
PHYSICAL RK VIE% D VOLUME 23, NUMBER 1 1 JANUARY 1981

Quark form factors and leading double logarithms in quantum chromodynamics
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Perturbative quantum-chromodynamic corrections involving the emission of gluons which are both soft and
collinear are discussed for both hadronic production of lepton pairs and e+e annihilation. The result is an
exponential, double-logarithmic quark "form factor. " The differences between previous analyses are clarified
and the possible experimental observation of the form factor is discussed and illustrated.

I. INTRODUCTION

For many processes involving hadrons it is a
remarkably good first approximation to view the
hadrons as composed of essentially pointlike, non-

. interacting quarks. Such processes are charac-
terized in phase space by a limit where all rele-
vant variables are becoming large together, e.g. ,
fixed-angle inclusive scattering. This simple
description of such hadronic processes is generi-
cally referred to as the parton model. ' It can be
shown' that the general factorized picture of these
interactions central to the parton model survives
in the context of quantum chromodynamics (QCD)',
the candidate theory describing the interactions
between the quarks themselves. This is a non-
trivial result. It depends first on the asymptotic
smallness of the effective coupling at scale Q'
given by

g' 12m b

4w (33 —2N&) ln(Q'/A') In(Q'/A') '

(1.1)

where 1V& is the number of quark flavors and A' is
essentially the scale where the coupling is large,
determined phenomenologically to be of order
(500 MeV/c)'. It also depends on the fact that the
logarithmic singularities inherent in the theory
can be factored in such a way as to associate them
with the (renormalized) asymptotic wave functions
of presumably confined quarks inside hadrons. As
a result, these quark distributions within hadrons
depend on the resolution scale, Q', with which the
quarks are observed. The singularities arise in
perturbation theory, much as in QED, from the
emission of the massless gauge particles, the
gluons. An example is illustrated in Fig. 1,
which is to be considered as a piece of a Feynman
graph. The quark of momentum p —0 can be close
to the mass shell and hence yield a logarithmic
singularity both when k —0, an infrared singular-
ity, and, to the extent the quarks are massless,
when the gluon is collinear with the quark. The
(log)' singularity which arises from the overlap of

these regions is characteristic of vector theories.
The next step is to calculate the nonsingular

perturbative corrections to the simple parton pic-
ture. Again care must be taken to avoid the. re-
appearance of the mass singularities mentioned
above. Considerable progress4 has been made
both in the phenomenological understanding of the
structure of the theory and in the direction of de-
fining precise experimental tests. The simplest
perturbative results are, however, confined to
processes characterized by a single large invari-
ant Q', with all relevant scattering angles large
and fixed. Examples of such processes are total
e e annihilation into hadrons and hadronic produc-
tion of large-mass lepton pairs (the Drell-Yan
process) either at very large transverse momenta.
Qr'= Q' or integrated over transverse moments. .

'There has been considerable interest' ' in ex-
tending the perturbative analysis into kinematic
r'egions where there are two large invariants
which nevertheless have a large ratio, corres-
ponding to some angle becoming small. Such ef-
forts, by enlarging the region of phenomenological
applicability of the analysis, enhance one's ability
to test @CD. Specific examples of such akinema-
tic regime are the measurement of Drell-Yan lep-
ton pairs with A'«Qr'«Q' and the measurement
in e'e annihilation of energy'-energy correlations'
with two "calorimeters" which are nearly back to
back. In these cases the footprints of the mass
singularities reappear. At each order in pertur-
bation theory the dominant corrections to the naive
lepton-pair process are of the form a,"In'"(Q'/
Qr') arising from the emission of n soft and col-
linear gluons. Thus for a sufficiently large ratio
Q'/Qr' the perturbative approach breaks down

FIG. 1. Gluon emission from an internal line in a
Feynman graph.
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and it becomes necessary to treat the double-lead-
ing-logarithm approximation (DLLA) to all orders.
An extremely attractive possibility is that these
double-logarithmic terms exponentiate, much as
in QED, ' leading to a vanishing rate in the limit
Q'/fr'- ~. It is to this topic that the following
paper is addressed. The differences between the
previous analyses'~ will be clarified and the dis-
cussion extended to include the next-to-leading
logarithms. Particular attention will be paid to
the possibility of phenomenological application,
i.e. , observation, of these effects.

II. LARGE-MASS LEPTON PAIRS: FIRST ORDER

As an explicit example of the situation discussed
above, consider the hadronic production of a mas-
sive photon (i.e. , lepton pair of large total mass)
via quark-antiquark annihilation. (The possibility
of gluon-initiated processes is ignored in the
present discussion for simplicity. A similar
analysis for the gluon case could be carried out
but the one given here is presumably adequate for
pions and antiprotons on nucleon targets. ) In the
parton model this is viewed as in Fig. 2 and, in
the limit s = (p~+ ps )' -~ with Q'/s = r fixed, the
cross section is given by

der 4m 0,"
dx,dx, 5(x,x, —7 )dQ' 3sQ'

x [G, i„(x,)G, is(x, )+A 8]. (2.1)

Here G, »(x, ) is the distribution of quarks in had-
ron A with momentum fraction x, . When QCD per-
turbative corrections are included it is observed'
that at order &," there is an n-fold logarithmic
divergence due to collinear emission of gluons,
while the soft infrared singularities cancel be-
tween real- and virtual-gluon corrections. As
mentioned earlier these divergences can be or-
ganized to all orders so as to be included in the
definition of the renormalized, Q'-dependent dis-
tribution functions. Hence in the leading-single-
logarithm approximation, i.e. , keeping only the

A,

B ~l G

FIG. 3. Lowest-order diagram for the production of a
virtual photon with large transverse momentum.

v= ' dudt 5(ut -Qr's)5(s+t+u -Q')2'

(s+ t)'+ (s+u)'
X

tu (2.3)

'The variables s, t, g have the usual definitions,
e.g. , t = (q -Q)', etc. , and C~ = -,'is the SU(3)
Casimir operator value for the fundamental fer-

o.',"In"Q' terms, G(x) is replaced by G(x, Q') (with
an overall factor of 3 to account for the average
over the incident quark color).

Now consider the case wherein the transverse
momentum is sufficiently large, Q'-Qr'»A', so
that the distribution of "intrinsic" transverse mo-
menta of the quarks within the incident hadrons
can be ignored. Then in "lowest-order" perturba-
tion theory the dominant diagram is shown in Fig.
3 where the single gluon which balances the large
Qr is displayed and the infinity of collinear gluons
contributing to the Q'-dependent distribution func-
tions is implicit. 'The cross section assumes the
form

do 4m'
dQ2dq & gsq2

&[G,(„(x,,Q')G,-)s (x„Q')+A —B]

xd(x„x„Q '/s, Q'/s), (2.2)
where & describes the central 2-2 process (q+ q-y'+ G)

q P( ,
2

FIG. 2. Drell- Yan mechanism for large-mass lepton-
pair production in hadronic collisions.

FIG. 4. Lowest-order subprocess diagrams for the
production of -a virtual proton with nonzero transverse
momentum.
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p = gp2+ pp, + k~,

where k~ p, =k~ p, =0 and

dk 0~2—= (p p )dg d p, d'k f) 8(u-
2k0 ' 2p p,

(2.4a. )

mion representation.
Finally, consider the limit Q'/QT'» 1. Logari-

thms of this ratio appear from the integral over 0
and invalidate this lowest-order perturbative ap-
proach. 'To see this explicitly, focus now on the
central hard process, the diagrams of Fig. 4, and
ignore, for now, the complications due to the ex-
ternal hadrons. Parametrize the gluon momentum
as

virtual gluons, e.g. , Fig. 5, which is proportional
to 5(QT'). Various techniques are available to
control the infrared singularities. In the present
analysis it is sufficient to give the gluon a small
mass &', which effectively replaces QT' by tI)T'
+ X' in Eq. (2.7), but it is important to note that
there can be subtleties involved in this choice. "

Returning to the real-emission graphs of Fig. 4
and assigning the gluons a mass &2 leads to a re-
sult of the form
yI('Bl

(p 2/ y2/ )

-0, ' ln' —,+ ln —' ln

—=—dgdgd'kryo)(gy —kT'/s) .
2

The cross section is given by (o, = 47to('/9s)

(2.4b)
s d+

+ (2a —3) ln ——ln —' +~, (2.&)
A.

2 d

where the ellipsis refers to terms with no logari-
thm. The various symbols represent the quantities

dg d)((, d'kT() "'(kT+ QT)o(8 it, —kT'/s)

x ()(s(1 —g —p) -Q')

(2.5)

and

d, = —,
' [1 a (1 —4p '/s )' ']

3 1 1 1
a„= + — 2

2 n+1 n+2, , i '

(2.10a)

(2.10b)

where all parton masses are zero. In order to
isolate those (collinear) singularities which are to
be associated with the external quark distributions
it is useful to define moments in the form

where this last factor is the nonsinglet anomalous
dimension familiar" from the study of the Q' de-
pendence of the quark distribution functions. 'The

corresponding virtual-gluon contribution is

d2+~ @
2 n+ j.

E„(Q '/s)= dQ' (2.6) y VlItUR1 p ~

Then in the limit QT'/s«1, E„ebh vae sas &qCP 2 S S= o 1 — ' ln' ——3 ln —. + ~ ~ ~ . (2.11)0 2 y2 y2

(2.7)

To explicitly exhibit the double logarithms charac-
teristic of vector-boson theories define

hus to first order in &„ which is taken as fixed
for now,

PT 1 E
1

+ 3 1
P2

2

):.(0 '/))= f dQ E (Q/s). „'. ,*

0
(2.8)

+ 2a„ln, — + ~ ~ ~ . 2.12
Sd

Since Eq. (2.8) includes also the region QT = 0 it is
necessary both to regulate the inherent infrared
singularities and to include the contribution of

The limit pT'- pT,„'=s/4 (d, = —,) yields

1 A2 „&,Cp
Z ——„=o 1+ ' (2a )ln —+ ~ ~ ~

n&&& 4 & s 0 2+ n y2
lee'

(2.13)

FIG. 5. One-virtual-gluon correction to the amplitude
for qq

where the 2 in the coefficient of a„ is the result of
receiving one contribution from the quark distri-
bution and one from the antiquark and is the O(o!,)
version of the statement' of the factorization of
the collinear singularities discussed above. In the
opposite limit pT'/s«1, with d, = 1 and d =pT'/s,
the result is
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Z„-„,—„=go 1+ '. ln, 3 -, ln

p (2.14a)

~0

0 1- ln + ~ ~ ~
Qsc& 2 S

OLLA 27t PPT

(2.14b)

(1 —~')'+ (1 —V)'I&, p. = (2.15)

is independent of this choice, the contribution of
specific diagrams and, in particular, the source
of the double logarithm is gauge dependent. This
is illustrated in 'Table I where the various real-
emission diagrams (squared) and their contribu-
tions are displayed. The numbers in parentheses
are the exponent of the logarithmic divergence for
each individual graph. The results can be sum-
marized by saying that in the axial and planar

illustrating the double logarithms mentioned ear-
lier. Note that in DLLA, the term which exhibits
the coupled dependence on n and ~' drops out. The
result in Eq. (2.14b) can be interpreted as an in-
complete cancellation between the virtual-gluon
contribution (n, Cz/2w)ln'(s/'), and the real-gluon
contribution (n, C~/2v)[1n'(s/pr') —ln'(s/&')],
which is complete only in the limit p~ -p~

It is interesting to digress for a moment to dis-
cuss the choice of gauge. While the form of the
integrand in Eq. (2.5),

Z„.~(pr'/s) ~ o, exp — ' In'(s/pr')
DLLA ~sl

(2.16)

in the double-leading-logarithm approximation.
This is analogous to the situation in @ED (Ref. 9)
where forward processes are suppressed because
of the divergent amplitudes to emit soft photons.
While several analyses' yielded results consistent
with this exponential form, the work of Ref. 5
suggests that this is not the case. The discussion
of Sec. III will clarify why these analyses arrived
at different conclusions and confirm the exponen-
tiation.

III. LARGE-MASS LEPTON PAIRS: ALLORDERS

As an intermediate step to the all orders result
consider two-gluon emission as in Fig. 6. Con-

gauges the leading double logarithms (and the lead-
ing number of collinear logarithms) arise from
the ladder diagrams while the interference graphs
give the leading contribution in Feynman gauge.

It should be clear (and will be demonstrated
shortly) that the next order in perturbation theory
will have contributions of the order n, 'In's/pr'.
Furthermore, it is easy to imagine kinematic re-
gions where both n, «1 and n, lns/pr'&1 so that the
DLLA is appropriate and yet n, ln's/pr'& 1 so that
only an analysis to all orders is adequate. The
most attractive possibility is that the sum to all
orders of both real- and virtual-gluon emission
simply results in an exponential form

TABLE I. Contributions to the integrand I{0,p) of Eq. (2.15) from first-order diagrams.

Diagram Feynman
Axial
n -p1

Axial
n -p2

Axial
8-pf+p2

Planar
n -pf +p2

ooooooooo

p,

0

(1)

0

p,

(1)

p,

0

{1)
0~ —20+ 2

gp,

(2)

p2 —2p+ 2 p 2(1-p,) 2

gp, 0, 0(0+ p) {0+p)~

(2) (2)

0 0 2(1 —0) 2

p, p p, (g —p,) {0+p.)2

(1) (2)

2 (1—p)
0 0(0+ g)

(2)

0 2(1-0)
p, p(0+ p)

(2)

1 —0-p
gp

(2)

] —g —p
gp

(2)

-]
p

(1)
0

(1)

-1
0

(1)

2(1-0-p,)
(0 + p)2

(1)

2(1 —0 —p)
(0 + p)2

(1)

-2
0+@
(o)

-2
0+@
(o)

I"eynman Gauge: d» (k) = —g»

nP „+np'„-,k."""
Axial gauge: d» Pr) = -g& + " "-n

n„k„+n„k„Planar gauge: d» (k) = -g» +
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P] +P2 (3.1b)

FIG. 6. Two-gluon emission from the same quark line.

(
k„n„+k„

gv+ (3.1a)

with

siderable simplification is obtained by using the
planar gauge, ' where the spin-summed gluon prop-
agator is

(3.2)&; —g,&2+ P,&a+ k

After taking the trace in the square of Fig. 6 and
canceling two propagators, one finds a leading
contribution of the form

In this case all the leading double logarithms
come from the ladder-type diagrams, for exam-
ple, the square of Fig. 6. More specifically, only
the 1/n ~ 0 piece of each gluon propagator gives a.

leading contribution. This structure ensures that
the three-gluon coupling plays no role in OLLA.
A further advantage of using the planar gauge is
that interference diagrams, where a gluon couples
a quark to an antiquark, are down by at least t~o
powers of the logarithm, as shown in lowest order
in Table I.

As before, parametrize the gluon momenta

kd k&, kg
dp, ,dg, 5 g p, — „(-2s)'m5~"(kr +kr +Qr)

Q2 1
yS (3.3)

where terms with explicit factors of g;, p, , or
k~. in the numerator have been dropped. The var-
ious propagator factors are

kp. '
S

Hence the constraint

(3.5)

2n ~ k, = s(g, + p,.),
D, = (p, -k, )'= -sp, ,

(3.4a)

(3.4b)
Sg~ Sg2

(3.6a)

D, = (p, —k, —k, )'
kp

= -s p, (1 -g, )+ g, (1-g,)— (3.4c)

yields (g „g,& 1)

2 2kr ~ kz
2 kg2 g g~2 k~2

S S g2 Sg2
The maximum number of logarithms comes from
the kinematic region where both the g; and the p, ,-
are small. Hence, to DLLA the g,. and p; can be
set to zero in the argument of the Q2 5 function
and the upper limits of the g,. integrals can all be
set equal to l. (Note that this simplification is
possible only in planar and axial gauges, where
the gauge denominator g;+ p, provides a cutoff as
g,. - 0 and the usual phase-space cutoff from the
Q' 5 function is redundant. ) Furthermore, the
maximum number of logarithms arise when the
p, , are ordered. In this case p, ,& p. 2 and D, = s p,„
where the kr kr /s term has also been dr'opped.

1 2
Note that due to the mass-shell 5 functions for
each gluon

The only remaining question is whether the k~.
themselves are ordered. If one were interested
only in the collinear singularities, for example,
in the calculation of the Q' dependence of the quark
distribution functions, then one would trgat the g,.

as all finite (i.e. , not asymptotically small) and the
ordering of the k~ 's would follow from that of the

p, 's. However, here the region of interest is for
all g, vanishing and hence a more careful analysis
is required. It turns out, in fact, that all order-
ings of the k~ 's contribute to the leading double
logarithms. To see this, write the leading-logari-
thm part of Eq. (3.3) as, after evaluating the p. , in-
tegrals,



QUARK FORM FACTORS AND LEADING DOUBLE LOGARITHMS. . .

d'kT
x d8, ,[,/ „)]w5"'(kr +kr +Qr), (3.7)

where the regions of integration are constrained to satisfy kz, '/s8, & kr '/s8, . Now consider the two possi-
ble kr orderings kr '&kr '-Qr' and kr '&kr '-Qr' which correspond to the transverse momentum of the-
virtual photon being balanced by the inner and outer gluons, respectively. In the first region relabel the var-
iables as kT = 1T, ~i=xi and jg, =x, . In the second region relabel kT = lT, O, =x„and gi=x, . The integral

1 2

becomes, with the usual ~' infrared cutoff,

(Qr df 2 z 2 Q
2 I 2

(3.8)

where the x, integration regions are specified by
the inequalities in the square brackets. Clearly
the two kT. orderings both make leading contribu-
tions, the first giving o In(s/Qr') In'(s/A, ')
—$ jn'(s/Qr') and the second ~24 1n'(s/Qr').

It is apparently at this point that the analysis of
Ref. 5 differs from the present one and those of
Ref. 6. While the structure of the calculation per-
formed here is somewhat different from that of
Ref. 5, the essential difference is that in Ref. 5

the assumption is made that k»'-QT' always,
Coupled with the p; ordering, kr, '/8, & kr, '/8,
-Qr'/8„ this leads to an integration over two re-
gions in kT, and 8, space. The first is 1& 9,

. & 8,kr, '/Qr', &'&kr, '&Qr' which coincides with the
first region in Eq. (3.8) and yields the contribution
o [In(s/Qr')][In'(s/&')] —& ln'(s/Qr'). The second,
different from the second region above, is 1 8,
& H,kr, '/Qr' and Qr'&kr, '&Qr'/8, & (Qr's)' ', us-
ing 8,& (Qr'/s)'~'. This latter region yields a
contribution —,', ln'(s /Q r').

All analyses agree on the contribution of the di-
agram with one gluon emitted from the quark and

one from the antiquark. There are two distinct,
symmetric regions of integration, again corres-
ponding to transverse-momentum balance by a
single gluon, and the result is —,'[ln(s/Q„')][ln'(s/

I

&')]-—,
' In'(s/Qr'). Thus the sum of this last con-

tribution plus two-gluon emission from the quark
plus two-gluon emission from the antiquark gives
—,'([ln(s/Qr')][In'(s/&')] —In'(s/Qr')] in the pres'ent
analysis and &{[In(s/Qr')][In'(s/&')] ——",, In'(s/Qr')}
in that of Ref. 5. (The factor ~»2ois recognizable as
the coefficient of (I/2! )[(o,C F/2m)ln (s/Q r')]' in the
expansion of the T form factor of Ref. 5.) The dif-
ference comes from the second region discussed
above where, since kT, ' -QT' is always assumed,
the reverse ordering of the kT,. 's leads to kTy'
& Qr' in violation of transverse-momentum con-
servation. A correct treatment based more on the
structure and language of Ref. 5 is given in Ref.
7.

Returning to Eq. (3.8), it should be noted that not
only do the two regions of integration yield com-
parable contributions, their union (after relabel-
ing) spans the entire region of x; space while the

lT integral is "nested": ~'& lT'&QT'. The result
of summing over all kT. orderings, with appro-
priate relabeling, is to replace the constraints of
the p; ordering with nested lT. integrals and un-
constrained x; integrals.

Consider now n-gluon emission in the ladder
configuration of Fig. 7 (squared). In DLLA the
general form is

y2g (f1&
I

d2k
Q dQ2dQ

2= oo„,, J! d8id!"i
T

2
Tg

~
Tt -Cy&, Sk .

s 2~n uD

g(2) k g q2 p p (3.9)

Again focus only on p, , g,. -0 and order the p, , so that

D, =-sp.,-. (3.10)

Once again the sum over al/ the n. possible kT. orderings, with appropriate relabeling of the variables,
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will remove the apparent constraint on the g,. due to the p, ordering. For example, if kT;, '&kT,. '& ~ ~ ~

&kT, '-QT', then relabel kT,. '= 1T„' and 9;„=x„. "thus Eq. (3.9) becomes

g2~(n) ~ C n y 1

~ ~ ~

1 2.
" 'x„,+ (1T /sx„, )

dx„

1T dlT ) 2 ( Q2

), 2 1 () x)+ (1T /sx)) (( s
1

]. Tg
(3.1 la)

(3.lib)

where the 1/(n —1)! arises from the nesting of the 1T. integrals. Alternatively, one could integrate over all
lT, symmetrically and simply divide by (n —1)! to account for double counting as was done in the QED
analysis of Ref. 9. Thus the result of summing to all orders the emission of gluons from a single quark
line is

2da' Q' o(, C~ ln(s/QT') o(,C~, ~, s
exp ' ln' —,—ln' (3.12)

When the emissions from the other quark line
are included there are two changes. First, the
exponent is doubled due to the contribution where

QT is still balanced by a gluon from the lower
quark line (i.e. , the emissions from the upper line
produce a second factor of the exponential) and,
second, there is an overall factor of 2 from the
symmetric contribution where QT is balanced by a
gluon from the upper quark line. Finally, the in-
clusion of virtual-gluon corrections" gives an
overall factor exp( o'.,C~/2v l-n' s/A. ') which cancels
the ~2 dependence, as was illustrated explicitly in

lowest order. Hence, the final result is

I

defined in Eq. (2.8),

PT „n,CJ; (3.14)

PT T PT Q p 2 Q p . (3.15)

Note that, as in lowest order [Eq. (2.14b)], the
DLLA result is independent of n 'and ~2. Although
in DLLA one does not see the order c(.', ln pT'/A. '
structure-function logarithms explicitly, the
above result is of course consistent with the fac-
torized form

d'o „Q' o(, C~ ln(s/QT')
dQ QT DLLA QT

x exp — ln (3.13)

as previously suggested. ' In terms of the quantity

suggested in Ref. 5 with a different form for T.
Here {G,(pT'))„ is the nth moment of the quark
structure function evaluated at scale pT', given by
(o!,fixed, nonsinglet part only)

p '
(G,(r„')).= exp (a„' (e ',

0000000000&

kp
00000 r

FIG. 7. n-gluon emission from the sazne quark line.

Note that, for Q T' ~ pT'«s ~ s, it is the tra, ns-
verse-momentum scale pT' which controls the
collinear logarithms and hence the nonscaling of
the distribution functions. This was illustrated
explicitly in lowest order in Eq. (2.14a).

In summary, the DLLA does lead to an exponen-
tial damping which receives contributions in per-
turbation theory from the region of phase space
where the p; are ordered along the ladder. The
transverse momenta of the gluons are also ordered
in DLLA but all orderings contribute, i.e. , there
are leading contributions where each of the gluons
balances the QT of the photon.
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IV. BEYOND THE DLLA .

Consider the expression in Eq. (3.13) as a func-
tion of Qr . It exhibits the interesting behavior
of vanishing both as Q r' - 0 a.s Q r' approaches s.
The intermediate peak occurs for

S
ln

ueak

1+[I +(4a,C~/w]'~' m

2a,Cz/v a,Cz

Q CF 2
-1" Q CF

g(-1) (s~&~
nl (2 j (4.2)

This latter series is dominated by terms around

z 7r
n

2 2mCs F
(4.3)

such that the n '" and (n +1)th terms are
comparable in magnitude. Now consider a next-
to-leading contribution from the region of phase
space where all the gluons are collinear but one
is not soft. At order n," there are precisely n
choices of which gluon is not soft, and the con-
tribution is of the form n n,"z'" '. However, in
the region of the peak z = z, and for ri -n this
term is of magnitude (I/n! )-,'(s~/2)", i.e. , of the
same order as the leading term. Next-to-leading
logarithms can also arise from a more careful
treatment of the scale in the running coupling
constant of Eq. (1.1) which has been ignored (cor-
rectly) in DLLA. For example, a,(Pr') can be
reexpressed in terms of a, (s) via

(4.1)

where n, «1 is assumed in the last step. It is
clearly important to determine if such a peak is
observable experimentally. The question also
arises as to whether the DLLA is a satisfactory
approximation in the region of the peak. Consider
the expansion of the exponential near the peak in
s =Ins/Qr',

2 b
(P )-In(P, /A)

= a,(s) 1+—' — ln —+ ~ ~ ~
a,(s) s

g t p 2 (4.4)

and such a change in the argument of n, will change
the subleading terms. Hence the determination of
the position and magnitude of the peak requires a
treatment enlarged to include at least the next to
double leading logarithms (NDLLA) arising from
both the running coupling and the configuration
where one gluon is not soft.

Contributions where one gluon is not soft arise
from terms in the numerator (trace) which involve
a single 8,. to some positive power. For n-gluon
emission the inclusion of such contributions adds
to Eq. (3.9) a. factor 1 —Q, , (8,. ——,'8,'). Again the
leading contribution in Ins/Qr' arises from the
case of ordered JL(, , and the sum of all permutations
of the ordered k&.. The overall g function is
6(s(1 —Q8,.) —Q') but this imposes no constraint on
the L9; integrals since only one 6,. is nonzero
in NDI, LA. The NDLLA contribution to the
cross section can, therefore, be calculated using
the same techniques as before. Notice, however,
that the additional factor 1 —~5, &(8, ——,'8, ) is sim-
ply the leading two terms in the expansion of the
usual nested kernels (Aitarelli-Parisi functions")
which yield the renormalization of the structure
function in the leading-(collinear) logarithm ap-
proximation. In terms of more usual variables the
iterated kernel is

(4.6)

Eq. (3.9) becomes

n

Z (4.5)f"1 ~ "1
j=l

j=o

where n,. is the ratio of the quark momentum after
emission of gluon i to that before the emission,
i.e. , 8,.=(1 —a,.)II, ,a,. and a, =l. In NDLLA the
above kernel will give the same result as the factor
1 —Z, (8; —28,.'). Thus with the substitution

n

1-'= (8'--'8'')
Kn'

II(8, + p, )

d'v'"' - =="= d2k~. k .2& n,C

X pg(L2) k + Q P +P Q Q2 ~ (4.7)

As before, the dominant contribution comes from ordered p, 's and all permutations of k~. 's, and the re-
sult is
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d 2g(e) C ~

I tl"' j.

X

1+@„'

r
—~„+[q,'/s(I - ~„)]

(4.8)

NDLLA

—ln (4.9)

Hence when all ladders and virtual contributions
are summed the result is [c.f. Eq. (3.14)]

Z — =— M P M P

(4.10)

where

and M„(pr') is the nth moment of the nonsinglet
quark distribution in a quark measured at scale

It is important to note that the expressions in Eqs.
(4.7) and (4.8) are equal only in NDLLA. For ex-
ample, the IIo, terms which appear in the denom-
inators in K„have been dropped in going from Eq.
(4.7) to Eq. (4.8). However, it can be shown that
the inclusion of such terms results in a loss of at
least tao logarithms.

In the calculation of the Q' dependence of struc-
ture functions, running coupling effects are cor-
rectly taken into account by replacing n, by

a,(kr, ') in each gluon phase-space integral. How-

ever, since in this case the L9,. are all finite, to
leading order it is immaterial whether the argu-
ment of o., is kr.' or p,.s =kr.'/8, The net effect
is to soften the integral. s from log to log log and

n, iogQ' is replaced by log [I/o, (Q )] in the result.
In the present context, the 6),. are asymptotically
small in DLLA and the next-to-leading corrections
depend sensitively on the choice of the argument
of n, It has b.een shown" that in fact o.,(kr,.')
rather than o.,(kr '/8, ,) is the correct choice, the
substitution effectively replacing n, log'Q' by
(log@')(log[1/o, ', (Q')]] in the result.

The final NDLLA modification, therefore, is
to replace o.', by o.,(lr,.') in Eq. (4.8). The iterated
kernel is then given by [b =12'/33 —2N& as in Eq.
(1.1)]

bC "r dl ~' ' 1+o.'
2x ~& Ir'In(lr'/A') o 1 —n+Ir'/s(l —o.)

I

2.p~ l.e.

(4.12)

Note that this result agrees with the O(o.,) calcula-
tion of Sec. II [Eq. (2.14a)] and the DLLA result
of Sec. III [Eq. (3.14)]. It also has the same fac-
torization properties as the Dokshitzer-Dyakonov-
Troyan formula of Ref. 5, i.e., the cross section
is a convolution of quark structure functions with
an overall T form factor given by Eq. (4.11). Again
note that the scale p~' controls the collinear sin-
gularities which yield the nonscaling distributions
implicit in Eq. (4.12).

Recall that, when both the argument and the ex-
ponential are expanded, the result is correct for
terms of order [ln(s/A')] "[In(s/Pr')]'" and
[ln(s/A')] "[ln(s/pr')]'" '. The expression in Eq.
(4.10) is presumed to correctly include all even
"less-leading" logarithms of s/p ' which arise
from all numbers of nonsoft but still collinear
gluons, since the complete collinear kernel of Eq.
(4.5) has been used. However, it certainly does not
include contributions from situations where at
least one gluon is not collinear. While it is, in

principle, possible for such configurations to con-
tribute at order [ln(s/A')] "[ln(s/pr')]'" ' there is
a cancellation (confirmed explicitly for n =2) be-
tween crossed and uncrossed ladders ensuring a '

leading contribution from such configurations only
at order [ln(s/A')] "[In(s/pr')]'" '. At this level
of accuracy interference diagrams where a gluon
connects the quark and antiquark lines can also
contribute. Furthermore, there are additional
corrections to the behavior of n at this order.
Henc e it does not seem fruitfu1 to pu rsue this sort
of analysis beyond the next-to-leading-double-
logarithm approximation. Further corrections
will have only a small effect near the peak while
inside the peak nonperturbative contributions are
probably the dominant effect and outside the peak
ordinary low-order perturbation theory rapidly
becomes relevant. These essentially phenomeno-
logical questions are treated in more detail in the
next section.

Another technique, which has been suggested"
as a means to enlarge the region of k~. spacei
which is correctly included in the factorizing and,
therefore, exponentiating form, is to represent
the transverse-momentum-conserving 5 function
as an integral in impact- parameter spac e:
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5 p — k = d'b exp ib p — k

(4.13)

are important, (iii) A'«pr'«s, 0&x&1 where the
present DLLA and NDLLA are presumably rele-
vant. Now define an effective quark form factor,
which is a function of these variables, by

In this way the ordering of the k&,. and the bound

kr. &Pr is replaced by the simple bound k .«(s)" '
in order to maintain factorization. This region of
momentum spac e then yields the cor rect Fourier-
transformed quark form factor for 5» 1/(s)'~'
where the expression is damped as e xp(-in' b's)
(the DLLA in b space). This implies that when the
transform is inverted to obtain the form factor
in p~ space the major contribution arises from
small b ~ 1/(s)"'. This in turn requires a correct
treatment of all of the k~. space including regions
where dominance of the ladder graphs and simple
factorization properties presumably do not hold.
Hence, without a better understanding of the cor-
rections to the small-b behavior arising from the
regions of k&,. space not treated correctly by the
simple, factorizing expression, it is not at all
clear that this procedure yields a better descrip-
tion of the true result compared to the direct mo-
mentum-space procedure discussed above, at
least for A «p r «(s)'» '.

V. PHENOMENOLOGY

It is important now to consider whether the struc-
ture discussed in the previous sections is actually
observable in experimental measurements. Note
that its form is characteristic of the underlying
field theory: the presence of logarithms squared
is characteristic of a vector-boson theory while
the form of the running coupling constant and the
constants C~ and b are characteristic of a non-
Abelian theory and, in particular, SU(3).

The quantity to be considered is essentially a
quark form factor which is a function of two large
kinematic variables, say p~' and s, which satisfy
A' «p~' «s. Define the dimensionless variabl, es

(5.2)

Thus in NDLLA, Eq. (4.11) gives

X, (p, ()=exp —py (( —-')ln — le]en ))+in@

1=exp -2y (]—-', ) I.n
1 —x

(5.3a)

(5.3b)

where

bC ~ 6C~ 8
2n' 33 —2N~ 25 (5.4)

for SU(3) and Nz=4.
For purposes of comparison consider also the

purely leading-double-logarithm result with n,
=b/j:

ln'q
y, (p, () =- exp (-y—

= exp(-yH ])

(5.5a)

(5.5b)

p', (p, $)= p —p $1 — ~+1 n j$+1nqj

1=exp —py (1n —y$)1 —x

(5.6a)

(5.6b)

The quantity which exhibits the peaking behavior

6

and the form which arises if only the corrections
to the DLLA due to the running coupling are kept

and

x = (1/$) ln(1/q),

(5.la)

(5.1b)

(5.1c)

which imply, for example,

P r' = (A'/s) ". (5.1d)

In terms of these variables the relevant regions
are (i) q=1, x-0 where there is really only one
large variable, lnq= 0, and usual lowest-order
perturbation theory is appropriate, (ii) q~ A'/s,
xZ 1 where perturba. tion theory in n, (pr') is in-
appropriate and nonperturbative effects due to the
transverse momentum of quarks within hadrons

O 2—
O dFI

Bq

de I—(x —)Io—(x IO)de
d'g

I I I I I I

I 8 I6 I4 I 2 I 0 08 06 04 02 0
r - (I/4)& (II&)

FIG. 8. The differential form factors BE&/Bg defined
in the text as a function of y= {1/$)ln {1/g). The curves
correspond to ~g =2 && 10 GeV and A= 0.5 GeV. For
clarity, the values of BE2/Bg have been divided by a
factor of 10 and those of BE3/Bg have been multiplied
by a factor of 10.
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- g2 p (5.'7)

The appropriate solutions are

fg+2(1+4y)2] 1+2y

+ [($+ 2 +6y)'

—(1 + 2y) (2 $ + 6+ 18y)]'~ ')

+ +
1 1 1+5y

(5.8a)1+2y $ 1+2y

rP —
[~ + (~2 + 8y()1/'2]1

discussed above is then BE/Bq. Thus by operating
on each of the E,. with s/Bq it is straightforward to
study how the peaking behavior of this quantity is
different in the various approximations. The lo-
cation of the peak in g is given by the location of
one of the solutions of

ing.
Consider instead e'e annihilation where data"

are now becoming available with Q' nearly 10'
GeV'. Note also that in this case the relevant
smearing arises from the average (0 ') of hadrons
within "jets" which is more like 0.1 to 0.3 (Gev/c)'.
The perturbative analysis of e'e annihilation is
virtually identical to that for lepton-pair produc-
tion except that the quarks are now outgoing and the
leptons incoming. The analogs of the moments Z„
are quite naturally the energy-weighted cross sec-
tions' or "antenna patterns" of hadronic energy
flow. Like the lowest moment Z„ these energy-
weighted cross sections are independent of the
details of the final process of fragmentation into
hadrons as energy is still conserved.

Consider then the energy-energy correlation
function' defined in terms of the product of the
energies, dE and dE', which flow into two angular
regions dQ and dQ' normalized to the total e'e
energy W(= ~s). Thus

1 1+» + ~ ~ ~

2y
(5.8b) d 'Z, ,„„„(dEdE')

dQ dQ' ZTW'dQ dQ' ' (5.S)

rf = — ($+[('+4)(1+2y)]"']1
2 1+2y

1 1
+—+ ~ ~ ~

1+2y (5.8c)

Note, in particular, that the purely DLLA form
factor E, has its peak at r~=1/2y)1 inside the non-
perturbative region. However, the effect of in-
cluding the running-coupling corrections, as in

JP3 and, even more, the rest of the next- to- lead-
ing double logarithms, as in I'„ is to move the
peak into the physically observable region at x~

=1/(1+2y) &1. The magnitude of the peak is also
influenced by these next-to-leading corrections as
illustrated in Fig. 8 where the three curves BE,./Bq
are plotted. These comparisons are explicit illus-
trations of the points made in the discussion at
the beginning of the last section.

Finally consider the crucial question of whether
this peak can be seen experimentally. The signa-
ture is particularly striking as other effects, for
example, nonperturbative transverse- momenta
smearing, yield a broad peak at Jr=0 and no peak
at Q~&0. As long as x~&1, as it is for all but the
DLLA alone, then it is in principle possible to go
to sufficiently large s that Qr«(s)"' and fr~» A,

(kr), the characteristic quark transverse momen-
tum in hadrons which would otherwise obscure the
peak. Analyses" of various types of data suggest
that (kr') is in the range 0.3 to 1 (GeV/c)'. Un-
fortunately, present data" on large-mass lepton-
pair production are primarily at Q' less than 50
GeV' with @~~inside the region of effective smear-

where 2 is the luminosity and T is the time of
data taking. The normalization is

r d Z
dQ dQ

dQ d ~tot (5.10)

For the case of two calorimeters which are nearly
back to back such that

cosy =dQ-dQ' (5.11)

is near -1. Qne finds" the expression

Q
, +3@&'(1+cos'll)

f
(5.13)

with Q& the electric charge of quark flavor f. Inte-
grating over the external variables gives

1 dZ 1 8 1+cosX W'

with normalization (dq = —,
' d cosy)

1 dZ 1
d cosy—

Cot coSX 1 d cosy 2

(5.14)

(5.15)

d'Z 1 8 1+cosx W" da.
dndn' 8m s7l

" 2 ' ~ W' dn'

(5.12)

where
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100—
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I

IO0 50

as is appropriate for the contribution from one of
the two jets in the final state. For W = 30 GeV,
SE,/Sq exhibits a peak near (w —)f)

—5' for A =0.5
Gev, which in turn corresponds to g~ values near
1.3 GeV/c. The data from PLUTO" have been
treated slightly differently from the fashion sug-
gested by Eqs. (5.14) and (5.15) but a comparison"
can be made for small values of 6=@-X as long
as the normalization is 1 in Eq. (5.15) instead of

Thus, in Fig. 9 the renormalized data are com-
paredto BF,/Bq. Note, in particular, the sugges-
tion of a damping in the smallest-angle bin and the
general agreement in magnitude with E, (The fit.
can be improved by decreasing the value of 8
slightly. ) This is clearly an interesting question
which deserves and presumably will receive fur-
ther experimental study.

t

20
I9 (deg r ees)

FIG. 9. Comparison of the energy-weighted cross
section in DLLA (dashed line) and NDLLA (full line) with
data from the PLUTO collaboration (Ref. 17). The curves
correspond to 8"=30 GeV, A= 0.5 GeV, and N&= 4. Note
that the peak in the DLLA curve is at 8= 0.12'.

VI. CONCLUSIONS

In the context of perturbative QCD corrections
to the parton model, soft- and collinear-gluon
emissions summed to all orders generate an effec-
tive quark form factor which damps such proces-
ses in the limit when the hard-quark scattering
occurs at small angles or small transverse mo-
mentum. This structure is in direct analogy to
what occurs in QED. The double-logarithmic form
is characteristic of vector-boson emission while
the coefficients are characteristic of QCD. The
result, in the double-leading-logarithm approxi-
mation, was shown explicitly to exponentiate.
Contributions to the leading behavior arise from
all kinematic orderings of the transverse momenta
of the emitted gluons.

It was demonstrated that to satisfactorily discuss
this damping in kinematic regions which are likely
to be experimentally accessible, one must go be-
yond DLLA. The next-to-leading double logarithms
resulting from one of the gluons not being soft
were also shown to exponentiate. At least to order
n,', these are the only next-to-leading contribu-
tions other than those arising from the running
coupling constant which are also included in the
final answer. This level of approximation appears
to be the limit at which all order calculations are
practical and seems to be sufficient to perform
adequate phenomenological studies.

Preliminary studies of existing data suggest that
such damping will not be seen for some time in
hadronic lepton-pair production but may already
have been observed in e'e annihilation. Indeed it
seems likely that a fairly thorough experimental
analysis of the quark form factor via this latter
process will be possible in the very near future.

I
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