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Twisted-baryon-loop effects in dual topological unitarization
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Within the framework of dual topological unitarization we propose a simple model for mesons, baryons, and

baryonium which allows us to calculate the effects of inserting nonplanar 88 loops in all possible ways into meson

and baryonium propagators. We study the renormalization of the leading nonzero-isospin trajectories and the

mixing of qq and qqqq states.

I. INTRODUCTION

The dual-topological-unitarization (DTU) ap-
proach to hadron physics is quite successful in
the case of mesons. ' Its extension to baryons is
intrinsically difficult, due essentially to the com-
plex nature of the "topological-entropy" index,
which governs the topological expansion.

Important progress in the formulation of DTU
with baryons has been made in the last few years.
A generalization of DTU inspired by quantum
chromodynamics has shown the importance of
understanding the role played in this formulation
not only by baryons, but also by baryonium states. '
Different mathematical aspects connected with the
definition of a proper topological-entropy index
have been studied. '

More recently, the necessity of considering a
new "quantum" surface, viewed as the "source"
of internal quantum numbers and essentially re-
sponsible for the quark confinement, has been
recognized. 4 This quantum surface is two-dimen-
sional, closed, and oriented and has to be con-
sidered in addition to the usual two-dimensional
and bounded " classical" surface, ' which describes
the space-time structure of hadron collisions. A

tentative definition or ordinary and multiquark
hadrons, quarks, and gluons, based upon this
quantum surface, has been made. ' Finally, a
complete topological- expansion theory, involving
both the quantum and classical surfaces, has been
formulated. '

The present paper addresses itself to the ques-
tion of practical computations in the framework
of DTU with baryons, beyond the lowest order of
the topological expansion. Rigorous calculations
based upon the theory formulated in Bef. 6 seem,
for the moment, premature, the question of a
"physical" lowest order remaining to be clarified.
We choose here to approach the general problem
of DTU with baryons, by formulating a simple
model which includes some information comirig
from the quantum surface. Our model can be
therefore considered as a continuation of previous

efforts" ' in making practical computations in
the case of DTU with baryons (but which considered
only the classical surface and were devoted only
to the "planar" and "cylinder" levels).

In Sec. II, we present the DTU model for baryons
and baryonium that we are using. In Sec. III, we
formulate a method of global calcul. ation of "non-
planar" baryon-antibaryon loop insertions in the
Beggeon propagators, some technical details of
our method of calculation being given in the Ap-
pendix. A discussion of the phenomenological con-
sequences of our calculations is given in Sec. IV.

II. A DTU MODEL FOR BARYONS AND BARYONIUM

In this paper we use the DTU model for baryons
and baryonium proposed in Refs. 5 and 11. In the
language of the familiar duality diagrams, "a
quark will be represented by the solid line in Fig.
1 which is associated with two indices: i is a flavor
index and 0 a three-valued "topological color"
index' (o =(u, P, y}). The direction of the arrow
indicates if the solid line represents a quark or an
antiquark. The 0 and i indices are separately as-
sociated with two other different types of lines:
The wavy line in Fig. 1 represents a "topological
color line" 0, while the dashed line represents a
"topological flavor line" i. The rules of contrac-
tion on the quantum surface of Bef. 5 imply the
connection of the three types of lines by the three-
line vertices of Fig. 2. A "topological gluon" can
be represented by a pair of wavy lines of opposite
orientations.

Figure 3 then represents a meson (M, ), Fig. 4
a baryon (B) and Fig. 5 a baryonium (M,). One
must note that a baryon corresponds always to a
clockwise order of color labels, while an anti-
baryon corresponds to an anticlockwise order of:
color labels. ' The order of color labels is de-
fined" with respect to the direction which is ob-
tained by taking the physical direction in which the
hadron as a whole is moving and rotating this
clockwise through 90 . Thus Fig. 4 represents
both a baryon traveling from left to right and an

2059



2060 GAU RON, NIGOLESGU, OUVRY, AND USGHKRSOHN

Topological quark
M2

Topoiogiccl color line FIG. 3. Quasiplanar representation of the meson (M2).

Topological flavor line

Topological gluon

FIG. 1. Quasiplanar representation of topological
qruarks, color hoes, flavor lines, and glruon.

antibaryon traveling from right to left. One must
also note that the colors of two contiguous wavy
lines are different within the baryonium state'
(see Fig. 5).

The detailed rules for drawing the diagrams
describing processes are given in Ref ll. .(Here
we just note that the graphs corresponding to
cyclic permutation of color labels are equivalent. )

These generalized ("quasiplanar'"') duality dia-
grams have the virtue of projecting in a compact
and intuitive way the information coming both from
the classical and quantum surfaces.

The main difference between the generalized
duality diagrams and the usual Harari-Bosner
diagrams consists in the introduction of the new

topological index o.. The introduction of the topolo-
gical color 0 was necessary in order to obtain a
consistent definition of hadrons, quarks, and glu-
ons based upon the analysis of the quantum sur-
face made in Ref. 5. In this sense, the model
presented here can be considered as an approxi-
mate approach to the general and difficult problem
of baryons in DTU. ' This approach is, of course,
rather crude and simple, but it makes possible
the explicit (and hopefully realistic) calculations
of nonplanar BB insertions for Reggeon propaga-
tors, as shown in the following sections.

In the lowest (planar) order of the topological
expansion, none of our lines cross in diagrams
describing processes. The higher-entropy com-
ponents correspond to diagrams in which the quark
lines cross in a well defined way, due to the fixed
order of the color labels (clockwise in baryons
and counterclockwise in antibaryons) and due to
the fact that we consider here quantum surfaces
without singular topological points. " In order to
illustrate this point, we will take as an example

the meson-baryonium mixing.
This mixing obviously cannot occur at the lowest

topological entropy because of the different colors
of the two continuous lines in a baryonium state.
It can be realized only via nonplanar connections,
e.g. , through the twisted baryon loops shown in
Fig. 6.

The nonplanar baryonium-baryonium connection
involves, in addition to the six twisted baryon
loops shown in Fig. 6, two other types of loops
shown in Fig. 7. Al. l these eight twisted baryon
loops have in common the fact that they preserve
the clockwise order of color labels in baryons and
the anticlockwise order of color labels in anti-
baryons and they do not introduce singular topolo-
gical points on the corresponding quantum sur-
faces. Examples of loops involving crossing of
topological flavor lines which lead to singular
topological points (and which are therefore ig-
nored in the present model) are shown in Fig. 8.

The occurrence of singular topological points on
the quantum surface is easily visualized in Fig. 8:
The points denoted by 1,2, 3, 4 are all identified
to one point. Such an identification of more than
two points never occurs in Figs. 6 and V.

Chains involving a higher number of twisted
baryon loops will obviously correspond to a higher
topological complexity. They will involve topolo-
gical flavor loops but never color loops. In spite
of the fact that the topological expansion in the case
of baryons is not a I/N& expansion, ' the number

N& of different flavors will still play an important
role in the renormalization of Heggeon propagators
via the nonplanar BB loop insertions, which will
be studied in Sec. III.

III. NONPLANAR 88 LOOP INSERTIONS
IN REGGEON PROPAGATORS

We consider now the effect of all possible BB
loop insertions in the M, (qq) and M, (qqqq) pro-
pagators. We consider only Reggeons of nonzero
isospin. In the case of M, we take the flavor of
q different from the flavor of q and in the case of
M, we take only those baryonia which can com-
municate with the M„ i.e., the flavors of only one

CgO

FIG. 2. Color-flavor three-line vertices. FIG. 4. Quasiplanar representation of the baryon (B).
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FIG. 5. Quasiplanar representation of the baryonium
(M4) .
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qq pair are identical. The neutral members of
the same multiplets will obviously involve the
same kind of diagrams.

We note that since none of these BB insertions
can interchange a quark with an antiquark, all
Reggeons of both positive and negative charge con-
jugation will be shifted in the same direction.

We introduce the following notation (see Fig. 9):
the BB loop will be denoted by a circle, the M,BB
coupling by a dot, the M4BB coupling by two dots,
the M, planar propagator by a single solid line
and the M, planar propagator by a double solid
line. Sometimes we will use M, and M4 to denote
the M, and M, propagators.

In this notation, the first contribution to the M2
propagator is shown in Fig. 10. An explanation
of the fact that there is no contribution at the one-
loop level is given in the Appendix.

Since the nonplanar BB loops will mix the M,
and M, states, we consider the Reggeon propaga-
tors and the different insertions in these propa-
gators as elements of 2&& 2 matrices in the space
spanned by 1Vl, and M, .

The planar propagator is

M2 0'
0 M4g

and we denote by X the matrix which generates
all insertions (see Fig. 11). Then, the renormal-
ized (nonplanar) propagator matrix, taking into
account all possible insertions, will be

I

fh

+) oC

M2

(bj

M2 ~a&

P'=P+P XP '
)=1

(2)
FIG. 6. Twisted B& loops connecting Mz to M4.

(3)

In order to express everything in a compact
form, we consider the classes of diagrams de-
noted by C, A~ ~, A~ „,and D in Fig. 12. It
is clear that C connects M, with M„D connects
M4 with 1144 and the two A's connect M, with M4.
Also, as expected for physical reasons, one can
verify explicitly that

A~-~ =&~-~ =A ~

Using the notation introduced above we have

M2
1 —CM~

M2AM4
1 —CM2 (4)

For simplicity we calculate the contributions of
the diagrams in a one-dimensional t- independent
factorizable model, which has been very success-
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FIG. 9. Notations and explicit expressions for loops,
couplings, and propagators.

FIG. 7. Two twisted BB loops connecting M4 to M4.

ful recently in illustrating different aspects of the
dual topological unitarization scheme. " The values
for propagators, couplings, and loops in this mod-
el are given in I ig. 9, mhere n„, n„, and n~ are

N2 & M4&

the intercepts of the planar M„M4, and B trajec-
tories.

The calculation of C, A, and D in terms of
a„, u„, a.~, g, g', and N is presented in the

N2& N4&

Appendix. We obtain the following expressions:

")4(X-1)~

2
x 1 —x 4 —x +—-2+4x+x 3 —x

N

x2—16—1 ——(3 —x)

mhere

gI2

(j - 3~a+1)(j- ~~ )
' (8)

C =. —x(1 —x) 5 —4x+36—,2g 1 x
j —2@~+1 6 N (5)

X2
~=(l —x)' —4 —(3-x).

1V2
(10)

k, ]s

J

my

3 4
r

k, p

J,o(

2 ] I2(+ ])j

m&

The compact expressions above are valid pro-
vided some convergence conditions are satisf ied.
These conditions mill be discussed and exploited
in Sec. IV.

The poles in the new propagator matrix P' are
the poles of the determinant of P'. We have

M2M4 D
1 —CM2

We have verified that the poles arise only from
the vanishing of the denominator. Thus me find
eight poles, which can be obtained by solving the
equation

j =~~, +C(j)

where C(j) is given by Egs. (5) and (8)-(10).
By diagonalizing the matrix P' we can get the

mixing between M, and M4 (we stress again that

FIG. 8. Examples of twisted BB loops forbidden in
our model. FIG. 10. The first insertion into the M2 propagator.
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One solution of this equation is

~ =2a

which implies

(16)

FIG. 11. Graphical representation of the matrix which
generates all insertions by iteration.

this mixing is valid only for Beggeons with non-
zero isospin). The mixing angle is given by X —2aNX~+a (N —12)X+4a 1V'=0. (18)

The other three eigenvalues are the solutions of
an equation of third degree:

2MQM4
M D(1- CM2)+M A M —M

At the renormalized pole position

(13)
This equation has three different real solutions:
one negative and two positive solutions.

In terms of the coefficients of Eq. (18) the con-
vergence conditions are expressed as:

tan2 2AM4

4
(14)

We present a discussion of the renormalized
poles in Sec. IV. Namely, we discuss the variation
of the leading pole position and of the mixing angle
as function of g, g', and N and study the restric-
tions on these variables when we require small
shifts and small mixing.

gN& 1)
a'(N'- 12)(1,
4a'N&1.

(19)

(20)

(21)

Furthermore, from the condition that the left-
hand side of Eq. (18) be positive for X =1, we de-
rive the inequality

IV. DISCUSSION OF THE RESULTS AND
NUMERICAL ESTIMATES

1
2W (22)

X4 —2g(N+ 1)&'+a'(N - 2)(N + 6)A.'

+2a'(12 2+N- N)& —8a N=O. (15}

f-0

~My Mg C p (~)

In order to obtain the compact expressions for
C, A, and D, certain convergence conditions have
to be satisfied. Namely, the convergence of the
power series in aR [see Eqs. (A14) and (A15)] is
ensured if we require that the modulus of each
eigenvalue of the matrix aR be smaller than 1.
The eigenvalues are the solutions of the following
characteristic equation:

which is more restrictive than (17). These condi-
tions impose. certain restrictions on the values of
g"N as we shall show later.

We now study the behavior of the mixing angle
[Eq. (13)] in the large-N limit. From the planar
bootstrap equation we expect, in this limit,
g"~ 1/N We note t. hat this behavior of g" in-
volves the highest power of N allowed by the con-
vergence condition (19).

It is reasonable to assume also that g'~1/N'
For simplicity, we take '4

E'
2 K

N N'g (23)

Then it is easy to see that C ~1/N', A ~1/N, and
D~ const. Therefore the mixing angle 8 [Eq. (13)]
vanishes in the large-N limit. In other words, the
physical states become pure qq or pure qqqq states.

We now study the more realistic case N=3. This
case can be considered as either an SU(3) flavor-
symmetric theory or a strongly broken SU(N)
where 3 is the "effective" number (N,«) of flavors.

It is interesting to note that the convergence
condition (19) implies [with the definitions (8) and

(23)] an upper bound for the constant K'.

K'( (j—a.„,}(j—2u e+ I) . (24)

FIG. 12. Graphical representation of C, A, and D (see
text) . -0.5 & n &-1 and -0.25 +e &0.15

N4 B (25)

Taking the planar values n~, and 0.B in the follow-
ing range:
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Z'~ 0.3 (27)

(this upper bound is in fact even smaller for
as positive).

These numerical estimates show that if we
insist on having K' near 1, we must have A,«)3.
The same conclusion can be reached by a similar
numerical study of a renormalized baryonium tra-
jectory near ~„.

It is interesting to note that for %=3, g'= —,', ,
K'~0.3 [Ei. (27)], and u„, and ns in the range
given by (25), we obtain for the renormalized pole
near —,

' a mixing angle [see Eg. (14)] smaller than
10 . It is reassuring that we find a connection be-
tween small shift and small mixing, a property
which is not apparent from our formalism.

V. CONCLUSIONS

In this paper we formulate a DTU model for
mesons, baryons, and baryonium which takes into
account the new concept of a "quantum" surface
and which allows us to investigate in a quantitative
and global way the problem of nonplanar insertions
in Heggeon propagators. We found a method for
calculating in a compact form the effects of sum-
ming over all twisted-baryon-antibaryon-loop
insertions in the nonzero- isospin Reggeon propa-
gator s.

The more complicated problem of the renormal-
ization of the isospin-zero Heggeons has to be
solved before drawing detailed phenomenological
conclusions. However, we can make some esti-
mates of p rac tidal importance.

Namely, we show that our calculation leads to
realistic consequences such as restrictions on the
value of the baryonium-baryon-antibaryon planar
coupling in agreement with the expectation of the
planar bootstrap, and restrictions on the effective
number of flavors. We also show that small shifts
of the planar Reggeon intercepts are naturally ex-
pected in the framework of our calculation.

and imposing the renormalized meson pole to be
near —,', one gets

(26)

which is obeyed by the value obtained from the
planar bootstrap (K' =1).' In fact, by studying
numerically the convergence region for C [Eq. (5)]
one gets K' ~ 1. Requiring now that C be small
(C =0.05) and taking a realistic value' for g'
(g'= 2'0), we further restrict the domain of K' to

H. P. Stapp for clarifying discussions on the topo-
logical aspects of DTU and Professor C. E. Jones
for a constructive reading of the manuscript. One
of us (J.U. ) would like to thank Professor R. Vinh
Mau for the kind hospitality at the Institut de
Physique Nucleaire, Orsay. This work was sup-
ported in part by the National Science Foundation
under Grant No. PHY80-07643.

APPENDIX

We present here the explicit calculation of C, D,
and A. , introduced in Sec. III.

In terms of the twists considered in Sec. II,
we identify three classes of BB loops, denoted by

L„L, and L, in Fig. 13. The spiral line in Fig.
13 represents either an M, or an M4 propagator.

All loops can connect M~ to M4 but only the L,
or L loops can connect M~ to M4 and only the Lo
loops can connect M, to M, . However, it is easy
to see that the L, loops can connect M, to M, only
when the flavors of the q and q in the M, are the
same, i.e., only for isospin- zero Reggeons. In
the case treated in this paper, II0 Reggeons, there
is no BB-loop insertion in the M, propagator at
the one-loop level.

For the M4, in terms of flavor, we distinguish
the eight possibilities A~, A~, S~, S» A~i, A~i,

S~~, and S~~ shown in Fig. 14. Obviously, A~ ~ and
S«contain N - 2 terms, where N is the total
number of flavors. We then introduce a notation
which indicates the A or S type and the type of
loop which connects the M4 with M, . For example,
A L, means an M, of A~ type which, when fol-
lowed by a loop of L, type, will lead to an M, .

Our definition of a normalized M4 state is

1
L

+S.L.+S~L +S+ +S,L,

+A+, +A~L +AsL +A'L,

+S'L, +S'zL +S~Q +S'L,). (Al)

The transition between M, and M, (one loop only,
i.e., the beginning of the chain) is given in Table
I, the transition, between M4 and IVY 4, in Table II,
and the transition between M, and M, (end of the
chain), in Table ID.

We consider now in detail the calculation of C
(see Fig. 12):
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AL AR

J

Cx i,j
J

—C

SE

—J

j
SE S'i

TABLE I. The number of A 's and S 's obtained from
M2 followed by a twisted BB loop.

Loop AB AL SE SI AR AI, SE SI

0
0

FIG. 14. Definition of the different flavor configura-
tionS of M4.

12 /2 l

(j —2ns+1)(j —nz )
& 0 (j —2n&+1)(j —n& ) j —2ns+1

9
OO

j —2QB+~ vo
(A2)

where a has been defined in Eq. (8) and n, is the
total number of diagrams at the (l+2) loop level.
In order to find n, we look first at the structure
of the diagrams constituting g. A careful analysis
shows the existence of a very important "triality"
property. Namely, by assigning an additive num-
ber t to the different loops, such that t =+1 for
the I., loops, t=-1 for the L, loops, and t=0 for
the I., loops, the triality property simply states

that in order to have a C chain, the total t value
must be zero (mod. 3). We illustrate this property
at the two- and three-loop level in Fig. lb.

We would like to underline that this triality
property is at the very root of the possibility of
obtaining compact forms for our expressions. We
recall that this is directly connected to the topolo-
gical index 0 referred to in Sec. II.

Using the triality property and Table II we can

TABLE II. The number of A's and S's obtained from a given type of M4 followed by a
twisted BB loop.

Az

Sl

Loop

L~
L
Lo

L
Lo

L+
L
Lo

L+
L
Lo

L+
L
Lo

L+
L

L+
L
Lo

0
N —2

0

0
1
0

N —2
0
0

1.
1
0

0
0

N —2

0
0
1

0
0
0

0
0

N —2

0
N-2

0

0
0

N —2

Ai

N —2

0
0

0
0
0

0
0

N —2

0
0
1

SJ

N-2
0
0

0
0
0

0
0

N —2

0
N —2

0

0
0

N —2
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—I ~f+ TABLE III. The number of M2's obtained from a given
type of M4 followed by a twisted BB loop.

+I I+I 7+ +z zpz r p +

FIG. 15. Illustration of the triality property at the two-
and three-loop level.

calculate the number n, 1 of M4 s after /+1 loops
in terms of the number n, of M4's after l loops.
We find

v,"=n„,(A„L,+A~L ) =2v,',
v,"=n„,(A„L +A~L, )

=(N- 2)v,'+2v,'+2v,',
v,"=n„,(S~.+S,I. )

S@

SI

2(N -2)
N-2
N-2

2(N -2)

—vi + v~+ (N —2)v3+ v4+ v5 q

v,"=n„,(AsL, +A~L )

= (N 2)v,'+2-v,'+2v,',
v,"'=n„,(As'L +A~L, )

= (iV —2)v,'+ (N 2) v,'+ 2-v,'+ 4v,',
where we used the relations

(A3)
SE

then using Table III:
l

V1

n, (S+,+S~L ) = n, (SsL + S~L,),
n, (A'+. +A~L ) =n, (S~sL +S'IL,),
n, (A„'L +A~L, ) =n, (S~+,+SJL ) .

(A4)

v'
n, = (2 (N —3),N, 0, 6)

V3
l

V4
l

(A 10)

Since

v = —v +v +v5 1 2 4 (A5)
Finally, when we end with M„we simply sum over
the final number of M4's:

we finally find the following system of equations:

v l+1
1 0 0 2 Q

l+1 vO
1

v" =2v'
1 3 &

v" = -2v'+Nv, '+ 2v'+ 2v'

v "=2v'+ (N —2) v'+2v'

v'+' =-2v'+2v, '+ (N-2)v'+4v'

which leads to

(A6)

n, = (N —4, N, 2 (N —2), 4)

V3
l

v4
l

Coming back to the calculation of C we need

Q, ,n, a ', n, being written as
r

4

(A11)

-2 N 2

2 N-2 2

v l+1
2

v'+' 03

v'
2

(A7)
V3

n, =(2(N- 3),N, 0, 6)R' (A12)

v l+1 -24

When we start with

vO2X-2 4

M„Table I implies
where

vo=4
1

v'=2
2

v'=0 v'=4.
3 & 4 (A8)

When we start with M„ the definition (Al) gives

v =v =v'=v =2.1 2 3 4 (A9)

When we end with an M„ the total number of dia-
grams is found by summing over all final M4 and Then

0 0 2 0

-2 N 2 2

Q 2 N-2 2

-2 2 N-2 4

(A13)
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gn, a' =(2(N- S),N, 0, 6) g (aR)'
l=o l=o 0

(A14)

1 2
=(2(N- 3),N, 0, 6)

1 (A15)

We note that the relation (A14) can be written as
(A15) if some convergence conditions are satisfied.
These conditions were discussed in Sec. IV.

Performing the remaining algebra we obtain the

expression for C given in formula (5) in Sec. III.
Similarly we obtain the expressions (6) and (I)

for A. and D, respectively.
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