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Gravitational radiation by the thermal yhonons of a solid
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Gravitational radiation by the phpnons of a freely vibrating thin elastic cylinder is calculated in the high-frequency
limit. For thermal excitation of the phonons the spectral energy distribution is found to be a blackbody one
multiplied by the small opalescence factor (32/1, 05)(MG/c'8 )(chic)'. With the help of thermodynamic equilibrium
considerations the resonance integral for the absorption cross section of the cylinder is deduced in the high-
frequency limit. The application of the result to a neutron star is discussed.

I. INTRODUCTION

In view of the possibility of lattice structures in
massive astrophysical objects (neutron stars} the
investigation of gravitational radiation by thermal
phonons is of exceptional physical interest. Con-
sidering this problem more closely one is con-
fronted immediately with some difficulties, which
seems to be the reason for the fact that this area
has been treated only roughly.

In order to calculate the gravitational radiation
power produced by the thermal phonons of a lattice
the knowledge of all free vibrations of the solid
body is necessary. These are exactly known only
for the elastic sphere, but an explicit analytic
calculation of the gravitational radiation power in
case of thermal excitation of the oscillations has
been proved to be very complicated for reasonable
temperature ranges. Therefore we restrict our-
selves in this paper to a very special model for
the solid, namely, to a "thin" elastic cylinder.

Usually the gravitational radiation of a material
body is calculated with Einstein' s quadrupole
radiation formula. ' However, this equation under-
lies the condition that the wavelength of the radia-
tion is large compared with the linear dimension
of the considered body. This condition is not
fulfilled for the radiation of thermal phonons in
the most reasonable temperature range. The
frequency of the maximum of the radiation power
is, as may be expected, of the order

(o,„=k T/5 (1.1)

with the wavelength h. ,„=Kr/kT=T ' Kcm. Then
the usual quadrupole formula is only applicable,
if the temperature of the solid fulfils the condition

T[K]«1/I [cm],
where I is the linear dimension of the body. For
typical linear dimensions, say, 10 cm, the tem-
perature must be much lower than 10 ' K for the
applicability of Einstein' s quadrupole formula.
This means that for the large range of tempera-
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with

(1.3a)

h"
i

=0 h""=A""-—g k h=h""q
(1.3b)

h""=g
""—q"" q""=diag(-l, + 1,+ 1,+ 1}

(g~" is the metric tensor, q"" is the Minkowski
metric), one finds that the far-field solution can
be set in the form

+ T' n,n )„,x'&x "d'x', (1.4)

whereas the remaining components of I""follow
from the de Donder condition (1.3b}. Herein P
= x ~ x and n=x/d, where x is the space vector of
the field point. The word "retarded" means
evaluation of the components of the energy-mo-
mentum-stress tensor T'" and their time deriva-
tives at the time t' = t —~x —x'

~

for each x' before
integration over the three-dimensional space.
Besides the usual quadrupole contribution, Eq.

tures T~ 10 ' K the wavelength of the radiation
is comparable to or small compared with the
linear dimension of the solid and that the gravi-
tational radiation of the thermal phonons must be
calculated with a modified method. Whereas the
low-temperature range can be treated with Ein-
stein s formula without difficulties, for instance
for the elastic sphere (see the article of Wagoner
et al.2}, this is not the case for the most interest-
ing high-temperature range, which shall be in-
vestigated in this paper.

The modification for calculating the gravitational
radiation field, necessary now, has been given
already by Halpern et al.' and Press' and shall
be repeated briefly in such a form which is used
in the following only. Here we set c = G = 1 (6
gravitational constant) and choose the metric
signature (-, +,+,+}.

Starting from the linearized Einstein equations
of gravitation'
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(1.4) contains all higher multipole radiation terms.
The radial. gravitational radiation flux density is

given by (see, e.g. , Misner et a/. ,
' p. 992)

Toe' (P TT gTTgk )
I

(1.5)

and the total radiation power, identical with the
energy loss of the material system, takes the
form

The connection between the transverse-traceless
(TT)-gauged wave field h~»~ and the solution (1.4)
is established by the projection

with the projection operator

= q, —m'en (1.7')

(n'= x'/d is the unit radial vector}.
The application of this formalism (with exception

of the projection procedure) to the gravitational
radiation of lattice vibrations has been performed
already by Halpern et al.' and Sacchetti et al.'
Both papers consider two-phonon processes and
use propagating phonons with Born-von Klrman
cyclic boundary conditions. In contrast to this we
choose in the following one-phonon processes and
take such eigenvibrations of the solid which satisfy
the condition that the total surface of the crystal
is free of tractions (free oscillations, bound pho-
nons). We find that the results differ essentially
(on the acoustic mode level) with respect to the
directional characteristic of the radiation and its
temperature and frequency dependence in case of
thermal excitation of the phonons, although in the
paper of Halpern et el. the shape of the solid is
just the same as used by us. On the other hand,
Halpern et ai. and Sacchetti et al. use a discrete
lattice whereas we shall take a continuous matter
distribution; but the deviations of the results do
not come from this difference because they remain
in the c.ontinuum limit.

Because gravitation is a long-range nonscreen-
able interaction, it is to be expected that the
gravitational radiation effects depend essentially
on the used eigenvibrations. It is known that even
the optical absorption spectrum of an ionic lattice
changes if the cyclic boundary condition is re-
placed by the condition of free surfaces, ' which
effect is more pronounced the smaller the ratio
between volume and surface of the crystal. ' From
this point of view the differences in the results

II. THE MODEL OF THE SOLID

As a solid we consider a circular cylinder with
free surfaces consisting of homogeneous isotropic
elastic material characterized by the constant
shear modulus p(p &0) and the constant bulk
modulus K= X+ —', p(X~ 0). The conditions p&0,
X~ 0 mean that Poisson' s ratio becomes non-
negative. The general energy-momentum-stress
tensor of matter without heat flow reads (see,
e.g. , Ashby et at,")

T =pv v +p(g +v v) —0' (2.1)

(p density, p pressure, a""shear-stress tensor,
and v" four-velocity of the substratum) with the
requirements

o( vv =0~ v~ 0 1y ggu =0 (2.2)

and the boundary conditions in case of a body with
free surfaces

(2.3)

wherein q" (q"q„=+1) is the normal of the surface
Restriction to our homogeneous and isotropic
material means

with

0'a =2&(ea —4~a eI) (2.4a)

l I
eel 2~uk)E+ ul (k)s (2.4b)

wherein n, is the displacement of matter from the
equilibrium position connected with v" according
to

4

5 =I N
dt

(2.5)

Hereby we have restricted ourselves to the non-
relativistic limit (g""=g"",u'u& «1).

mentioned above are understandable.
On the other hand with respect to the conserva-

tion law

g „"i„=0,
which is necessarily connected with the field
equations (1.3a) and (1.3b} and their solution (1.4),
only the free eigenvibrations of the solid are
allowed for calculation of gravitational effects.
Therefore it seems to us that the results of Hal-
pern et al. and Sacchetti et aE. are doubtful.

Concerning an application of our results to real
physical objects we are limited by the very special
shape of our solid body. In spite of this we give
a rough estimation of the thermal gravitational
luminosity of a "young" neutron star, according
to which the gravitational energy loss is compar-
able to the electromagnetic one and should be
important for its cooling.
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With the perturbation ansatz with the Bessel functions Jo and J& and the rela-
tions

P P(p) + P(&) y P P(o) P (&) ~

P&o)» IP&»l» la&. ) I

(2.6)

P&1) (P&0)M (2.7)

(p«, and p«) are the undisturbed density and
pressure, coni tant inside the body) one finds
from the conservation relation (1.8) for the first-
order perturbations of p and p linear in u' the
representation

2

—k„', cl' ——(X+ 2tl)/p, ,

2

C2)

5„=2k„n„J,(n„R)/(P„' k„'-)J,(P„R),

k„=nv/L, n=1, 2, 3, . . .

(2.14)

(
I

~" l. (2.8)

and for u the equation of motion linearized in u'.

8
p&p) p Q = (XQ [&) + [P(M + && )][& (2.9)

In the case of our circular cylinder we have in
cylindrical coordinates

p, ,(r, cp, z) = p 8(R —r) 8(L —z) 8(z), p, ,
=- 0

(2.1o}

(p, rest mass density), whereby the axis of the
material cylinder (L length, R radius) lies on the
z axis. In view of the "thin"cylinder (defined
later} we restrict ourselves to such vibration
modes, which remain solely in the limit of vanish-
ing radius R and which are stronger than the other
ones because of L /R» 1 [compare(2. 22}]. These
are the longitudinal oscillations defined by

The values of the eigenfrequencies are given by
the secular equation (Pochhammer's frequency
equation)

(k„l —p„) Jo(ng) J'l(p„R) + 4n„p„k„Jl(np) J'0(p,R)

2

"&Jl(n„R)J)(p„R)=0 . (2.15)
2

The constants A„and &„may be determined to
satisfy the initial conditions. The use of the non-
relativistic limit means that the velocities of
sound are small compared with the velocity of
light:

(2. 16)

From (2.13), (2.12b), (2.4a), and (2.4b) it fol-
lows for the stress component t„, immediately
that

I, = 0, M„=u„(r-,z, t), u, =u.(r, z, t), (2.11a.) t„,=- QA„P[2k„n„J,(n„r) —6„(p„'-k„')&,(p„r)]
which implies

0'~= 0'
y

=—0o (2.11b) x cos(k„z) co(s~,t + z„) . (2.17)

With the boundary conditions

t„„(r=R,z, t)= t„,(r=R, z, t)

=t„(r,z=o, t)=t„(r,z=L, t)=0,
(2.12a)

wherein the abbreviation

~i =(~ -P&) (2.12b)

represents the complete stress tensor, it follows
from (2.9) exactly that"

«„= —Q A„[n„J,(n„r)+ k„5+,(P„r)]

xslll(k„z) cos(&o„t+ E„))

Evidently expression (2.17) satisfies the relation
(2. 12a) but the full boundary conditions of free
vibrations (2.3) are fulfilled by (2. 11b), (2.12a),
and (2.17) only, if (2.17) vanishes at the positions
z =0 and z =I . But this is not the case exactly
with the exception of the points r =0 and z=R.
This means that the longitudinal oscillations (2.13}
are not those of the freely vibrating finite circular
cylinder. In spite of this we can go on with the
foregoing considerations if we restrict ourselves
to a thin cylinder.

For this reason we expand the Bessel functions
for small arguments into power series:

Jo(x) =1——'x +&,4x —~ ~ ~, (2. 18a)

u„=—0, (2.13) &,(x) = —,'x —lsx +1 (2. 18b)

«,= Q A„[k„J (n„r) —P„6„J(P„r)] Insertion of (2.18b} into (2. 17) shows with respect
to (2.14) that the remaining boundary conditions

x cos(k+) cos((o„t+ q„) . t„.(r, z=O, t) =t„(r,z=L, t)=O (2. 19)



2132 G. SCHAFKR AND H. DKHNEN
/

are valid, if we approximate Jq(x)=-,x; this
means

TPP . TP4 . T)fit y . . 2
~ Cp 0Cp (3.1)

(2. 20)
fx f= fP„ fr - fP„ ff~«1.

In the same approximation Eq. (2. 15) can be
solved with respect to the eigenfrequencies and
gives [cf. (2. 14)]

nw 2 3K+2@
(d„=P Qp= cp cp =E/pp E= p (2.21)

(where E is Young's modulus). Here and with
(2. 14) the conditions (2. 20) result in

(cp «1), so that in formula (1.4) only' the first
term on the right-hand side is to be taken into
account in the nonrelativistic limit. In this way
we get from (2. 1), (2.6), and (2. 7)

h"(x, t) =- —.d, [(p(p)u')~,.]„,x'~x"d'x' (3.2)
2 cf

and with respect to (2.10) after partial integration
(' retarded quadrupole formula" )

2

1'p"(x, t) = = —
p p(p)(u'x'"+u'x')„, d'x'. (3.3)

(2. 22)

which we consider as a condition for the ratio
E/L of the cylinder; this means that for any fixed
value of n the ratio E/L must be chosen so small
that (2. 22) is fulfilled (thin cylinder).

Under this restriction the longitudinal oscilla-
tions (2. 13) can be considered as free oscillations
of the circular cylinder. In the approximation
used above they take the form with regard to
(2. 14) and (2.21)

u„=QAP„—sin(u„z) cos((u„t + p:„),
3~+2pr .

p.

By this procedure we have permuted the retarda-
tion and the derivative in (3.2); but the error pro-
duced in this way is smaller than (3.3) by the
factor cp and can therefore be neglected.

After transformation of (2.23) into Cartesian
coordinates and insertion into (3.3) one finds that
the leading component of h&' is h", whereas the
remaining ones are smaller by the factor
[X/(A+ p)](k„B) and can be thrown away in view
of (2. 22). Hence we obtain for the only relevant
component

4 2 3X+ 2JLt

ff 72 tf g+ 2p

u„=—0, (2. 23)
p(piz cos A„z cos co„t + &„d ~

with the retarded time

(3.4a)

t ' = t —d + z' cosa + r' sine cos(p —y '), (3.4b)

x cos(tp„z) cos(~„t + z„) .
Here and with regard to (2.4a), (2.4b), (2. 5),
(2. 6), (2. 7), and (2. 8) the energy-momentum
stress tensor (2. 1) for the free longitudinal oscil-
lations of the thin cylinder is known in the non-
relativistic limit [cf. (2.16)].

III. GRAVITATIONAL RADIATION OF A SINGLE
VIBRATION MODE

At first the gravitational wave field produced by
a single free oscillation mode of the thin elastic
cylinder will be calculated. As one finds easily
from the results of Sec. II the following ratios
between T', T ', and T'~ are valid:

A

wherein d, ~, q are the spherical coordinates of
the field point x. Because ~„r' - ~„A «c2 «1 ac-
cording to (2. 16) and (2. 22), the combination of
(3.4a) and (3.4b) results in

with the total mass of the cylinder

M=pR Lpp . (3.5b)

Evaluating the integral in (3.5a) we obtain under
consideration of (2.21) and of cp«1

h"= —= —~ 'A kll tt fl /+2'
L

z' cos(k„z') cos[co„(t—d+ z' cosa) + p:„]dz'
G

(3.5a)

I

A,

{[1—( I)"(cos(~ L cos-g) —(~„Lcosa) sin(~„L cos&))] cos(~„(t —d) + &„)
L " " A+2@ N

A

+ (-1)"[sin(&u„L cosy) + (~„Lcosa) cos(~„Lcosa)] sin((u„(t —d) + &„)] . (3.6)
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Now we are able to determine the radial gravitational radiation flux density produced by the single mode
discussed above. Insertion of (3.6) into (1.7) and (1.I) into (1.5) gives

7«» —— 4" sin 6((h") )= " -,L, A„+ sin 6(l —(-I)"[cos(ar„L coss) —(&u„L cos6) sin(~„L cosa)]Gw) 64~

+ (~„Lcos6) 'l2] .
Integration over the total sphere results in the energy loss according to (1.6):

(s.7)

(s. 8)

Finally we substitute the amplitude A„ through the energy E„of the single oscillation mode of the thin
cylinder. Consistent determination of

E Too d3

up to the first nonvanishing term gives with the use of (2.1) and (2.23)

(s.8)

4 2 3&+2V'I['
En= 4An +n CO ), p, )

Elimination of the amplitude A„ in (3. I) and (3.8) with the help of (3.10) results in

m 4

7'&o„& —— -2 2E„sin 6(l —(-1)"[cos(&o„Lcos6) —(&o„Lcos6) sin(&u„L cos6)]+ (&u„L cos6)'/2] (3.11)

and

dE„32 Moo „15 12 & sin(o„L + ( 12
L2 &„ I —(- )" 2L2 5- 2Lz i L

+
i 2L2 -1 o»„+,—', u)„'L' (3.12)

m 4

7'&o» —— -, 2E„ins' [16—(-1)"]gd I (3.13)

and

,' Z„[1-(-1)"], (3.14)

which are identical with those results obtained by
the usual quadrupole radiation formula (see, e.g, ,
Weinberg' ). In contrast to this in the A,igh-fre-
quency limit (d„L» 1 we obtain

Evidently the right-hand side of (3.12) has, ex-
cept for the factor E„, the meaning of the recipro-
cal lifetime of the mode n with respect to gravita-
tional radiation.

In the low-frequency limit ~„L«1 the expres-
sions (3.11) and (S.12) go over into

I

and

dEn 18= gPgMCO (a)„E„,
cd

(S.16)

IV. THE RADIATION POWER FOR THERMAL
EXCITATION OF THE VIBRATION MODES

which result is based essentially on the retardation
of formula (1.4) or (3.3), respectively. As one
can easily see, the retarded quadrupole formula
(3.3) gives a radiation power proportional to e 7

(c velocity of light) in contrast to the factor c in
the case of the usual quadrupole formula.

Whereas in the low-frequency limit only the odd
modes contribute to the radiation, in the case of
high frequencies all modes radiate gravitationally.
Furthermore, the angular characteristic is differ-
ent in both cases whereby the high-frequency

. characteristic is much more pronounced than the
low-f requency one.

4

T«w) —— - co E sin &sin 23Or ~&O 2 ~ 2 ~ 2

8Pd2 n n (3.15) At first we quantize the energy of the oscilla-
tions according to
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&n =@+el~ l (4.1)

In this way we obtain for the radial gravitational
energy flux density produced by the thermal pho-
nons of the thin cy1.inder

S'(8) = g T„„&(Z„)

MLCo . 2 . 2
~

A(d de)sin Q sin 2
8w a~

0

and for the total radiation power

(4.3)

P = ——= 2n S"(6}Z'sinada
ds
dt o

16 3 S(d 647

0

(4.4)

For a realistic solid the upper integration limit
in (4.3) and (4.4) is correct only in the case that
T«Tn (Debye temperature); otherwise it is de-
termined by the Debye frequency &~. Performance
of the integrals in (4.3}and (4.4) for T « Tn gives

S"(6)= '
cr T4 sin'6 sin'26MLCo (4.5}

and

64mP 105 MLCo 0'g (4.6)

[o = (n'/60)A4/O' Stefan-Boltzmann constant].
Evidently we have the result that the spectral

energy distribution of the gravitational radiation
of the thermal phonons of the thin elastic cylinder
has a Planck blackbody character in contrast to
the result of Halpern et al. , and that there exists
a Stefan-Boltzmann law. As one can prove easily,
this is not the case for the low-frequency limit
[compare (3.13) and (3.14)], which is identical

omitting the zero-point energy. Then the mean
value of the energy of the oscillation with the fre-
quency &„ in the case of thermal equilibrium is
given by the well-known relation

Z„=a~„/(e~-./~~- 1). (4 2)

As shown in the Introduction, for realistic tem-
peratures only the high-frequency limit makes
practical sense. Therefore we substitute E„only
in Eqs. (3.15) and (3.16) through (4.2). Simultane-
ously we add up the contributions of all single
modes and replace subsequently the sum over
the single eigenfrequencies ~„by the integral;
this means in view of (2.21) that

with the low-temperature limit. Furthermore,
we find a directional dependence of the radiation,
which is different from the result of Halpern et al. ,
where the radiation of the single mode ~„ is emit-
ted inside the very small solid angle of the order
of 1/&„I centered by the axis of the cylinder.

By division of P by 2x&L we obtain the radiation
power $ per unit of the surface of the thin cylinder:

S =
+, , (M/R) coo'T (4.Va)

Comparison with the exact blackbody radiation
formula shows that the emission (4.7a) is smaller
than that of a blackbody by the "opalescence" fac-
tor

q= ~O4 (M/R)co (4.7b)

q= 5x10 '. (4.8)

This means that the star is transparent for gravi-
tational radiation, so that the radiation calculated
according to (4.6) and (4.7a) with the inner tem-
perature 1* leaves the star immediately. So we
find at the surface a gravitational radiation flux
density

8=10"erg/sec cm' (4.9a)

The order of (4.7b) is given by the ratio of the
Schwarzschild radius and the radius of the cylinder
multiplied with the third power of the ratio of the
velocity of sound and the velocity of light. There-

,
fore in the case of usual solid materials the value
of (4.7b) is so small that the order of the emission
power (4.Va) lies under the observational limit.
only in the case of dense astrophysical objects
is the value of the opalescence factor q of such
an order that the thermal gravitational radiation
power would be comparable with the electromag-
netic one; however, the application of the results
(4.3) up to (4.Va) to astrophysical objects seems
to be questionable because of the very special
shape of the material body.

In spite of this objection we give finally a rough
estimation of the thermal gravitational luminosity
of a "young" neutron star, inside of which there
exists a neutron fluid or even a neutron lattice.
Assuming for the mass M=Mo correlated with a
radius g —-10 km and a density po—- 10'4 g/cm',
one finds that the velocity of sound c, -—0.1c and
the Debye temperature g~= 5x10" K. For an
inner temperature of the neutron star of the order
of T =10' K (see, e.g. , Helfand ef al. '4) the condi-
tion T&& T~ is fulfilled and the Stefan-Boltzmann
laws (4.6) and (4.7a} can be applied. To do this
we approximate roughly the linear dimensions g
and L of the cylinder by the radius p of the star.
Then the opalescence factor (4.7b) has the magni-
tude
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and a total gravitational luminosity

&= 1040 erg/sec. (4.9b)

In the case of an effective surface temperature
of the neutron star of g,~ = 10' K the electromag-
netic radiation power amounts to

P, =10"erg/sec (4.10)

In view of the sensitive dependence of the gravi-
tational radiation intensity on the inner tempera-
ture of the star, the results (4.9b) and (4.10) may
be considered of the same order, so that the ther-
mal gravitational radiation should not be neglected
for the cooling process of a neutron star.

V. ABSORPTION CROSS SECTION

Finally we take the occasion to say that the
foregoing considerations allow also the calculation
of the resonance integral of the absorption cross
section for a single mode of frequency +„of the
thin cylinder in the high-frequency limit. Avoid-
ing the addition of the contributions of all fre-
quencies in (4.4) we obtain the energy emission
of the single frequency mode z„ in the case of
thermal excitation:

16 4 SQ)~.
105 (5.1)

On the other hand, the energy absorption of the
mode ~„ in the case of incident blackbody gravi-
tational radiation is given by

dZ&~ Ifu)„'/v'
o(~ ~ &n}d~ n~„ter (5.2)

In the thermal equilibrium the expressions (5.1)
and (5.2) must be equal, which results in

t 16m'2
o'((d, (0„)4d =

105 Mco, (5.3)

whereas the corresponding result for the low-
frequency limit given by Misner ef al. e (p. 1035}
is proportional to Mco'v„'L ' [for the odd modes
only, cf. (3.14)]. As to be expected from the black-
body character of the emission power (4.4), the
resonance integral of the absorption cross section
does not depend on the frequency &„ in the high-
frequency limit.

%'ith the help of "Exercise 37.10" in the textbook
of Misner et al. s it is easy to show that Eq. (5.3)
follows also from absorption calculations with the
retarded Riemann tensor in the geodesic deviation
equation. This result suggests that gene~ally in
the high-frequency limit the tidal force in the
geodesic deviation equation is to be modified by
retardation of the Riemann tensor only.

VI. FINAL REMARKS

It remains to estimate the precise range of phys-
ical realization of our investigations in the case
of thermal excitation of the phonons. Insertion of
(1.1) into (2.22) results in the condition for a "thin
cylinder".

Sg, 3A +2/,
AT' 2~+ p,

(6.1)

Taking additionally the high-temperature condition
&,„«L [compare (1.1)],

IL&&-AT' (6.2)

the order of the dimensions of & and L of the cyl-
inder is determined by the temperature T alone.
Combining (6.1}and (6.2) we get finally

3X+2p, &
'~'—«c, I («1).

2A, +p. j (6.3)

Evidently the last relation follows also immediate-
ly from (2.22) and ~„'=g&&I,; it is the condition
for the thin cylinder in the high-frequency limit.

Whereas the condition (6.2) is not-a strong re-
striction for a large temperature range and (6.3)
can still be satisfied, the condition (6.1) makes
serious difficulties for not too low temperatures
in the case of usual materials. Because their
velocity of sound does not exceed the value of 10'
cm/sec essentially, the right-hand side of (6.1)
is only of the order of 10 ' cm even for p = 10 K.
Also in the case of neutron matter of a neutron
star the condition (6.1) can be hardly satisfied.
In spite of this we have risked an application of
our result to a young neutron star (at the end of
Sec. IV}, which is suggested by the fact that the
results (4.7a) and (4. 'Ib) seem to be of a quite gen-
eral structure.
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