, ( )x, (2.22) If we further define the vector g,
where the covariant derivative e,„,„(x) is given
in terms of the affine connection r~ (x) by

284
g, (x)=c', = (g, 0), (2.29)

e,„,„(x)= a, e,„(x)—I'„„e,„(x). (2.23) then

The complete Dirac equation can now be written
in the form

81'e,"(x) „+—v~e."(x)e,„,„(x) +~It)(x)=0.

(2.24)

r~„(x)=—,[~ „g„(x)+q„„g(x)

-~,„'0. g, (x)],

e,",,(x) = —,[q„„g,(x) —|)„,)7,„g,(x)].
1

(2.30a)

(2.30b)

It thus remains to specify the tetrads e~(x) for
the case of interest.

Since we are concerned with the interaction of an
electron in a static spherically symmetric gra-
vitational field, the appropriate tetrads e,"(x) are
those corresponding to the Schwarzschild solu-
tion, '
standm'd coo~di nates:

2GMgds'= 1—,A'+ x'de2+ r'sin'ed '
gc

I' = -I' = Z x g2C' (2.31a.)

-l. -
0 0 2 22c

(2.31b)

where Z is given by

(2.32)

Using Egs. (2.28)-(2.30) it follows that the matrix
I" =(I', I',) inEq. (2.22) is given by

i sotxopi c coordinates:

~2+ dy2+ dg2
GMg

2pc

/
GM
2pc'

p (x2+ y2+ e2)1/2

(2.28)

(2.26)

Combining Eqs. (2.24) and (2.28)-(2.32) the Dirac
equation can now be written as

y'(I —4 ) 8, —,(Z x g),2c

+y'(1+4) 8 2 g)+~I('(x)=0 (2.33)
0 2C2

Multiplying E(l. (2.33) on the left by Sc(1-4)P,
and dropping terms of order 4', 4g, etc. , we ob-
ta, in finally

s())(x)
ih = -ilc(1 —24)& 'a ——n 'g

Bt 2c

Here G=6.672x10~ cm' g ' sec ' is the Newtonian
gravitational constant and M~ is the mass of the

(2.34)+Prnc'(1-4) g(x)= Hg(x). -
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0 (x)= (1+ -'4)4(x) = e4(x), (2.36)

and a corresponding Hamiltonian H= OHg ', in
terms of which the Dirac equation in Eq. (2.34)
becomes"

Hg(x) =i5 g(x), — (2.37a)

ihH= -ihc(1 —24)n s+ —(x ' g+ pmc'(1 —4)c

i@co( '-a+inc(C» ~ S+ o.'~4)+ pmc'(1 —4).
(2.37b)

H is now manifestly Hermitian in the usual sense.
We will henceforth drop the tildes in Eqs. (2.37)
and denote P by Ir) and H by H."

The Hamiltonian of Eq. (2.37) couples the upper
and lower components of a relativistic Dirac wave
function through the "odd" operator n. For most
applications however, we wish to use nonrelati-
vistic wave functions and treat the gravitational
interaction as an ordinary perturbation in nonrel-
ativistic quantum mechanics. Moreover, the Ham-
iltonian of Eq. (2.37) cannot be used even with rel-
ativistic wave functions without running into con-
sistency problems as we discuss below. To ex-
press this interaction as an effective nonrelativis-
tic operator we carry out a Foldy-Wouthuysen ex-
pansion which decouples the upper and lower Dirac
components. Following Bjorken and Drell" we
write the Hamiltonian of Eq. (2.37) in the form
(p =- mc')

(2.38)

where the "odd" and "even" operators 6 and 8
are given by

The Hamiltonian in Eq. (2.34) is Hermitian when
the requisite spatial integrations are carried out
using the correct measure, i.e. ,

(&)=fd *(i')" 4'('~)&((*) W='),
(2.35)

g= det(g, z) = 1+ 64),

However, it is more convenient to absorb (g)'~'
into the wave functions f and (t)t in order that H
appear as a Hermitian Hamiltonian when integrated
with respect to the Euclidean coordinates Jd'x.
'This ean be achieved9 by introducing a new wave
function P(x),

just as in the electromagnetic case considered in
Ref. 12. To carry out the Foldy-Wouthuysen ex-
pansion of H (in powers of 1/p) we rewrite Eqs.
(2.37) in the form

H +'=iS —+
Bt

4'=e' 4 H'=e' He '
(2.41)

where we have introduced an operator S which is
to be chosen in such a way that H' contains no odd
operators to leading order in 1/p, which is O(1).
'The same procedure is then repeated twice more,
H-H'-H"-H", which is as far as we need ex-
pand the original Hamiltonian for present pur-
poses. To this order the transformed Hamilton-
ian H" is given by

H" = Pp+ h+ —P8' —,[8,[8,6 ]]+0 —,2 1

[8,S]=-' "PZ g+2ic4PZ p, (2.43a)

1 sh c'.[8,[8,&]]=—P ——g 'p+ —4P
8p, ' ' 2p 2p

——g 'O'X p4p
c2p~ 2il'P8'= P— +——g 'p

(2.43b)

2c' ~ I
— 4p~+ —g'p X p (2.43c)

We have exhibited the separate contributions to
H"' in Eqs. (2.43) to demonstrate the interesting
point that terms having the same structure arise
in what appear to be two different orders in the
Foldy-Wouthuysen expansion, namely 1/p, and
1/g', something which does not occur to lowest
order for the electromagnetic interaction. com-
bining the various terms in Eqs. (2.43) we find

(2.42)
and hence through O(l/i(, ') contains only even op-
erators which do not connect upper and lower
wave-function components. In deriving the above
result we assume that we are considering a sys-
tem for which the kinetic energy of the electron
and its gravitational potential energy are small
compared to p. I'n addition we neglect all terms
which contain more than one power of the gravi-
tational interaction. Making these approximations
we find

8=cZ (1-24)p+ —,gc

We note that

(P, 8)= [P,h]= 0,

(2.39a)

(2.39b)

(2.40)

III CH"=P (((,+ —i).4
2p

I

3 g t~ w 2 Q I
+ ZS g '

p —C 4p + —g ' O' X p2p

c~
pp+ +V i.— .(2.44)
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The first two terms in Eq. (2.44) give the usual
expression for the relativistic energy of the elec-
tron correct to order e'/c', where c is the elec-
tron's velocity. 'The remaining terms give the
Newtonian contribution with momentum-dependent
corrections which may be viewed as representing
the effects of the relativistic increase of the elec-
tron's mass with velocity.

Having completed our discussion of the single-
particle Poldy-Wouthuysen transformation we re-
turn to the consistency problem raised earlier.
It might be thought that the correct way to treat
gravitational effects in hydrogen is to simply
evaluate matrix elements of the Hamiltonian in
Eqs. (2.37) between four-component relativistic
wave functions. It turns out that this is not the
case for reasons having to do with the separation

. of the center of mass (c.m. ) and relative motion
of the two-body system. %e note that the New-
tonian term -Pmc'4 in Eqs. (2.37) will ultimately
determine the motion of the c.m. whereas the re-
maining gravitational terms will induce the oppo-
site-parity transitions of interest. 'To isolate the
latter terms we would like to drop the Newtonian
contribution, but this leads to a problem: The
term -Pnzc'4= 8 which would thereby be elimin-
ated also contributes to the parity-mixing transi-
tion operator through the term proportional to
[8,[8,g]]. Thus to distinguish between these two
contributions from 8 it is necessary to begin with
the Foldy-Wouthuysen form of the Hamiltonian in
Eq. (2.42) rather than with the original Hamilton-
ian in Eqs. (2.37).

Equation (2.44) gives the basic single-particle
interaction which we will use in Sec. III to derive
the expression for the RGS Hamiltonian appropri-
ate to hydrogen or positronium. To verify that
Eq. (2.44) is indeed correct we will rederive it
below from the S matrix for the one-graviton-ex-
change contribution to the scattering of a spin-&
and a spin-0 particle. Consider the process m(p)
+Ms(q)-m(p')+Ms(q') shown in Fig. 1, where m
and M~ denote the electron and scalar particle,
respectively. %e first derive the S matrix in an
arbitrary frame, and then specialize to the CM
defined by p+q=o. Following Barker, Gupta, and

l

FIG. 1. One-graviton-exchange contribution to the
scattering of a spin-~ particle with mass nz and a scalar
particle with mass Mz. The wavy line denotes the
graviton.

K

16m
' (2.46)

The expressions in square brackets in Eq. (2.45)
are the energy-momentum tensors T„"„'(x)and
T"„'(x) for the electron and the scalar. The gravi-
ton propagator is given by

{OiT[I,„(x)h„(x )]
i
0)

= -i(5 ~5„+b b„~ —6 „b„)D~(x—x'), (2.47a)

ftt ( ) 1D~(x-x')=
( ), e (2.47b)

The S-matrix element for the transition i -f is
defined by

Haracz" (BGH) the couplings of the electron (e)
and scalar (s) to the gravitational field h, „(x) are
given in the linear approximation by (setting I= c
=1)

X"'(x)= ,'ka, „(x—)[p(x)y„s„y(x)+g(X)y„s,y(x)

—(8„V(x)}y g(x) —(s,V(x))y.p( )],
X&"(x) =-.'~I.„(x)[s.y(x)s„y(x)

--,'6, „(a,y(x))2--,'6.„M 'y2(x)],

(2.46)
/

where g(x) and Q(x) are the field operators for the
electron and scalar, respectively. The coupling
constant K is related to the Newtonian gravitational
constant G by

1/2 1 ~~/2
S/, =5/, —i (2v.)'5'(p+ q —p' —q')

i&P4'ol" 4qoqoT/' i
(2.46a)

~f f
— I ' r, P, +P.' +r. P, +P„' P a'&op + 9pQQ ~)tp e a" +M&

A2

, u(p')[2imMs'+y q(p+P') ~ (q+q')]u(p) . (2.48b)
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Up to this point the calculation of S« is completely
covariant since no specification has been made of
any frame. We now go to the CM by setting

p+q =p'+q'=O. (2.49)

In the limit m/M s«1, which we will ultimately
consider, the electron can be viewed as scattering
from a fixed target in such a way that its energy
is conserved but its three-momentum is not. Un-

der these conditions we can write

~(P')r.~(P) =&X,'[~P+ .'(-s' k-')

+f0' 'k x p]X),
N = (4m'o. p} '~'

o. = (p, +m), p = (p,'+m),

(2.52b)

(2.52c)

(2.5M)
s =p+p', k=p' —p.

Combining Eqs. (2.51) and (2.52) we see that K can
be written in the form

5)I = y~[F,(p, k)+ ia' ~ k x pF, (p, k)]x, , (2.53)

and

y2- (p~ p)2= k2

(2.50)
where the leading contributions to I", and F, are
given by

p k= —,k'.

Using Eqs. (2.50) % becomes

g2

2 fu(p')u {p}[m (M~2+ 2p2 ——' k2+ 2p~ )]

—~(p')r.~(p)[(p, +q.)(2p' —a k'+ 2p.e.)l] .

(2.51)

u(p')u(p) =Ny~[ap ——'(s2 —k )

—io' ~ k x p]Ii, , (2.52a)

To convert gg into an effective gravitational poten-
tial for the electron, we reexpress the Dirac spin-
ors u(P), u(P') in terms of Pauli spinors y, Xt by
writing

(2.54b)

F, -=-4 vGMzm —+M 14+ ~ + Ip' p
1 1 f 3Mz 3m ) 1

zm k 2m 2Ms) k2

3M
+4vGI 1+— (2.54a)

4rG( 3M
)

We have written the p-dependent term in Eq.
(2.54a) in such a way as to lead to a manifestly
Hermitian coordinate-space potential. The mo-
mentum-space. matrix element in Eq. (2.53) gives
rise to an effective potential V in coordinate space
whose matrix elements between free-particle wave
functions reproduce 3g. Thus, taking the Fourier
transform of the expression in brackets in Eqs.
(2.53) and (2.54), we find

GM~m 1 3M~ 3m ( GM~m / 3M~ ~~ Ko ~ r x p
(2.55)

where we have reinstated the factors of 5 and c
in an obvious way, and have dropped the contribu-
tion proportional to 5'(r) arising from the last
term in F,. Noting that M~/m» 1, the second
term in Eq. {2.55) gives

l

Hence combining Eqs. (2.55)-(2.58) we find (p,
=mc')

1

V=-p4+ — -c Cp +iong'p+ —g exp
2p, 2

, - (QM~ '|- 3
=2p

I ~ Ip — 2( c@p+@g p).
~mc r) 2mc

(2.56)

(2.59}

in complete agreement with Eq. (2.44). We note
in passing that the spin term in Eqs. (2.44) and

(2.59) can be written as

~ =&C(r) = g(r),
1 d4(r) 1
r dr c (2.58)

which is valid for a spherically symmetric 4(r).

We can also rewrite the third term,

Gl/I g 3 1 1 d» So ' r x p =—,——( -c 4 (r)}Ko r x p,4 mc'r' 4mc'r dr

(2.57}

by using the identity

3S 3 GMg
g ea, )(p — s of

4p. 2 mcr (2.60}

where use has been made of Eq. (2.58), and S
=So/2. In the form of Eq. (2.60) this term is
seen to be the usual. spin-orbit interaction which

at the macroscopic level would give rise to the
geodetic precession' of an orbiting gyroscope.
(Since we are neglecting the Earth's spin there is
no analog of the I ense-Thirring precession which
arises from a spin-spin interaction. }
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+ pmc (1 —4) . (2.62)

This leads in turn to a modification of the single-
particle interaction in Eq. (2.44):

C2p2H"'-P p, + —pC
2p,

+ —(y'+-')j@g p-c'~p + —g oxp ~ .

(2.63}

The derivation of Eqs. (2.62) and (2.63} is dis-
cussed in Appendix A.

III. INTERACTION OF A COMPOSITE SYSTEM
WITH A GRAVITATIONAL FIELD

We turn in this section to a derivation of the
effective two-body transition operator for the RGB
effect in hydrogen and for an analogous effect in
positronium. We begin with Etl. (2.63} and write
for hydrogen

H~'(e -P) =H" '(e -P}+H(e) +H(P)

+H'"'(e —P) . (3.1)

Here H" '(e —P) denotes the electromagnetic in-
teraction, and H(e) and H(P) are the appropriate
single-particle operators from Eq. (2.63) ex-
pressed in terms of the electron and proton vari-
ables, respectively. (Since we are dealing with

The potential of Eq. (2.44) follows from the
metric of Eq. (2.26) which is the form appropri-
ate to the general theory of relativity. Although
the experimental support for general relativity
at the macxoscoPic level is quite compelling"'6
there is, by contrast, little (if any) information
which bears on its validity at the quantum level.
Since this is one of the questions which we would
like to explore by a study of the RGB effect we
consider next the generalization of Eg. (2.44) for
an arbitrary metric theory. It is convenient to
describe metric theories of gravity by use of the
parametrized post-Newtonian (PPN) formalism"
in which the metric of Eq. (2.26) is replaced by'

-goo ——1 —2C + 2p'C

go] ——0, i=1,2, 3

g, q
——(1+2y '4 )5,.q

=f6; q
.—

y' and P' are parameters which distinguish among
different metric theories of gravity with general
relativity corresponding to y'=p =1. To lowest
order in 4, P' makes no contribution but y' leads
to a generalization of the expression for H in Eq.
(2.37b):

H- ihca -f+ ~(l'+y')inc(4n $+ n fC )

+(y'+1) ', '
g r

2M' (3.2)

where r =
~
r

~
is the electron-proton separation as

measured in isotropic coordinates. For the defini-
tions of other quantities see Appendix B. The con-
tribution from H'"' was not included in Refs. 1
and 2.

We now wish to combine H(e) and H(P) and ex-
press their sum in terms of center-of-mass and
relative coordinates. In the expressions for H(e)
and H(P) in Eg. (2.63) the contributions of interest
to us are those proportional to (y'+ ~). Since
these terms are relativistic "corrections" to the
Newtonian contribution -p. C, it is necessary to
exercise some care in defining the c.m. coordin-
ates for the composite system in order that vari-
ous inconsistencies be avoided. In this section we
begin by briefly reviewing the existing literature
on this problem with a view towards applying the
appropriate results to the case of a hydrogen
atom in a gravitational field. Qur discussion
closely follows that given by Krajcik and Foldy'9
(KF), who also reference much of the earlier
literature.

Before proceeding with the discussion of rela-
tivistic variables, it is important to distinguish
the present treatment of.gravitational effects in
hydrogen from that given recently by several other
authors. In our work we explicitly view the hy-
drogen atom as a takeo-body system with the elec-
tron, proton, and their mutual electromagnetic
field all interacting with an external gravitational
field. By contrast, the authors of Ref. 20 view the
electron as moving in a fixed Coulomb field and
hence treat hydrogen as a fixed one-body system
interacting with the gravitational field. To the
extent that effects due to the recoil of the proton,
or the motion of the c.m. , can in fact be neglected
such an approximation is presumably legitimate.
However, these effects represent relativistic cor-
rections to the lowest-order results which can in
principle be of the same order as the (relativistic)
post-Newtonian effects that we wish to study. This
is particularly true for fermion-antifermion sys-
tems such as positronium where the mass of the

low-energy and low-momentum-transfer process-
es, we will ignore form-factor contributions and
treat the proton as an elementary Dirac particle
for our purposes. ) H'"'(e —p) represents the
coupling of the gravitational field to the electro-
magnetic field of the combined e -P system.
From the discussion of Appendix B this is given
by

2H""= (q'+ 1)4s + (q'+1)
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system is comparable to that of any of its consti-
tuents. We note, - for example, that Will's analy-
sis of gravitational red-shift measurements in hy-
drogen, as tests of nonmetric theories of gravity,
depends on retaining the terms proportional to P'

and y' in -g00 and g„., which correspond to his
functions T and H, respectively. Although it may
well turn out that viewing hydrogen as a one-body
system for these purposes is correct in the end,
this point has heretofore not been properly ad-
dressed for gravitational effects. Furthermore,
as the subsequent discussion will indicate, it is a
nontrivial question which cannot be completely
answered at the present time. In this section we
study three sets of variables describing composite
systems: (a) The nonrelativistic variables used
in Refs. 1 and 2, (b) the relativistic c.m. variables
discussed by KF (Ref. 19), and (c) a set of rela-
tivistic center-of-energy variables. 2' We will
show explicitly that each set has certain advan-
tages and disadvantages relative to the others,
and that all three lead to different results in the
present case. The most extensive discussion of
the problem is due to KF (Ref. 19), whose treat-
ment we consider first.

The realization that inconsistencies could arise
if nonrelativistic variables were used to describe
the relativistic interactions of a composite sys-
tem emerged from the work of Barton and Dom-
bey. These authors showed that the Drell-Hearn-
Gerasimov (DHG) sum rule for the absorption of
photons by nucleons apparently fails when applied
to a composite system such as 'H or 'He. It was
subsequently shown by Brodsky and Primack
(BP) that this problem can be traced to the fact
that the interaction of a loosely bound composite
system with an external electromagnetic field is
not simply given by the sum of the separate inter-
actions of the constituents with the field, where
each interaction is evaluated in the Foldy-Wou-
thuysen (FW) approximation. 4 BP, and also Os-
born, 2~ exhibited the terms needed in order to cor-
rect the naive FW result so as to achieve agree-
ment with the DHG sum rule. More recent
work'9' has focused on the view that the correct
Hamiltonian for a composite system can be ob-
tained to O(v (c ) from the sum of the individual
interactions if one uses an appropriate set of rela-
tivistic variables in place of the usual nonrela-
tivistic variables.

To understand how these relativistic variables
are constructed"' we begin by first considering
the case of a nonxelativistic composite system
with N constituents. Each constituent j (j
= I, . . . ,N) is described by the variables r&, p&,

and s& which give its coordinate, momentum, and

spin relative to some chosen coordinate system.

Given the 3N vectors (r&, p&, s&) one can define the
c.m. R of the composite system, and its total mo-
mentum P, by writing

1R= — m~r~ ] (3.3a)

(3.3b)

where M =Z&m& gives the total mass of the com-
posite system in terms of the constituent masses
m&. Finally, a new set of variables p&, n&, and

g& are introduced via the relations

P
r& ——p,. + R, p&

——m~ ™~—,s;=e, . (3.4)

Since p& and m& satisfy the constraints

Q m)p) ——0, Qv) ——0,

it follows that (R, P, p&, v&, o&) comprises an alter-
nate set of 3N vectors in terms of which the com-
posite system can be described. Evidently p&

specifies the location of constituent j relative to
the c.m. R, with a similar interpretation for m&.

If we define in addition the total internal angular
momentum S of the composite system,

(3.5)

s =Q «~+ p~""~) (3.6)

then the generators +, g, X, and3.'of the Galilean
group assume the "single-particle" form (U is the
internal inte raction)

(P =p,
RxP+S,

X =MR —tP,
p2X=/+
2M

r2
h=Mc +g +U

2m/

(3.7a)

(3.7b)

(3.7c)

(3.7d)

(3.7e)

Here h is a rotationally and translationally invari-
ant function of the c.m. variables which corre-
sponds to the internal Hamiltonian. The operators
6', g, X, and3' represent respectively the gener-
ators for space translations, rotations, boosts,
and time translations. It follows'9 from Egs. (3.7)
that the c.m. variables have the property that they
describe the composite system as if it were in fact
a single particle with coordinate R, momentum P,
and spin S, independent of the details of its inter-
nal structure. Since this description corresponds
to our expectation for the behavior of the c.m. mo-
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tion of the composite system, the variables R, P,
and 8 are the appropriate ones to use in the Qali-
lean case.

We turn next to the relativistic case where we
seek a set of relations analogous to Eqs. (3.3) and
(3.4) which allow the generators of the (relativis-
tic} Poincard group to be expressed in a single-
particle form analogous to Eqs. (3.7). The com-
mutation relations of the Poincare group, ex-
pressed in terms- of 6', g, X, , and K are given in
Eqs. (2.2) of KF. These can be expressed in the
usual form

[M ~,M„„]=5 „M~„+5g„M~),

-6~„Mg q
—6g),MI„, (3.8a)

Z

~a abc bc ~2
(3.9a)

1
X~= ——M~4 ) (3.9b)

(P, =p, , X= icp4-, a, b, c =1,2, 3. (3.9c)

The key observation of KF is that there exists a
Hermitian operator Q = Q(R, P, p&, v&, o&) which
has the property that, if Eq. (3.4) is replaced by

r, =e'~(p~+R)e ", (3.10a)

m
p =e" n + ' P~e"

eflux ~ -i4
f

(3.10b)

(3.10c)

then the Poincard generators +, p, X, and X for
anisolated system can be cast into a single-par-
ticle form in terms of the newly defined variables
r&, p&, and s&. For example, the correct rela-
tivistic expression for 6' is obtained by replacing
Eqs. (3.7a} and (3.3b) by

(p Q 8&4 r + 9 p ie-l4
M

(3.11)

As discussed by KF, the operator Q defines pos-
sible relationships between the sets of variables
r&, p&, s&}and {R,P, p&, v&, o &}. Thus p& and v& re-

tain their interpretation as the momentum and
internal momentum of constituent j, but their
relationship is altered by Q. KF discuss the con-
struction of the operator Q which, when expanded
in powers of 1/c, allows Eq. (3.10a) to be written
in the form

1
r~=p~+R+ ~ Ng ~

C

[M g,p„]=6g„p —6 „pg, o!,p, v, X=1, . . . , 4

(3.8b)

if we identify

where the explicit form of N& is given in Eq. (2.27)
of KF. The expressions for p& and s& have a sim-
ilar form. If we drop the arbitrary function II"'
appearing in Eqs. (2.26) and (2.27) of KF, then the
remaining contributions to N~ (and to the analogous
terms in p& and s&} contain an explicit factor of
1/M. This means that in the limit M -~ the rela-
tivistic and nonrelativistic variables coincide,
which is intuitively reasonable: As noted by Brod-
sky and Primack the corrections to the naive FW
result arise from the fact that the bound-state
wave function is different in the c.m. and labora-
tory frames. Clearly such effects would be ex-
pected to vanish as M -~ since then the composite
system could be taken to be permanently at rest.
It follows that if one neglects effects of O(m, /m)
then it would be sufficient to use nonrelativistic
variables, particularly in our problem where all
energies are small compared to m&. This as-
sumption was used in Refs. 1 and 2. We shall see,
however, that contrary to intuition the relativistic
contributions of KF do not vanish as 1Yi- in the
gravitational case. This is an important point to
which we will return shortly.

For our purposes an important question is the
extent to which the results of KF are applicable
to the case of a composite system in an arbitrary
external field, particularly a gravitational field.
This question has been considered recently by
Sebastian28 but is not completely understood at
present. It is not hard to see that an external
gravitational field poses new problems: In addi-
tion to demanding that the relativistic variables
lead to a single-particle form for 6', g, X, and X,
we also require that the motion of the c.m. corre-
spond to a uniform acceleration

~ g ~
which is inde

Pendent of the internal comPosition of the body .
The latter condition follows, of course, from the
Eotvos-Dicke-Braginsky (EDB) experiments29
which establish the composition independence of
the acceleration of different bodies to a precision
of at least 10 ". Fx'om the outset it has not been
shown that these two conditions can be implemented
in a mutually compatible way. For example, the
composition independence of ~g ~

for systems inter-
acting via electromagnetic interactions has been
demonstrated theoretically for a class of gravita-
tional theories by I.ightman and I.ee' and by Hau-
gan and Will. ' However, the center-of-energy
variables that these authors employ are not those
of KF, and are not constrained by the require-
ment that the generators of the I,orentz group as-
sume a single-particle form. By contrast the
relativistic variables of KF have not been shown
to lead to a composition independence of ~g ~.

Returning to Eqs. (2.27) of KF, PW"' for the
e -p system (1—= e, 2-=p) is given by'~
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(3;14)

and hence, using Eq. (3.4},
m~»»m 1pi= ~ r ~,@2=

Equations (3.15), and the analogous results for
7l f 2p

(3.15)

1
1J(= 772 = —-(m2p( —m(p2),M

(3.16)

allow pf 2 and 77( 2 to be eliminated in favor of the
internal coordinates r and k. From Eqs. (3.13)
and (3.15}we then have, with e (

= -e, =e,
2

(f) (m, —m, ) e r
pw (3.17)

PW((l (e2 (P( P2) (3.13)
I p) —p2l

Since PW"' is a contribution to the relativistic cor-
rection N&/c' in Eq. (3.12) it suffices to use the
nonr elativistic relations in Eqs. (3.3)—(3.5) to ex-
press W"' in terms of the internal variables
r —= p, —p, and %=fr, = 7r,-F.rom Eq. (3.5) we have

m (p) + m2p2 =0

Equations (3.17) and (3.18), when combined with
Eqs. (2.2'I) of KF, give the complete expression
for N& in Eq. (3.12). At this stage we again use
the fact that N+/c' is a relativistic correction
to argue that N& may be dropped in any term in
Eq. (3.1) which is itself a relativistic correction

' to the leading contribution. In practice this means
that N& contributes only to the kinetic energy and
Newtonian gravitational potential energy terms
in Eq. (3.1). For example, the term proportional
to % '" modifies the Newtonian contribution in
H(e) +H(P) as follows.

2/e (m, -m, )-mg r —mg r-Mg R+ — g r1 1 2

(3.19)

where the first term on the right-hand side of
(3.19) is the usual nonrelativistic result. In all
the remaining terms the nonrelativistic relations
in Eq. (3.4) are sufficient. The complete ex-
pression for the Hamiltonian H(e -p) describing
a hydrogen atom in a gravitational field is then
given by

and also,

P dP W"'= ' ' —r ~ P(m -m) e'
2M

(3.18)
H(e -P) =H "'(e -P) +EH(e -p),

where

(3.20)

H ' (e-p) = — +Mc'+ + -M(c ez+g ~ R) —(y'+2)@sl —+( ) Ze2 P2 k2 &P k
EM

le'

1 P 1 ~» ~ » 1», 1-(y'+-,') —, g R —+ —(g rP ~ k+P ~ rg k)+ —g Rk'+-c'„M M P~ me

, ik & 1 I'( 2, , 1 s+(y'+2)—.I
———

~g k+ —g P +(y'+l) —.g ~ -~ x
c ((m mpj M c m mp

I

1, &e' g. R (m(, -m, )+(p +1) @~+ + ger2 2Mc2

1 ( 1 1»»2 . 1 s~ s
DH(e -p) =,

~

———(g r k' -ikg k) —,g ' —~ ~x k2c2(m, m~ 2c' m, m, j
Ze2 g. r+,(-ikg ~ P+g rP ~ k+P ~ rg k)+ 2 (m, —mp)2Mc 2Mc'

m gampme+m„p ~=
mg +mp

S =s, +sp+r x k.

1
g ~ rk

mp
~laP'

k+g ~ —x P
M

(3.21a)

(3.21b)

(3.21c)

(3.21d)

In Eqs. (3.21) C s and R are defined by the ex-
pansion

GM@ GM@c'C(r)= = -- +g. R=c 4 +g R
y' R g p

g

and thus R is the location of the c.m. measured

from the surface of the Earth. P and k denote the
operators

P = —ias/sR, k its/s= r— (3.23)

and s, p are the spins of the electron and proton.
The first and last terms in (3.21a) give H" '(e —p)
and H'", respectively, while the remaining
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terms arise from H(e) +H(p) T. urning to Eq.
(3.21b) we note that &H(e -p) does not vanish
in the limit when m~ (and hence M) becomes very
large, in contrast to what is seen in the electro-
magnetic case. Hence even when the atom is suf-
ficiently massive that its recoil could be ne-
glected, there remains a contribution to the gra-
vitational interaction from the relativistic cor-
rection. Since this appears to run counter to the
intuitive expectations discussed earlier, it is not
clear at present wheth. er the relativistic co-
ordinates of KF require additional modifications
to describe gravitational interactions. We ob-
serve, however, that &H(e -p) does not depend

on the PPN parameter y'. This follows from the
fact that, as noted above, only the Newtonian
gravitational contribution and the kinetic energy
are modified by the use of relativistic coordinates,
and these contributions are independent of y '.
From this observation we conclude more generally
that, irrespective of the form of the relativistic
correction, hH(e -p) must be independent of y '
and hence can never completely cancel H "(e -p).
This means that the operator for the RGS effect
will in general be nonzero except, perhaps, for
some special choice of y'. Returning to Eqs.
(3.21) we can combine the expressions for H+'(e —p)
and ~(e-p) to give

H(e -p) =H "'(e -p) +EH(e -p)
~e', , - g R tP' k'+Me'-M(c'4e+g R)+ 1 —(2y'+1)Ce-(2y'+1), I

+
Irl

' c'. &2M 2p.,
+(y'+2), g P+ —

2
———(-g» +i@g k)+ —,g ~ ~ ——lxk+, g ~ SxP

N - y 1 1,. y s s~'t (y +—,

Mc c m mp c' m, m~ j Mc'

(3.24)

1 —(2y'+1) Ce+dr, g ~ r p
dt ~ c' gm

p +1+, (ihg -s xg), (3.26a)

—=mg 1+(y'+2)dt m'c

&s (y'+-.')-
SX (gX p). ,dt mc'

(3.26b)

(3.26c)

Using H(e -p) in Eq. (3.24) the corresponding
equations for the motion of the two-particle sys-
tem become

We have written Eq. (3.24) in such a way that each
set of terms is separately Hermitian.

We turn next to the equations of motion for the
coordinate, momentum, and spin variables in
both the single-particle case and for the composite
system. If we denote any of these operators by 0
then the Heisenberg equations of motion are

—= —[Q H]+-dQ 1 90
(3.25)N ' Bt

where in our case sQ/Bt =0. Using Eq. (2.63) we
find for a single particle in the Earth's field

Ze
+ (y'+1) 2 g,f'C (3.27b)

SX(gXP)+ —2gX ' —~ Xk
d S (y'+2') - - y' s. s
d t Mc' c m~ mp

y'(1 1+ —,
I

———(r x gk'+Ng x k)c (m~ mp

+ (rxgP k —r gPxkMc'

+rxPg k-r ~ Pgxk),

S =s~+s&+r x k.

(3.27c)

(3.27d)

We. see from Eqs. (3.26) and (3.27) that the com-
posite system behaves as a single particle only
in the special case y' =0, provided that we replace
m in Eq. (3.26) by the internal Hamiltonian h,

k' Ze'
h =Mc'+ (3.28)

&z

This can be understood by noting that y' =0 cor-
responds to Einstein's 1911 theory in which the
gravitational potential of a particle with energy
E would be given by

—GMs( E/c2)v~= (3.29)
(Y+k)—

M ' MMC2 (3.27a) in contrast to the more general result for y' 4 0,
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(3.30)

Thus for y' =0 a particle behaves gravitationally
as if its mass were simply replaced by E/c'
=m+p'/2mc', which is what Eqs. (3.26) indicate.
For a composite system (ignoring the field energy)
the energy would be the sum of the energies of
the individual constituents and thus the gravita-
tional energy for y' =0 would necessarily assume
a single-particle form. It is important to stress,
however, that when the coupling of the gravita-
tional field to the internal electromagnetic field
is included, Eqs. (3.2V) do not assume the single-
particle form even when y' =0. This is similar
to what happens for the electromagnetic case
where the coupling of the field to internal ex-
change currents, for example, prevents the
equations of motion of a composite system from
assuming the single-particle form.

%'e turn next to consider another set of relativis-
tic variables which we call center-of-energy (CE)
variables. Let A,

&
be the single-particle Hamil-

tonian for constituent j. %e then define the CE
variables R, P and the internal variables r, k
as follows:

R=—,
' ' ' ' +H. c. , P =p, +p, , (3.31a)

1 2

r =r, -r2, k=2 ' ' ' +H. c. I. (3.31b)

The classical analogs of Eqs. (3.31), which evi-
dently reduce to the usual expressions in the non-
relativistic limit, have been used by the authors
of Refs. 30 and 31 to discuss the composition
indep'endence of g. Here we wish to interpret
those equations as quantum-ngechanicul relations,
which is the reason why we use the average of
each expression and its Hermitian conjugate

(H. c.). Operators appearing in the denominator
are to be understood through a Taylor series
expansion.

To apply Eqs. (3.31) we begin with the expres-
sion for the single-particle Hamiltonian h„ne-
glecting temporarily electromagnetic effects:

~ 2

h) =m(c + —m)(c 4@+g ' r()
2m,.

I
+ ', [ikg p,. -(c'es+g ~ r,.)p,.'

-s,. gxp,.j. (3.32)

To proceed we combin'e the single-particie ex-
pressions for the electron and proton [using
either (2.63) or (3.32)j and replace the constituent
variables by the CE variables using the inverses
of Eqs. (3.31):

, t h,r ) , ( h, r
r, =8+2 I +H. c. I, r~ =R —~I +H c. I,

I(h, +h,
' ']' ~ (h, +h, j '

(s.ssa)

(s.ssb)

We note that when Eqs. (3.33) are used, the con-
stituent variables are replaced by expressions
involving the h, which depend in turn on the con- '

stituent variables themselves through Eq. (3.32).
Thus the CE variables must be introduced by an
iterative procedure, each application of which
removes the dependence on the constituent va-
riables to one higher order in 1/c'. For pre-
sent purposes a single iteration is sufficient and,
as in the case of the KF relativistic variables,
only the kinetic energy and Newtonian gravita-
tional terms need relativistic corrections. We
find

H(1)+H(2) =Mc -Mc 4z 8+[1+-(2y' 1+) zC]E— 2 g ~ R —+' —g rP ~ k+ —g Rk
(y'+-,' )

1 R

t' 1+
I

———
Ig rk'

( m, rn2)

+(y'+-') —, — Ig'k+ g'P + ' g'I ~ — a Ixk+g ~ (s, +s,) xPih ( 1 1 ) 2 (y'+2) (s s
C (FPll pg2 j I ~ C - (~l 'pn2j

(3.34a)

N= —g (m, r, +m, r, ),
Pl, P
2'] 2&l2

(s.s4b)

(3.34c)
(3.35)

1 /1 1)N= —Mg R+,
I

———[(g ~ rk' —ling k)~
2C (yPZl yPg2 )'

1 N
+ (g rP k ——g P).

MC2 2

Since N is already O(G) we can neglect the gravi-
tational terms in h, and hence, to the required
order in 1/c',

By contrast, in E we can neglect the kinetic
energy contributions to the h„but we retain those
due to Newtonian gravity. Using the relations,
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m2k, -m, h, -g ~ r
m, m, (h, +h, ) me' '

hi ~&(1 m, g r
h+h, M ~( M c']'

[P,r]=O,

we find

(3.36a)

(3.36b)

(3.36c)

(3.36d)

TABLE I. Comparison of relativistic variables. NR
denotes the usual nonrelativistic variables for a two-
body system where the center-of-mass coordinate R
and the relative coordinate r are given by R= (m~r~

+m2r2)/(m~+m2) and r=r~ —r2. CE denotes the rela-
tivistic center-of-energy variables obtained by replacing
the masses by the corresponding relativistic energies in
the NR variables as discussed in the text. KF denotes
the relativistic variables of Krajcik and Foldy, Ref. 19.
The entries in the table give the coefficients of the cor-
responding terms in Eq. (3.40) for each choice of vari-
ables.

2

2 2M M 2M

(3.37) e P

Term NR CE KF

7'+2 7' 7'

We now return to Eqs. (3.34) and include the
effects of electromagnetism which arise from
two sources, H '" in Eq. (3.2), and the electro-
magnetic contributions to h, and h, in Eqs. (3.33).
From Eq. (B16) we see that the electromagnetic
contribution to either h, or h, is just H'"'/2 and,
since this correction affects only the Newtonian
contribution N, the corresponding correction
6N to N is just

|-, —,g —' —~x
Ze (m~-~e) g r

C c2 M
7'+1 y'

2 2 2

z {g rP ~ k+9 ~ rg % i' -P) y'+2 y'+~

, [m,P,(x,) —m, Q, (x,)]

Ze g ~ r
2Mc, (m, -m, ) y'

(3.38)

S =s~ +s2+r x k (3.39)

we arrive at an expression for H(1 —2) =H(e -p)
which is similar to that given in Eq. (3.24) for
the KF variables, but yet not identical to it. In
Table I we compare the coefficients of the four
sets of terms which have different coefficients
depending on whether one uses nonrelativistic
(NR), Krajcik-Foldy (KF), or center-of-energy
(CE) variables. The remaining terms in (3.24)
are identical in all three sets of variables.

We conclude this section with a brief summary
of the advantages and disadvantages of the three
sets of center-of-mass variables that we have
been considering. The NB variables have the
obvious advantage of simplicity and are an in-
tuitively reasonable choice when recoil effects
(of order m, /m~) can be neglected. If this ap-
proximation is made before the variables are
inserted into the two-body RGS Hamiltonian in
(3.24), then the KF, CE, and NR results coincide.

We note that 5N is the same expression that arises
in Eq. (3.17) from the P W "~ contribution to the
KF variables. Collecting the previous results
together and introducing as before

(For nongravitational interactions it makes no
difference when the limit m&-~is taken. ) The
KF variables have the advantage of being rela-
tivistic (in contrast to NR), and constructed so as
to maintain the single-particle form for the Poin-
card generators of the composite system. How-

ever, in the presence of an external gravitational-
field they no longer lead to a single-particle
form. Additionally they have not yet been shown
to lead to the composition independence of

~
g

~

for
composite systems, in the framework of a ri-
gorous quantum-mechanical calculation. It is
also not clear what significance to attach to the
fact that the KF variables do not lead to the naive
nonrelativistic result when nz~- ~. The CE
variables, which are also relativistic, have the
advantage that they have been explicitly shown

to lead to the composition independence of
~
g ~, at

least in the context of a semiclassical calculation.
They do not coincide with the KF variables and
hence presumably do not lead to a one-particle
form for the Poincard' generators.

As we see from Table I, the effect of the dif-
ferent choices of center-of-mass variables is
simply to change the y'-dependent coefficients
of the four terms given in the table. For pur-
poses of evaluating matrix elements of this opera-
tor in the next two sections we will replace these
coefficients with four constants Cr(y'), Ce(y'),
Cz(y'), and Cx(y') so that
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2 2

H(e -p) = — +Mc -M(c @e+g ~ 8)+ 1 —(2y'+1)C&& —(2y'+1) g
— —+

N C~ I+(y'+k) .g &+ —,———(-g.rk'+iag k)Mc' C fPl~ pygmy

C»Ze2(mp —m, ) g ~ r . . . Zem g
I l

'~ 'l
i

(3.40)

For later application to fermion-antifermion systems such as positronium, we simply set m, =~~=m
which then leads to the expression given in Eq. (5.2). The normalization of the C's has been chosen so
that they are given by the entries of Table I for each choice of center-of-mass variables.

IV. THE RELATIVISTIC GRAVITATIONAL STARK EFFECT IN HYDROGEN

We consider in this section the internal transitions induced by the gravitational Hamiltonian in Eq. (3.40).
We define the internal transition operator as the P =0 contribution in Eq. (3.40) which is

gg k
H(e -P) ~y~= — +

2pz
C» 1 1

( k» .g k) Cs s, sp C ~(m&-m, ) g ~ r

(4.1)

Note that R is constant when P=0 and hence terms
such as Mc2(C»+g. H) are trivial additive con-
stants and can also be dropped. The relativistic
gravitational Stark (RGS) effect arises from the
terms proportional to C» and C» which (like the
usual mark interaction) can mix states of oppo-
site parity. The term proportional to C~, which
acts in some ways as a gravitational analog of the
Zeeman interaction, can also mix states of oppo-
site parity. For the sake of brevity we will lump
the C~, C~, and C& terms together as the HGS

effect. It' we consider, for example, the metasta-
ble 2S,&, state in hydrogen, the terms proportional
to C,. (i = K, S, E) can admix into this state nP»,
components, where n -2. When this state emits
or absorbs electromagnetic radiation, the inter-
ference between the resulting EI and ML multi-
poles leads to a characteristic polarization of the
radiation from which the C, , and hence y', can in
principle be inferred. In the remainder of this
section we elaborate on the HGS effect in greater
detail.

Consider to start with the term proportional to
C». Since m~»m, we can set 1/m~ —0. Using
Eq. (3.23) to write k= iK&/&r = --imv this —term
can be written in the form

2

, (-g r k'+ iS g k) =C», g ~ (rv'+ v) .
Vl C tB~c

(4.2)
If we multiply and divide the coefficient on the
right-hand side of Eq. (4.2) by e', where ". is the
electric charge, then we can rewrite it in the

I

form

C~ ~ = C~ 2 = C~q&g, 4.3

where & is the fine structure constant and a, is
the Bohr radius. We have introduced the con-
stant g,

(4.4)

TABLE II. Values of g=gS/c for various systems.
The data for entries 3-5 are taken from Ref. 33.

System g {eV)

l. Earth
2. Sun
3. 40 Eridani B

M =0.372 Mo
R =0.0152Ro

4. Sirius B
WD 2359-43

6. Neutron star
0.4'

p=l x 10" gcm-'

2.2 x10
6.0 x10
9.7 x10 ~9

1.1 x10
4.9 x10
3.5 x 10-"

1
28
4.5 x 104

5.3 x 10'
2.3 x 10'
1.6 x10 ~

which sets the energy scale for the RGS effect,
and which clearly expresses in a compact form
the fact that such transitions represent relativis-
tic quantum gravitational effects. Table II gives
the values of p for various systems of interest.
The data for the white dwarfs, entries 3-5, are
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taken from Ref. 33. We see from this table one of
the advantages of the RGS effect from the point of
view of testing relativistic theories of gravity at
the quantum level: Since we can study the spec-
trum of hydrogen from distant sources, we can
realize a large amplification in g, of order 10'
in white dwarfs and -10'~ for the hydrogen be-
lieved to be accreted around some neutron stars.
Combining Eqs. (4.2) and (4.2), and noting that
matrix elements of V in hydrogen are of order
1/a„we see that the amplitude for admixing in
opposite-parity components will be proportional
to the factor Zo'q, where Z is the nuclear charge.
The terms proportional to Cs and Cx in Eq. (4.1)
can be treated in a similar fashion and, on di-
mensional grounds, their matrix elements must
also be proportional to Z&g.

Suppose we consider, for sake of illustration,
transitions from the metastable 2S~/2 state, which
is the most suitable candidate for terrestrial ex-
periments. Admixtures of nP», ,/2 for n - 2 can be
induced into this state, not only by the gravita-
tional Hamiltonian in Eq. (4.1) but also by the elec-
tromagnetic and weak interactions as well. The
latter case has been considered in detail by Dun-
ford, Lewis, and Williams. The expressions for
the resulting wave functions are extremely com-
plicated, and are considered in detail in Ref. 21.
For present purposes we will thus exhibit only a
few illustrative contributions, of which the most
important is that due to the 2P,/, state, which is
separated from 2S,/2 by the Lamb shift I =4.38
x10 ' eV. Combining Eqs. (4.1)-(4.2) we can
write the gravitational matrix element in the form
(for arbitrary principal quantum number n)

{nP~&,mj, lrj&a Cxg ~ (rV'+V) — g f, v
4e

~e
yCx 2 g ~ y lnS~)2m~&

(n'-1)"'
= (2C, C-)Zero

x(x,f, lc, g lx",'„&, (4.5)

where the X's are Pauli spinors with m~=+~. Note
that there is no contribution from C~ in Eq. (4.5).
This is a consequence of the fact that the radial
integral vanishes for matrix elements of the spin
term when taken between Coulomb wave functions
with the same principal quantum number n. Hence
the spin term can admix into the 2S», state only
nP~/2 3/2 with n ~ 3. For sake of comparison the
analog of Eq. (4.5) for the Stark mixing induced
by an external electric field 8 is

(nP~&2mJ le8 ~ rlnSy/mmJ&

' —(n -1)' (X"~~,
l
o'. ~ 8

l X,"~,& . (4.6)

To pursue the present example we consider the
polarization of the radiation in the transition
2S,/2- 1$~/2+y due to the combined presence of
an electric and a gravitational field. From Eqs.
(4.5) and (4.6) the combined transition matrix
element is just (X,'&,

l

c'e ~ P
l
X,& 2), where

vS vg
g (2Cx —Cr)Zo'. q + 8 eha, . (4.7)

Lo

The 2P», contribution to the amplitude for 2S»,
-1S,/2+y in the presence of g and 8 is then pro-
portional to

& g (1S„,+&le'. '~'12P~i (m' =+'&&& i (m =~') lo. '+12S„,&
Sl g

=—(X,'„(1 )
l

e* ~ 5+io, ~ e. x 5 lX„', (2&)& ~ (4.6)

W2~~ Tr[M&(l+cr, n)M ],
6* ~ ++io, ~ E* X p ~

Evaluating the trace in Eqs. (4.9) we find

(4.9)

Here e, ~ z~* is, up to an overall constant, the
usual El operator, and e~ = a~ (k) is the polariza-
tion vector for the emitted photon with momentum
k. In practice one is interested in the transition
rate S'» for 2Sz/2 1S,/, +p for the situation in
which the initial electron is polarized in some di-
rection n due, say, to the ambient magnetic fields
which are known to be present in stars. In this
case

I

Tr( ~ ) = e ' c*
I
s

l
+i c x q+. [6' (n ~ 6') s x (n x 6:)],

(4.10)
where we have used the fact that F is a real vector
to simplify the expression leading to Eq. (4.10).
The term proportional to ia x c* leads to a circu-
lar polarization P„of the emitted radiation, the
magnitude of which is determined by the expres-
sion in square brackets in Eq. (4.10). Combining
Eqs. (4.10) and (4.7) we see that P„will depend on
g through correlations such as k gx (n x 8).
These correlations give rise to a characteristic
variation of P„over the surface of a star, as
shown in Fig. 2, and can in principle be used to
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TO EARTH sun

FIG. 2. Variation of P„, across the surface of the Sun.
Note that since only the forward hemisphere is visible
there are no cancellations from contributions emanating
from the rear hemisphere. See text for further details.

(RGS) „Z'
(Stark) n

(4.11)

Thus if we compare hydrogenic systems such as
H and He' in the same white dwarfs, . then the
variation of ~P„~ with 2 can be used to distinguish
between the BGS and Stark contributions. '

The
same end can also be achieved by comparing
transitions from states with different values of

distinguish between the gravitational and non-
gravitational contributions to P„. The RGS and
Stark contributions to P„can also be distinguished
in at least two other ways: (i) The gravitational
contribution to P,' is proportional to q and hence
to ~g~. We can thus compare ~+ in various
white dwarfs for which g/qS varies between
=10~-10' as we see from Table II. (ii) We see
from Eqs. (4.5) and (4.6) that the RGS and Stark
matrix elements have a different dependence on
Z n.

n in hydrogen. It must be emphasized, however,
that any actual attempt to measure the gravita-
tional contribution to P„will be extremely diffi-
cult due to the much larger contributions from
nongravitational sources. ' However, our dis-
cussion applies as well to terrestrial experiments
where the nongravitational contributions can be
more readily controlled.

V. GRAVITY-INDUCED EFFECTS IN FERMION-
ANTIFERMION SYSTEMS

%e consider in this section some gravitational
effects in fermion-antifermion systems, where a
change in parity induced by an external gravita-
tional field leads to change in the eigenvalue of
CP. For any fermion-antifermion (f-f ) system
the eigenvalues of charge conjugation (C) and
parity (P) are given by

C= (-1) ', P= (-1) ", CP =(-1) ", (5.1)
where L and S denote the orbital and spin angular
momentum of f—f. (Here f—f is treated in the
nonrelativistic limit where L and S are good quan-
tum numbers. ) Since the gravitational field h, „
in Eq. (2.45) is even under C it follows that forf-f any change in L induced by the gravitational
field must be compensated for by a corresponding
change in S. From Eqs. (5.1) it then follows that
a gravitational field can mix states with the same
total angular momentum but opposite eigenvalues
of CP.

If we return to the two-body Hamiltonian in
Eq. (3.40) and set m, =m~=m we find

(y'+l) - - -, g R (7'&(f-f)=2mc -2m(c Cs+g ~ R)+, g ~ S&&P+ 1-(2y'+I) C~+2mc c' „(4m m

(y'+2) . e, ( g'R l C~+, @g &-—1-(y'+1)~C's+,
~ +, g (s, -s,) xk

27M C c' ]. mc'

CX , (g ~ rp k+P ~ rg k-ikg ~ P).2mc (5.2)

glgv (f-f)=-c g. ( — ) x~ 2mc ' ' er' (5.3)

Here 1 =f, 2=f, r =r, - r„and m is the mass of
f or f. Since V' changes both L and S it can
change the eigenvalue of CP without at the same
time changing the total angular momentum J of

We note the following features of H(f-f): (a) All
terms of the form g r and g ~ rV are absent.
These terms are spin independent and, from the
preceding discussion, would have led to C-viola-
ting transitions. (b) There is a spin-dependent
term V'(f —f) which survives in Eq. (5.2) which
can be expressed in the form

the system. %e note, however, that since 8„„is
a spin-2 field& &(f-f) should also lead to transi-
tions with ~&J~ =2 or 1. That this is indeed the
case is shown in Table III where we exhibit se-
lected matrix elements of V'. (When taken be-
tween pure Coulomb wave functions, radial ma-
trix elements of V' vanish when the principal
quantum numbers n and n' for the initial and final
states are the same. ) We further note that
('Po~ V

~

'S,) =0 on the basis of angular momentum
conservation.

It is interesting to contrast the properties of
(V') in positronium with those of the Zeeman and
Stark interactions. The Zeeman Hamiltonian for
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TAQI K III. Selected matrix elements of V~ in posi-
tronium. The spatial wave functions for the state
(n; 2s+tLz) are those obtained using only the Coulomb
interaction.

Matrix element in units of ZG. qC~

(1 S«S,=+i)~V~~2 P, (L,=+1)&=+32& 2

+W2 2~' 3'
(4;3+2(L =+i)(v ~3;tD2(L =+a)&=

(2 P, (L, =+i)~V ~l S»=+
8

(3; Dt(J, =O))V (2; PD(S =+1))=

/
/

/

/

positronium, H, is given by"

H = (oi —as) ~ B.
2@le

(5.4)

(n", S,(S,=O) ~H'~n S,&= a5„„,,

(", s, (s.=+1) iH', s,&= o.
(5.5)

Without loss of generality we can take B along
the z axis in which case

I

FIG. 3. Gravity-induced transitions in fermion-anti-
fermion systems. The J=1 states are designated by the
usual spectroscopic notation ' L~, where L, 8, and J
are the orbital, spin, and total angular momentum. The
wavy line indicates gravity-induced transitions between
states with the same eigenvalue of C but opposite eigen-
values of P and CP. The dashed line indicates transi-
tions that are induced by the C-odd, P-odd, and CP-even
part of the weak Hamiltonian. The solid line denotes a
C-odd, CP-odd transition that can be induced by a com-
bination of the weak and gravitational interactions.

We see that II has nonvanishing matrix elements
between 'S, (CP = -1) and 'S, (CP =+1) as could
have been anticipated from the discussion follow-
ing Etls. (5.1). However, 'S, and So have different
values of J, as would any two states connected by
the purely spin-dependent interaction H . It
follows that H differs from V' in that the Zeeman
interaction cannot coherently admix states of
opposite CP whereas V' can. We turn next to the
Stark interaction H,

H =eg ~ (r —r ) =el r. . (5.5)

Since H is spin independent it follows from Eqs.
(5.1) that the Stark interaction cannot connect
states of opposite CP, in contrast to V' which can.
We emphasize that although V' differs from both
H and H, the effects of V' can be simulated by
higher-order electromagnetic processes. We
also note in passing that both V' and 8 are even
under time reversal even though they connect
states of opposite CP. This in no way conflicts
with the CPT theorem, since the changes in CP
induced in positronium are offset by corresponding
changes in the external gravitational or magnetic
fields.

The preceding considerations apply mutatis
mutandis to matrix elements of V' between hadrons
of well-defined C (e.g., p', ~, P, g/J, &, . ..) if we

view these as quark-antiquark bound states. Our

discussion indicates that these states can have
gravity-induced admixtures of opposite-CP com-
ponents, although the magnitudes of these admix-
tures are expected to be quite small.

As noted earlier, V' leads to transitions between
states with the same C but opposite P, and hence
opposite CP. It is interesting to note that, when
combined with the C-odd P-odd part of the weak
Hamiltonian H, V' can lead to transitions be-
tween states of opposite C and CP. .This is illus-
trated schematically in Fig. 3 for a J =1f-f sys-
tem, where C and W denote transitions induced
by the gravitational and weak interactions, res-
pectively. We see that these interactions lead to
a combined second-order transition which ad-
mixes the 'P, and 'P, states which differ in both
C and CP.

VI. CONCLUSIONS

The present study of hydrogen in a gravitational
field is part of an ongoing program to devise ex-
perimental tests of general relativity (GR) at
the quantum level. ' Motivated by the results of
Ref. 2, we anticipated that an analysis of the rela-
tivistic gravitational Stark effect would lead to a
quantum test of GR which had certain advantages
over those previously considered. ' These include
the suggestion of testing GR in regions with rela-
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tively strong gravitational fields by measuring
the polarization of light in white dwarfs, ' and the
possibility of adapting some existing high-preci-
sion atomic physics techniques to such tests. '

Jn addition to supplying the details of the cal-
culations leading to the results of Refs. 1 and 2,
we have included in this paper a detailed discus-
sion of two points that we had not previously con-
sidered: The first is the effect on the RGS Hamil-
tonian of the coupling of the gravitational field to
the internal electromagnetic field in hydrogen (or
positronium), and the second is the effect of using
relativistic (rather than nonrelativistic) center-of-
mass variables. Although the coupling H'"' of
the gravitational and electromagnetic fields gives
rise to a transition operator whic'h is nominally
higher order than those considered in Refs. 1 and

2, it turns out that matrix elements of this opera-
tor are of the same order as those previously
considered. ' The expression for H'"' is un-
ambiguously calculable and. is given in Eq. (3.2).

The point to which we have devoted the greatest
consideration in this paper is the need for a pro-
per set of center-of-mass variables, as dis-
cussed in Sec. IK %e have focused on three sets
of variables, (a) nonrelativistic (NR), (b) the rela-
tivistic variables of Krajcik and Foldy (KF), and

(c) center-of-energy (CE) variables. Each has
certain advantages and disadvantages relative to
the others, and each leads to a different expres-
sion for the RGS operator as shown in Table I.
The motivation for using NR variables in Refs. 1
and 2 was the observation that in the (reasonable)
approximation m, /m~-0 (or m~- ~) the KF and
NR variables coincided. The difficulty is that if
this limit is taken after the KF variables are in-
serted into the RGS operator H'o'(e -p) in Eq.
(3.1), the results of using the KF and NR variables
are no longer the same. The very fact that the
final result depends on how the m~- ~ limit is
taken points up some of the problems that we
confront.

Based on our work and on discussions with ex-
perts in this field, it is our opinion that the prob-
lem of relativistic coordinates in the presence of
post-Newtonian gravitational interactions needs
further study. %e also feel that this problem may
influence previous work on post-Newtonian ef-
fects in hydrogen, as well as the analysis of the
EDB experiments in the framework of various
relativistic theories of gravity. ~ " Because of
these uncertainties we cannot draw any final con-
clusions about the magnitude of the RGS effect in
hydrogen, and hence we will content ourselves at
this stage with the following summary of possi-
bilities. Our focus will be on the RGS admixtures
into the metastable 2S», state in hydrogen which

is the most likely candidate for a terrestrial ex-
periment.

(a) The most important RGS contribution arises
from the nearby 2P»~ state. Using either KF or
CE variables this vanishes to leading order, i.e.,
to O(Z&q). Using NR variables there is a sur-
viving contribution to this order, but it is inde-
pendent of y'.

(b) For reasons discussed in Sec. III, the choice
of center-of-mass variables should not affect the
form of the post-Newtonian contributions propor-
tional to y'. Since from (a) above the 2P,~, ad-
mixture is independent of y', irrespective of which
coordinates are used, it follows that this contri-
bution cannot be used to discriminate among dif-
ferent gravity theories at the quantum level.

(c) To order Zo. q one can next consider admix-
tures into 2$,A from nP, ~, where n ~ 3. For these
contributions the radial integrals arising from
the spin-dependent term proportional to g-o xk
Do longer vanish, as they do for transitions be-
tween states with the same value of n. These con-
tributions, along with those proportional to g ~ g
and g rV' will thus contribute a term of order
Zeg which depends on y'. However, this term
will be suppressed relative to the NR contribu-
tion in (a) by factors of order I./LF. —= 10 ', where
I =4.38x10"' eV is the Lamb shift separation and
AE = 1 eV is a characteristic spacing between
levels of different n. The sum of all contributions
to O(Zo. q) will thus be nonzero in general and
explicitly dependent on y'.

(d) A contribution comparable to that in (c) can
arise from 2P,A if we retain terms of order
(Zn)'q. Since the evaluation of such terms is ex-
tremely tedious (partly because of the need to
construct appropriate Bethe-Salpeter wave func-
tions) there is little point in carrying them out at
this stage, pending clarification of the center-
of -mass problem. Since these contributions are
expected to be roughly comparable in magnitude
to those in (c), and also y' dependent, the sum of
all RGS contributions will almost certainly be
ponzero, although smaller than anticipated in
Refs. 1 a,nd 2.

Faced with the combined problems of discrimi-
nating among different relativistic theories of
gravity, and among different choices of center-of-
mass variables, it might be asked how we can
hope to sort out one problem from another. One
possibility is to consider the RGS effect in a cen-
trifugal field, where the Dirac equation can be
written down unambiguously, "and hence where
the only uncertainty is due to the choice of center-
of -mass variables. Centrifugal fields of order
10' g have already been used in gravity experi-
ments, "and the advance of technology might make
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it feasible to carry out experiments looking for a
polarization of radiation induced by such a field.

Note Added: For the case P=0, the RGS Hamil-
tonian in Eq. (4.1) has nonzero matrix elements
even for an atom in a uniform field. This can
be understood by noting that for an atom at zest
in a gravitational field the RGS effect arises from
a difference in the gravitational potential over
the dimensions of the atom. If we consider, for
example, the term proportional to —g rk' in Eq.
(4.1), then the energy difference b.E arising from
the variation of this term over a distance g, is
( /vc-n)

v' t'
b.E = m, ga, — = m, g] ~

n =
~

~ n = qn,' c '
~m, cn) (c

(6.1)

which gives Eqs. (4.3)-(4.5). This is analogous
to the situation for the CQW effect in Ref. 3 in
which the interference effect arises from the dif-
ference in gravitational potential over the vertical
dimension of a crystal which is at rest in a uni-
form field. Moreover, it is easy to show that the
respective energy scales in the RGS and CQW
effects are just in the ratio of g, to the vertical
dimension of the crystal, which is typically of
order 2 cm. By contrast, for an atom in free fall
in a uniform field, we presume on the basis of the
equivalence principle that no effect would exist.
However, this remains to be formally demon-
strated in the context of the preceding discussion
of relativistic coordinates. We have not consid-
ered this problem in any greater detail both be-
cause our knowledge of relativistic center-of-mass
coordinates is inadequate at present, and also
because of the complexities of decoupling the c.m.
and internal interactions. There are, however,
cases of practical interest, such as He+ in a white
dwarf, where the atom would not be in free fall
due to its coupling to ambient electromagnetic
fields. In such a circumstance the He+ would not
be at rest with respect to the gravitational field
and hence P, although nonzero, would not be
given by the simple results of Sec. IV. A detailed
calculation of P& under these conditions is, how-
ever, beyond the scope of this paper. We note
in the same spirit that the results for positronium
do not suggest any immediate application, since
positronium is presumably in free fall in terres-
trial experiments.
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APPENDIX A: THE DIRAC EQUATION IN THE PPN
FORMALISM

e", „(x)= —., [q„,g, (x) —6„,q g, (x)]

[6„,5„,g, (x) + 6„,6„q.„g.(x)].e'

(Ale)

1, in Eq. (2.31b) is left unchanged, but p gets
multiplied by y'. The Hamiltonian in Eq. (2.34)
now reads

H = —inc[1 —(1+y')4] n 8 ——'(2y' —1)n' g2c

(A2)+ Pmc'(1 -e),
and Eq. (2.36) generalizes to

y(x) = (1+-', y'C)y(x), (A3)

which leads to the Hamiltonian of Eq. (2.62). Car-
rying out the. Foldy-Wouthuysen transformation
we note that [8,g] and [8,[a,g]] in Eqs. (2.43)
do not depend on y' (to lowest order in the gravita-
tional interaction) and hence are left unchanged.
However, each gravitational term in Eq. (2.43c)
picks up a factor —,'(1+y'). Combining these re-
sults with Eq. (2.42) then leads to Eq. (2.63).

APPENDIX B: MAXWELL'S EQUATIONS
IN A GRAVITATIONAL FIELD

As noted in Sec. III the Hamiltonian describing
a hydrogen atom in a gravitational field contains
a term ff&t|'& (e -p) which represents the coupling
of the gravitational field to the electromagnetic
field of the z —p system. In this appendiX we de-

We present in this appendix the intermediate
steps leading to the derivation of the effective
single-particle Hamiltonian given in Eq. (2.63)
in the PPN formalism. As noted earlier the para-
meter P' in Eqs. (2.61) makes no contribution
since we are working to lowest order in @ every-
where. The generalizations of Eqs. (2.28) and
(2.30) are

gpss(x) = ~pm(1+2y C') 26p06~o[1 (1 y )C], (A1a)

g"'(x) = 6~„(1—2y'O) —26~,6„[1+ (1 —y')C], (Alb)

e."(x)=6„,(1 -y'C)+6„,6„(1+y')4, (Al c)

e~„(x)= 6t,„(1+y'C) —6»5„,[2 —(1 -y')C], (Ald)
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rive If«'& as given in Eq. (S.2).
In the absence of gravity Marvell's equations

can be written in the form" (here c = 1}

(ala)

(81b)s„F&&„(&&)+a+~„(~)+s„E„,(~) =0,

where g"@ is the electromagnetic field-strength
tensor and Js = (T,p} is the current four-vector.
Using the principle of general covariance, the
gravity-modified Ma&&well (GMM) equations are
obtained by replacing the Minkowski indices o. , P,
y by world indices p, v, ~ and converting the ordi-
nary derivatives to covariant derivatives. Equa-
tions (81}thus become

F"",„(&&}= —J"(x),

F„„,&, (x)+E„&,,„(x)+Z~„.„(x)=0.
(a2a}

(82b)

Because the E's are antisymmetric, the covariant
derivatives in Eq. (82b) can be replaced by ordi-
nary derivatives and hence the homogeneous Max-
well equations assume their usual forms,

V X 0+8B/Bf = 0, (asa}

(asb}V ~ B=O.

Equation (82a) can be written as

g E&' ) = ~g J
where g= )detgz„(. If we write out J" explicitly
for a system of charged particles then, for a
static spherically symmetric (SSS) gravitational
field, Eq. (84) can be cast into the form

v (~@}=p,

vx(5/~) = J+&&(~R)/&&f,

e =V =(-f/g. .)'~',

(84)

(85a)

(85b)
(85c)

(85d)ds -=f(r)(d%)'+g (r)(dx }'.

Equation (86) can be verified by noticing that since
ds'=0 for photons we can divide Eq. (85d) by f(r)
to give

0 =ds' = (d%)' —[-g,(r)/f (r)] (d x')'.

In the form of Eq. (87} light is viewed as propa-
gating in a Minkowskian space-time, but with a
local index af refraction given by Eq. (86). A ray
of light propagating in the vicinity of a gravitating

%e see that the effect of a gravitational field on
Mmmrell's equations is to impart to space an effec-
tive dielectric constant & and a permeability p,

which are specific functions of the components
of the metric tensor. It follows that a region of
space can also be thought of as having an effective
index of refraction n given by

n = (cp)' '= (- f/g )' '. (86}

s(%) =60+6 g'%

y& (%}= y&&0&(%) + &t&&&'&(%),

(81Oa,)

(Blob)

where &0 and &'0 are constants. Combining Eqs.
(810) with (85a) the differential equation for P&,'&(~)
is

I
V'y&&'&(%) =;p, (x)g %- ~g Vyp&(%). (Bll)

0 0

The solution for pP&(%) is then given by

gp&(%)= 'g x&t&f"(%)+ '
&I g'V~%-%~

(812}
If we now specialize to the case of an atom at the
surface af the Earth then from Eqs. (85c) and
(2.61},

e(%) =1+ (y'+1)(@s+g %/c'),

GM~
R c"E

and hence,

e, = 1+(y'+ 1)4&s, e,' = (y'+ 1)/c'.

(81s)

(814)

Combining the previous results we can then write

g( )=(% %~[I (y +1)@ l

(y'+ 1)

(y'+1) g (%-% )
2c' ~'

[ -%J (815)

mass would thus be deflected from its original
path. Equation (86) has been used recently~ to
calculate the second-order contribution to the
gravitational deflection of light by the Sun.

From Eq. (86) we also deduce that the Coulomb
interaction between the electron and proton is
modified as it would be in any other dielectric
medium:

e' 1
~x E» (a6)

x= r, -r&.
Since the effects we are interested in studying
arise from a variation of the gravitational poten-
tial over the dimensions of an atom, care must
be taken to retain the appropriate terms in the
expansion of A, ,(%). Let x, and% be a source point
(for a charge &I,} and a field point, respectively,
relative to an arbitrary origin. If z(%} were. a
constant, e„ then the potential PP&(%) due to the
charge &I, would be given from Eq. (85a) by

(89)
0

Yo account for the variation of & with x we follow
Refs. 30 and 31 and write



2178 FISC HBACH, FREEMAN, AND CHENG

Equation (815}gives the potential at a point x due
to the presence of a source charge q, at x, . To
calculate 11~~'& we use the contributions from either
the electron or proton in the other's field:

dropped, as we have done elsewhere. Hence,
finally,

H&&& = (y'+1)Cs+ (y'+1)

H!' '+ H(s" =
E t q, Q&, (&,) + q&, Q, (g)]

=q, y~(x, )

(y'+1)(m, —m, )+ 2~c2 (818)

= q~y, (%~)

-Z
1 —(y'+ l}Cx -xp[

(y'+1)g (x +x )
2 2

(816)

Note that II&g'& is symmetric in the coordinates
of the electron and proton. Equation (818) agrees
with the results of Refs. 30 and 31 as mell as with
those of Barker and O' Connell. "

We observe that, on dimensional grounds, the
matrix elements of Il~g" in a hydrogenic system
of charge gg mill in general be of order

Since the gravitational terms in Eq. (816) are
already O(1/c') we can use nonrelativistic vari-
ables and write

R» ~m»» Q me, (817)

Although additional contributions to the leading
Coulomb term mould arise from the use of rela-
tivistic c.m. variables, as discussed in Sec. III,
these are nongravitational in nature and will be

(Ho'") - Zo(q, (818)

where &I=g&/c. Thus (H(g'&) is of the same order
as (H (e) + H(p}) in Eq. (3.1).4' We next show that
there are no other terms of this order which arise
from the covariant Dirac equation in (2.8). Re-
turning to Eqs. (2.38) and (2.39), we add to H the
electromagnetic interaction terms and carry out
the FW expansion leading to H ' in Eq. (2.44}. The
electromagnetic terms generate an additional con-
tribution ~ ' to Eq. (2.44) given by (P =y4)

2
ME ' = —eA, + (e'A'+iehc8 ' A —2ec A'$ eltco" 8) —— , (the ex E+fie E+2o exp)2p, 8p, '

+p(2y'+1) —4o gxA ——g A+ —@o 8+ —4)A p — CB A
JLC 2 2 k 2

(y+1) ek &» ~ g»»» c, )-, E re —c ExE+ —EE Ex&le-,'c*Ee Ee —c'Etc xf)e
p,

(820)

82
, g-(K)- (Zn}'&I, (821)

and hence are negligible. We thus conclude that
the leading contributions to (H"'(e —p)) come from
the terms given in Eq. (3.1).

If it viere not for the problems mhich arise from
the need to use relativistic coordinates, the Ham-
iltonian H&'&(e -p) would be the complete gravita-
tional contribution. However, the relativistic
coordinates introduce an additional contribution
hH(e -p) given in Eqs. (3.21) so that the complete
expression for H(e —p}= EP&(e —p)+~(e —p) is

The terms appearing in the first and second paren-
theses are the standard results" for the FW ex-
pansion of the electromagnetic interaction. The
expressions in the third and fourth parentheses
are new and evidently represent an additional
coupling of the electromagnetic and gravitational
fields. For an electron in the Coulomb field of
the proton (or vice versa) we can set A= 0, and
hence the remaining terms are of order where P& =t)&/c. Equation (822) also describes

metric theories if we identify

T =-g„(r), H= f(r). (823)

For the more general theory defined by Eq. (822},
Mmnvell's equations still hold in the form given
in Eqs. (83a), (83b}, (85a), and (85b) but e and

p, are no longer necessarily given by Eq. (85c}.
In such a formalism (the so-called "T'Hey forma-
lism"") the effects of gravity on electromagnetic
systems are thus characterized by the four arbi-
trary functions P, &, &, and p, . The discus-
sionM" of the composition independence of ~g~
referred to in Sec. III is based on this formalism.

given by Eq. (3.24).
For a system of k particles described by a non-

metric theory of gravity, the functions f(r) and

g„(r) are replaced by two functions H(r} and p(r),
which are defined by the Lagrangian"

I=gfdt[ cc., c'(E —HP.,')' '+-e,xeP&], (EEE)
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