
PHYSICAL REVIEW 0 VOLUME 23, %UMBER 10 15 MAY 1981

Gauge invariance, semiminimal couyling, and yroyagating torsion

V. De Sabbata and M. Gasperini
Istituto di Fisica dell'Universita, Bologna, Italy

and Istituto di Fisica dell'Universita, Ferrara, Italy
(Received 2 December 1980j

A dynamical theory of torsion is proposed in which the electromagnetic potential is dispensed from minimal

coupling, and a "semiminimal" photon-torsion coupling is introduced and physically justified. Local gauge
invariance of the total Lagrangian density is preserved in its usual form, provided that torsion is determined by the

gradient of a propagating potential. From the field equations we deduce that a polarized macroscopic body is a

source of a dipolar torsion field, and that a test body may feel torsion only if polarized. No disagreement is found

with the Eotvos-Dicke-Braginskii tests of the equivalence principle.

I. INTRODUCTION II. GAUGE INVARIANCE AND THE PHOTON-
TORSION INTERACTION

Recently Hojman, Rosenbaum, Ryan, and Shep-
ley' (HRRS) have proposed a theory in which tor-
sion and electromagnetism interact. In order
that gauge invariance be compatible with the mini-
mal coupling of the electromagnetic field to space-
time geometry, they propose to modify the form of
local gauge transformations in the presence of
torsion, obtaining a dynamical theory which al-
lows propagation of torsion in a vacuum. How-

ever, as shown by Ni through an explicit com-
putation, the field equations of this theory imply
that test bodies of different electromagnetic con-
tent accelerate differently in the solar and ter-
restrial gravitational field, in disagreement with
the experiments performed by Eotvos, Dicke,
and Braginskii.

In the present paper we propose a theory in
which photons, like all the other spinning parti-
cles, both generate and react to torsion; intro-
ducing a. photon-torsion coupling (which we call
semiminimal) different from the minimal one of
the HRRS theory, we are able to retain the usual
form of local gauge invariance, without modifica-
tions in the coupling of the electromagnetic field
to matter fields. The result is again a propagating
torsion theory, but our field equations do not seem
to disagree with experiments.

In Sec. II of this paper, after a short review of
the HRRS theory, we present the I agrangian den-
sity for our theory, providing with a physical
justification the photon-torsion coupling term.
In Sec. III we give the field equations and in Sec.
IV we calculate the torsionic field produced by a
macroscopic body. In Sec. V we compare the
implications of our theory with experiments, and
in Sec. VI we point out the main differences be-
tween the HRRS theory and ours. For easy ref-
erence, we adopt the notation and conventions ef
the papers of Refs. 1 and 2.

We start, as in the HRRS paper, with the Lag-
rangian density for a charged massless scalar
field g in a space with curvature and torsion; the
total Lagrangian density is

g +it& 8 y4 yfq
16~ 4~

where A' is the scalar curvature derived from the
nonsymmetric connection I' „„,

(;„}is the Christoffel symbol and T',„=I"„,
—I „ is the torsion tensor. We consider the
following local gauge transformation:

iqA (q)
g

where q is the electromagnetic coupling constant.
As is well known, the Lagrangian density (l) can
be made invariant under this transformation,
provided that a coupling between the matter field
g and the electromagnetic potential'A is intro-
duced according to the prescription

and provided that A, under the gauge transfor-
mation (3), transforms as

A~ -A~ =A„+A ~ .
The gauge-invariant Lagrangian density becomes
then

R' — D /*Ding — F„„F"", (6)
16m 4m' " 16m

where the last term is the free electromagnetic
Lagrangian, and

(7)
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J

(the bar symbol denotes a covariant derivative
using only the Christoffel symbols of the metric}.

If we had defined, following the minimal-cou-
pling procedure, the electromagnetic field tensor
using covariant differentiation (denoted by a
semicolon) involving the full connection coeffi-
cients I' „„,i.e. ,

(s)

then we should not have obtained gauge invariance
of the Lagrangian (6) under the local transforma-
tion (5). The usual procedure (proposed by Hehl
et af. ) to secure gauge invariance in the presence
of torsion is then to dispense A„ from minimal
coupling, and to define E„„according to (7). This
prescription finds a very natural justification in
the framework of the Poincar6 gauge field theories
of gravitation, ' where the gauge fields (as the
potential A„) are treated as Poincare scalars.
This means, however, that photons are decoupled
from torsion, although they are spinning particles.

As an alternative to the choice of Hehl et al. ,
HRRS proposed to keep the minimal coupling be-
tween gravitation and electromagnetism in the
form (8}, introducing, however, a nonminimal
prescription for the coupling of the matter field

density, mvv = 2'p"' ~E ~p „, where p„„~
=(-g)~~2@ „,~ is the completely antisymmetric
symbol defined by g

' '=(-g)
The fie]d equation (13) and the minimal coupling

(]4) disagree with the experimental results on the
accelerations of different test bodies in the solar
and in the earth's gravitational field. Therefore,
we propose a photon-torsion interaction dropping
the assumption that the coupling is to be intro-
duced according to the formal prescription (8).
Starting from the Lagrangian density (6), we de-
fine E „as in (V), and we introduce a nonminimal
photon-torsion interaction Lagrangian, on the
grounds of the following physical motivations:
Even if torsion is not minimally coupled to elec-
tromagnetism, there is, however, a minimal
coupling between torsion and the virtual pairs of
massive fermions produced by photons according
to the vacuum polarization effect. By virtue of
this effect, we may expect an "indirect" coupling,
which we may call "semiminimal, " between tor-
sion and the electromagnetic field itself. 5 Follow-
ing the result of an explicit perturbative computa-
tion of the polarization tensor in the presence of
torsion, ' we add to the Lagrangian (6) the phe-
nomenological" interaction Lagrangian density

=p „-i@8 A„g (8} (15)
and a modified form of local gauge transformation

(10)A„A„' =A„+8~A

(P is a scalar function). They showed that the
minimal coupling (8) and gauge invariance under
the transformations (10) are compatible, provided
that torsion be determined by the gradient of the
potential y according to (see also Refs. 11 and 12)

& v, =~ vf, v-6 v4, .~

They obtained the field equations

v e-eJu gf'r~
Ir 0 v', v

Efv via] Elvvf', aJ

for the electromagnetic field, and

for the torsion potential, where J„"is the usual
matter current density, and E„„is defined, ac-
cording to (8}, as

Evv=Av, v
—Av, v+Avf, v Avg, v (i4)

According to these equations, the electromag-
netic field acts as a source for torsion, and tor-
sion is allowed to propagate, as its potential
obeys a wave equation. Moreover, torsion affects
the electromagnetic field, generating an electric
current, Jv~=-F""P „, and a magnetic current

where n = e /4vSc is the fine-structure constant,
T„ is the totally antisymmetric part of the torsion
tensor

v+8
u e 1 ~vu+8 (16)

g'gI ~8(~+3,a) (is)

and Ev„ is defined by (7). The coupling constant
o'., justified by the explicit computation of Ref. 5,
is due to the fact that vacuum polarization is a
second-order electromagnetic effect; notice also
that only the totally antisymmetric part of the
torsion takes part in the interaction, because of
the axial character of the spin tensor of the virtual
Dirac particles, as shown in Ref. 5. The total
Lagrangian density, ~+ &I, is gauge invariant
under the usual local transformation (5}, provided
that T~, „~

——0; therefore gauge invariance is sat-
isfied if we require that torsion be generated by a
potential p, i.e. , T„=q

In the absence of other torsionic sources besides
the electromagnetic field, we can set

~8 ~ olr+ (17)

and the gravitational Lagrangian density 8', sep-
arating the torsion contributions, becomes
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where R is the scalar curvature derived from the
Christoffel connection.

itself, i.e. , J ~~~„——0. The total electric charge
Q associated with Z'„vanishes, however. In fact,

III. FIELD EQUATIONS

The total Lagrangian density is (e=l, G=1)

(8+ «q p —F F~"—4D p*D P-16m

+ aq'""A, F„cp,), (19)

(D"g) ~

——iqA„D P, (D P ) ~
„——-iqA D g*,

(21)

where F„„=A,„-A„„and D„P = g „—iqA„P It.

is invariant under the usual local gauge transfor-
mations

y- ()' = e" "'y, A -A„' =A + A „(20)
and the electromagnetic field is coupled in a min-
imal way to the matter field g, and in a semi-
minimal way to the torsion potential p. From in-
dependent variation of P*, P, A„, and p, we ob-
tain the following field equations:

(26)

(Latin indices range from 1 to 3) and this vanishes
in a simply connected space if the fields fall off
to zero sufficiently fast at spatial infinity. Notice
that also this fact has a simple explanation: If
torsion is due to the virtual particle-antiparticle
pairs associated with a "physical" photon, then
the net total charge must be zero.

IV. THE TORSION FIELD OF A

MACROSCOPIC BODY

In this section we will compare the torsionic
potential p produced by a celestial maeroscopie
body such as the Sun or the Earth, with its New-
tonian gravitational potential.

In first approximation, setting E~=F„p and B~
= e«, &F'~/2, Eq. (23) reduces to

Bk (27)

Fv v 4+JP + j ~~+vf)i~+

+I o ~ +~V v+BF

where

(22)

(23)

and the solution is given by

(y g BA'

d g
sm r (2S)

J "=—q((D'0* —0*D'4)
4w

(24)

Fv v 4gJ v + & ~qvv+8F

Ftvvl oi] 0 ~

(25)

is the current density of the charged matter field.
Unlike the HRRS theory, notice that P is not di-
rectly coupled to torsion, in agreement with the
expectation that a spinless particle should be un-

affected by torsion.
According to Eq. (23), torsion may propagate,

as in the HRRS paper, ' in our theory, however,
the density of "torsionie charge" is a pseudo-
scalar, such as the torsionic potential q. Equa-
tion (23) shows that a free radiation field, satis-
fying E ~ B=0, does not serve as a source for
torsion: This agrees with the fact that there is
no linear vacuum polarization effect for traveling
electromagnetic waves in empty space and with
the physical interpretation given to the semimini-
mal coupling term.

In our theory, the Maxwell equations are modi-
fied as follows .

where r=(x«x«)'~ . Since stars and planets are
neutral, the outer space, where E=O, gives no
contribution to the integral; for the same reason

. also the atoms, inside the body, do not contribute.
The only contribution may come from the single
components, nuclei and electrons.

Suppose that a, body is composed of particles
with charge e, mass rnp, magnetic moment p~,
and radius yo=fg/moc. First of all we shall eval-
uate the torsion field produced by one of these
particles. As we are concerned with the field
far from the body, Eq. (28) may be expanded as
follows:

q (x) = —— d'x'E«(x')B«(x')

+ —
3 d x'E~ x'B~ x' x,'+' ' '

(29)

In the hypothesis of a Coulombian electric field,
E"= ex «/r, and of a dipolar magnetic field, B«
= (3x«p, ;x' —p, r')/r', the first integration in Eg.
(29) vanishes, and the second integral, which may
be called a "torsionic dipole" d', gives

Torsion does not generate a, magnetic current,
unlike the HRRS theory, but only an electric cur-
rent J"„=-,' nq'" F„p 8, which is conserved by rp

(30)
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Therefore, a particle with a Coulombian electric
field and a dipolar magnetic field has also a tor-
sionic dipolar moment proportional to its mag-
netic moment, and it generates a torsion field
described by the following potential:

where '~' is the test-particle Lagrangian density,
and using the matter-response equations &," „
= SS'/sg", we get, in a "local inertial frame"
such that the Christoffel symbols vanish at the
loc,ation of the body,

x'd; 8 e x'0&
'Vp

(31) d X g Afy Fvog g

Inside a macroscopic body, to each charged spin-
ning particle is associated then a torsionic dipole:
In the absence of spin alignment, however, these
dipoles are oriented chaotically, the total aver-
aged torsionic moment vanishes, and there is no
torsion field outside the body.

In the case of spin orientation, on the contrary,
the total magnetic and torsionic moments are
nonzero, and a dipolar torsion field is produced,
proportional to the magnetic field. Supposing
that the magnetic moment 5K» of a. celestial body
of mass M is entirely due to spin alignment, we

must expect then a torsion field associated with
the magnetic field, and we may compare the di-
polar torsionic potential q with the gravitational
potential U=M/r at a distance r For. the Sun we
obtain, from Eg. (31),

y- — ——-0 Qx108 e'mp KU
9 4~@'c' M r (33)

V. TEST-BODY ACCELERATIONS

We will follow the method introduced in Refs. 2

and 9 to calculate the accelerations of a macro-
scopic test body in a space with curvature and

torsion. The four-momentum vector of a test
body is

ct'x ~„0, (33)

where r„"is the total stress-energy tensor densi-
ty, including also the electromagnetic contribu-
tions. Starting with the Lagrangian 2',

g& (+ +su ~ql4lrolag F y ) g g(P)v'-g
16m P v, 8

(34)

where mp is the proton mass and we have used a
solar magnetic moment per unit mass %/M =4.5.
At the Earth's surface then p-0. 4x10 U accord-
ing to our theory, while, in the HRRS theory,
y -0.6x10 U. It must be stressed that if the
solar magnetic field is not entirely due to the
alignment of the nuclear spins in its interior,
then y &10 ' U/r; in particular, if there is no spin
alignment and the magnetic field has a different
origin, then p=0.

where

P{0)++(&) + y ~

V (35)

(35)

(we neglect higher-order derivatives of p), If
the test body is unpolarized (i.e. , no spin align-
ment in its interior) the two integrals vanish
identically: Therefore unpolarized matter of dif-
ferent composition faQ with the same acceleration
in the gravitational field of the Sun and of the
Earth, even assuming that a celestial body gen-
erates a torsion field (i.e. , p xO). Our theory,
unlike the HRRS theory, is then in full agreement
with the Eotvds-Dicke-Braginskii experiments,
performed with unpolarized aluminum and plati-
num matter.

According to our theory, test bodies of different
polarization accelerate differently in the gravita-
tional field produced by a polarized body. Defin-
ing the center of mass of the test particle as

X~=— d xx'7'1
pp 0 (33)

in the local inertial frame we get, in first approx-
imation, P X, = mX, =P„where m is the mass
of the test body. In this frame, a polarized test
body is then subject to an acceleration X» given
by Eg. (37),

(39)

where T»=q»is the torsion field and D' is the
torsionic dipolar moment of the test body, related
to its total magnetic moment according to Eq.
(3O).

VI. SUMMARY AND CONCLUSION

In this paper we have shown that it is possible
to propose a theory in which torsion and electro-
magnetism interact, without modifying the form
of local gauge invariance, provided that a semi-
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( )=- (40)

because only the axial-vector part of the torsion

minimal photon-torsion coupling is chosen on the
grounds of physical reasonableness. The Maxwell
equations are modified, but no magnetic current
is generated and the total electric charge induced
by torsion is zero. Moreover, torsion is not
directly coupled to matter scalar fields, even if
they are charged. As in the HRRS theory, torsion
is generated by a propagating potential; in our
case, however, the torsionic charge density p(x)
is a pseudoscalar,

y(x) = —
i f u'x'p(x')xl, (41) .

where p(x) is given by Eq. (40). The theory pro-
posed in this paper agrees with all the present
tests of the equivalence principle, and deviations
from geodesic motion at a macroscopic level are
predicted only in the case of gravitational inter-
actions between two polarized bodies.

tensor is coupled to the electromagnetic field. A
macroscopic body, if polarized, generates a
dipolar torsion field whose potential is
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