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Homogeneous cosmological model in general scalar-tensor theory
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Some general results on spatially homogeneous cosmological madels are obtained in the general scalar-tensor
theory proposed by Nordtvedt and Barker. Cosmological equations for a Bianchi type-I empty universe are solved

and the behavior of the model is discussed. It is found that the universe expands from the initial singularity of zero
volume and then contracts back. There is-a significant diA'erence between the nature of the singularity in this model

and that in the corresponding Kasner universe in Einstein's theory.

I. INTRODUCTION

In view of the recent experimental evidence it
is argued that if the Brans-Dicke theory of gravi-
tation' is to be a correct theory, the value of the
parameter co in this theory has to be as large as,
or even more than, 30.' With such a large value
for co it is difficult to distinguish between the
Brans-Dicke theory of gravitation and the general
theory of relativity, at least from their conse-
quences. On the other hand, since there is no a
pzQzz reason to exlude the introduction of any
long-range scalar field in the evolution of the uni-
verse, which might be quite important at some
epoch, one may explore the possibility of a gener-
al scalar-tensor theory with v as a time-dependent
function. Within the framework of Nordtvedt's'
general scalar-tensor theory Barker4 proposed a
particular &u-P relation in the form &o= (4 —3p)j
2(P —1}, which has a consequence that the local
gravitational constant in the Newtonian approxima-
tion does not change with time. In fact, there is
no strong experimental evidence so far in favor
of varying G. This theory is quite promising in
the sense that ~ may be large at the present time
to be consistent at least up to the post-Newtonian
approximation to the general theory of relativity,
but in the past or in the future perhaps ~ might be
small enough to give quite different results. Bark-
er4 obtained an analytical solution to the empty
universe with k = 0 in the Robertson-Walker model,
which is isotropic as well as spatially homogene-
ous. He at the same time expressed doubt about
the existence of any other'analytical solution for
the cosmological model, in this theory. There is,
however, no real basis for such a speculation and
indeed there exists an exact cosmological solution
for the empty Bianchi type-I universe, which is
anisotropic but spatially homogeneous and admits
three Abelian groups of translations along three
spatial directions. It is a more generalized situ-
ation, of which Barker's model is only a special
case. This model starts from the singularity of

zero proper volume, increases to a maximum,
and then subsequently collapses in finite time. It
is interesting to note that in this case near the
singularity there is either a collapse or explosion
in all three spatial directions, unlike a disk-like
singularity for Kasner's empty universe' in Ein-
stein's theory. The anisotropy as well as the ex-
pansion scalar are indefinitely large near the
singular ity.

In Sec. II we obtained two interesting results
valid for any spatially homogeneous cosmological
model in the framework of the general scalar-
tensor theory of Nordtvedt. In Sec. III we con-
sider a Bianchi type-I line element and set up the
field equations for such a metric in the general
scalar-tensor theory and in Sec, IV we obtained
solutions for empty space with Barker's choice
co= (4 —3$)/2(g —1). Finally, in Sec. V we an-
alyzed the behavior of our model throughout its
evolution.

II. HOMOGENEOUS COSMOLOGICAL MODEL IN THE
GENERAL SCALAR-TENSOR THEORY

The field equations in the general scalar-tensor
theory of Nordtvedt' can be expressed as

and

1 (SING, ) d(o i
(3+ 2(o)l( cc

(2.1)

(2.2}

In the post-Newtonian approximation the gravita-
tional constant is

~G 4+ 207

3+ 2'
In the above Go is an arbitrary constant having no
effect on the physical result. We shall choose as
did Barker4 Go= G,~,„, so that P is a dimensionless
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scalar field. The semicolons represent covariant
derivatives. It can be shown that we have, as a
consequence of (2.1) and (2.2), the relation

where l' stands for v'-g. Again if we have a spati-
ally homogeneous universe with both p and p con-
stant on the homogeneous varieties then'

Ttt, V {)
t V (2 3) I =s(t) .W(x'). (2.11)

Now if we take the energy-momentum tensor of a
perfect fluid as

It is therefore possible to write (2.10) in view of
(2.11) as

T,„=(p+ p)v, v„+pg, „, v"v„= -1
we have

. p. ,(g'"-v"v")
(p+ p)

(2.4)

(2.5)

s. t
Brc (p-3p)s'(t)dt

c4 (2(u+ 3)

Jl
(s'P)dP/dtd

(2M+ 3) (2.12)

(2.6)

ds' = dt'+ 2g„d—t dx'+ g, I,dx'dx'. . (2.7}

Qn account of spatial homogeneity p,.=p, = p &=0
and because of comoving coordinates jb = dP/dt.
Here we have Latin indices with values 1-3 and
Greek indices with values 1-4. It is thus possible
to write (2.2) as

where a dot indicates the covariant derivative
along the world line. Now if our universe is spati-
ally homogeneous and we choose t lines as the
world lines of matter (comoving coordinates} with
the homogeneous varieties as the t-constant
spaces, our line element can be written after a
suitable time transformation as

when p= 3p (radiation universe) or p-0, p-0
(empty universe) we have from (2.12)

js'
Qs = —,J (

)d(d ~ (2.13)

The equation (2.13) is equivalent to a relation

tfg . x
d&o (2m+3) '

A
(2ur+3)'I' ' (2.14)

A being an integration constant. It may be noted
that the relation (2.14) holds for any spatially
homogeneous universe, which is either radiation
filled or empty in Nordtvedt's general scalar-ten-
sor theory with varying ar.

0

where x stands for (Ps') and this in turn, when in-
tegrated, leads us to

tt p
~ r ~—g 8&op ), dE0

g)yl4 (2(g+ 3) c4 (P P} ey)i P

(2 8)

III. FIELD EQUATIONS &OR BIANCHI TYPE-I
COSMOLOGICAL MODEL

For a stationary universe the left-hand side of
(2.8) is zero for obvious reasons and one thus has

8m@,,, '(p —3p}=g'"4,.4, .d (2.9)

In Nordtvedt's theory we have d~/dna 0 and also
g'"P, P „40 for a nonvanishing scalar field and
thus one can arrive at the result (p —3p)t 0. This
result leads us to conclude that spatially homo-
geneous stationary perfect-fluid cosmological
models in Nordtvedt's general scalar-tensor theory
cannot include the radiation-filled universe or the
empty universe at the limit.

If the rotation vanishes the homogeneous vari-
eties are orthogonal to t lines and one can always
reduce g„. in (2.7) to zero by a suitable coordin-
ate transformation. Then equation (2.8) gives

s2= -gP+ e ydx + 82edg2+ 82~de (3 1)

The field equations (2.1) in empty space (p=p=0}
for the metric (3.1) can be explicitly written as

(3.2)

~ 4 4 ~ ~ ~ ~, ~ ~

G' = 8+ P+ ——(8+ g —y) + -'(y'+ 8'+ P')2B 2

&(0 '
+ p ~ + (3.3)

G', = y+ g+ ——(y+ g —8) + ~~(y'+ 8'+ P)

The line element for the spatially homogeneous
Bianchi type-I cosmological model can be written
as

P BmG, ~@co(2„3),4 -'(p —3p) —4, ~ 0'"d~ «
(2.10)

+8—+ (3 4)
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~1 ~ ~ ~ ~ ~ ~

G' = y+ e+- —(y+ 8 —q) + L(y'+ 8'+ p)2R 2

up to the condition

D2D3+ DjD2 = DjD3. (3.15)

ar &jb 'I' P Clg
+ ~+ (3.5)

and the wave equation (2.2) is given by

R 1 ,dv~= ~ 3R~=(3.2 )~'uy. (3.6)

In this and the following sections the "dot" symbol
will now stand for the time derivative and R' will
stand for exp(y+ 8+ y).

Equation (3.6) can be integrated to give

~ A 1
(2(o+3)'~ Rs ' (3 7)

3~
— + + y'+ 8'+ y'= -(o — + 3 . (3.6)

which is equivalent to the general expression (2.14)
obtained previously. 'The trace of (2.1) for the
metric (3.1) can be written as 4 —3$

2(y -1} (4.1)

IV. EXACT SOLUTIONS

It is interesting to note that for empty space
with T„„=0 the wave equation (2.2) is a conse-
quence of the field equations (2.1). So for the Bi-
anchi type-I model one has four independent field
equations (3.2)-(3.5) and five unknowns y, 8, P,
@, and ar. One has, therefore, the freedom to re-
duce the number of independent variables to four
by assuming a relationship between any two of
them. Barker4 assumed a relationship between ~
and P, so that the local gravitational constant G

,in the Newtonian approximation remains indepen-
dent of time. We make here the same choice so
that

Combining (3.8) with (3.2) one has

»I,„—I +6„—=2—+5
tR)2 R Q Clg

(R j

Defining

1 d(d

(3+2(o) dt

(3.9)

(3.10)

and using (3.6) in (3.9}we arrive at the equation

C = t"0. (4.2)

Differentiating (3.13) once with respect to time
and using (4.1) we have

+
2 (y 1)'I' (4.3)

Upon substitution of Q' for ($ —1), Eq. (4.3) takes
a simpler form,

——+21-
~

— +f~2--- —I-f+f =0.(~
0 2c, —30

which on first integration yields

(4,4)

The substitution P/P =u transforms (3.11) into a
linear second-order differential equation for u,

~ ~

u —2fu+ (f'- f)u —',f=0. - (3.12)

The general solution of (3.12}for u is

u=(3+2(o)~ c,t+c,-J, 2 „„, (3.13)

where cy and c, are constants of integration. I ur-
ther, from the field equations (3.3) to (3.5), after
subtracting one from the other and integrating
once in each case, it is not difficult to obtain the
following relations:

—= (8 —P}D,R' = (y —g)DQ' = (y —8)DQ'. (3.14}

The relations (3.14}are obtained on the assumption
that all of y, 8, and g are different from one
another, or in other words, the universe is ani-
sotropic. The constants D» D» D, are arbitrary

Q = c,(Q'+ 1)'~.exp(2c, arctanQ) (4.5)

c, and c4 in (4.6) are integration constants. The
equation (4.6) is in transcendental form preventing
us from obtaining algebraically $ as a function of
time. Nonetheless, one can analyze the solution
without actually giving its explicit form and that is
what we do in the following section.

%e now express the time derivatives of the me-
tric coefficients in terms of the scalar field Q and
its derivatives. In principle it is possible to ob-
tain the explicit forms for the metric as functions
of time in view of the relation (4.6). Using (3.14},
(4.1), and (4.3) in the wave equation (3.6) it is not
difficult to obtain

and the second integration gives us the solution

exp[2c, arctanQ],
[2c, cos arctanQ

+ sin(arctanQ)] = c,t+ c4.
(4.6)



2114 A. BANKR JKE AND O. SAN YOS

c Q 3 &f& P 1 1 1'l

y(y 1)1/2 2 y y(y' 1)~12

Again E11. (3.2) along with (3.14) and (4.1) yields a
second-order polynomial in g, and after solving
for it we obtain

~ 3g Q 1 1 1) 1 2&]& 1(1 11
y(y 1) ~ D D il 2 y(y 1) g D D )

4 —3411
$($-I)'~A D D, 2P-2)2

y2 ] 1 1 3/2

y'(y I)1~2~ D,
(4.8)

Comparing (4.7) and (4.8) we obtain the relation-
ship between the constants

1 1 1 1
DD )

(4.9)

It is clear from (4.9) that one cannot have c, = 0
for all the constants A, D„and D, to be real
quantities.

V. THE BEHAVIOR OF THE MODEL

Now since we have substituted 0' for (P —1) in
Sec. IV, it is evident that Q-~ when the scalar
field p-~ and at this stage arctan 0- n.„which
is a finite quantity. Hence from (4.5), when 0-~,
we have

Q-Q . (5.1)

Again from (3.7) using (4.1) and expressing Q in
terms of 0 one has

(5.2)

So when 0-~ we have, in view of (5.1), It'- I/O'
and so the proper volume contracts to zero. At
this stage the curvature invariants such as Ricci
scalar g""R„„tend towards infinity. The expansion
scalar and the anisotropy can also be calculated
and their behaviors are worth investigating. De-
fining the expansion scalar 8 and the anisotropy
lo /

as'

So both these scalars become indefinitely large,
but the ratio of anisotropy to expansion is vanish-
ingly small at the singularity. An important dif-
ference in the behavior of our model from that in
the corresponding Bianchi type-I model in the
Brans-Dicke theory' is that we have the singularity
for g -~, while in the Brans-Dicke theory there
is a singularity either when P- ~ or when $-0.

If we now write Eq. (4.5} in terms of &f&, it ap-
pears as

g = 2(Q —1)' '(f&"c, exp[-2c, arctan(P —1)' 'J

(5.5)

It is clear from (5.5) that P = 0 when P = 1 and so
arctan(P —I)'~'= 0. The scalar field P has a min-
imum with the parameter v-~ at this point, after
which it again increases to infinity. On the other
hand, since 0 has no zero at any stage, there is
no turning point for Q. If 0 starts from infinity,
it can decrease to zero and subsequently reaches
minus infinity, which, however, corresponds to
indefinitely large positive magnitude for &P. When

P has a minimum that is /=1, we have Q=O. In
this limit 0 approaches c, and in view of (5.2) ft
remains finite indicating that the proper volume
has a finite magnitude. At this stage, since the
parameter ~ becomes infinitely large, there is
little difference from the general theory of relativ-
ity. Again from (4.4), (4.5), and (5.2) we have

3R
6) =-

R (5.3)
= c,(2c, —30)(02+ 1)' ' exp( —2c, arctanQ) .

(5.6)

2 g11 g22 + g22 ~33 )2

gyp g22 ) g22 g33 )

+ g33

g33
(5.4)

one has near the singularity (0-~), in view of
(5.2) and (3.14),

e-Q and lol 0-
If we assume that the universe explodes from the
initial singularity, where R'- 0 and 0—~, we are
to choose our constant c3 to be of negative magni-
tude. It is interesting to note that the scalar field
P has a turning point when P = 1, that is, at the
epoch when Q=O, but the expansion of the universe
does not halt at this stage. The universe has a
maximum volume only when Q= -', c, and, since in
view of (4.9) c, is not allowed to assume zero val-
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ue, the minimum of the scalar field never occurs
at the same instant as the maximum of the model.
%hen R=O we have O&0 if c, &0 and 0&0 if c, &0.
So the expansion halts before or after the scalar
field Q reaches its minimum according to whether
the arbitrary constant c, is positive or negative.

Finally, it is not difficult to observe that near
the singularity (Q- ~), we have from (4.7) P 0',
whereas the differences (8 —g) or (y —g) or (y —8)

go to infinity as only the first power of Q. It means
that 8, y, g all will have the same sign at the sing-
ularity and so the model can collapse to a point
singularity unlike in Einstein's case, where the
corresponding Kasner's empty-space universe
collapses to a disk-like singularity. In the latter
case one of the dimensions increases indefinitely
while the other two dimensions collapse.
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