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Radiative corrections to Higgs-boson decays in the Weinberg-Salam model
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One-loop corrections to the Higgs-boson decays H~+r, HW+ W, and IIZZ are calculated up to Higgs-boson
masses of about 1 TeV. The corrections are of the order of 10% for 200 GeV~m„&1 TeV within the
renormalization scheme adopted. Renormalization problems are discussed in detail. A complete set of one-loop
counterterms in the 't Hooft gauge is presented.

I. INTRODUCTION

One of the most important general features of
the Weinberg-Salam (WS) model' is its renormal-
izability, which makes systematic calculations of
the radiative corrections possible for the electro-
weak interactions. The structurally important
Higgs sector necessary for the construction of a
renormalizable broken local SU(2)z && U(l)r gauge
theory remains experimentally completely unveri-
fied. It is commonly expected, however, that at
least in some effective sense the WS model with
its particular minimal Higgs structure could pro-
vide a correct description of electroweak interac-
tions in nature up to energies as large as 1 TeV.

Although we are not immediately expecting the
experimental results to confirm the detailed fea-
tures of the Higgs sector, it is, nevertheless, in-
teresting to extend the previous studies on this
subject. ' An excellent discussion on the rele-
vance of the Higgs-boson effects has been. given
by Veltman. ' In this paper we analyze the radia-
tive corrections to the Higgs-boson decays. These
corrections are expected to be particularly impor-
tant for a heavy Higgs particle above the vector-
boson thresholds. In this case, the radiative cor-
rections to the predominant decays into the vector
bosons turn out to be larger than the contributions
from all the other decay channels, if we assume
that no fermions heavier than about 50 GeV exist.

Another aim of the present investigation is to
get some more insight into the practical aspects
of the renormalization of the WS model. Our re-
normalization procedure differs in several re-

spectss

from the procedures used by other authors.
Therefore the renormalization problems are dis-
cussed in some detail. In particular we present a
complete set of one-loop counterterms in the
't Hooft gauge.

Our paper is organized as follows. First, a re-
view of some general properties of the Higgs sec-
tor is given in Sec. II. Section III is devoted to a
description of the renormalization scheme. In
Sec. IV we discuss the one-loop radiative correc-

tions to some form factors. The Higgs-boson de-
cays and the related bremsstrahlung are consid-
ered in Secs. V and VI, respectively. We finally
discuss our numerical results in Sec. VII.

II. THE HIGGS SECTOR

For later use we will briefly summarize some
well-known facts about the Higgs sector of the WS
model. We essentially follow the notation of Abers
and Lee.' The Higgs Lagrangian including the
couplings of the Higgs field Cb to the vector bosons
reads

4~-, 4t =

The couplings of the Higgs field to the fermions
are then described by

g [G„(ig,e,q,s+H c)..
fg

+ ~, ($~4,$,„+H.c.)] . (2.2)

This sum extends over the three generations of the
left-handed lepton and quark isodoublets

P
t

L

and g, z and g~z are the associated right-handed
isosinglets. We often suppress flavor and color
indices. The Higgs-boson mass term p, '(4;C~) is
the only super-renormalizable term in the sym-
metric WS Lagrangian. Since p.'&0, by the Higgs
mechanism, 4~ develops a nonvanishing vacuum
expectation value, which may be taken to have the
form

&„„,.= (D, e,)'(D'C, ) —~(C;C,)'+ q'(C „C,), (2.1)

where D, = &, —i(g'/2)B, -ig(~, /2)W„ is the co
variant derivative and B and 5'„, are, respective-
ly, the U(1) r and SU(2)~ gauge-boson fields. 4, is
the complex Higgs isodoublet and 4t is its I/-
charge conjugate
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&oic, io) = ' x; x=, v&o.
2 ', 1

By the shift

2

(2 3)

(2.4)

It will often be convenient to use the electromag-
netic charge e and sin'8~ (e~ the weak mixing
angle) as parameters. They are given by

(2.1o)

YH, = YH+VY,

2XH =2XH +VXH+2V X,
'XH ' —-p, 'H ' =—'XH4+ XvH'-+-,' (3&&v' —p, ') H'

s 2 s 4

+ (xv' —p, 'u) H,

(2.6)

so it generates extra superrenormalizable terms.
The SU(2)~ && U(1)r symmetry is broken down into

U(1), . In particular, the following tadpole term
is induced:

the Lagrangian is represented in terms of the
physical Higgs field H. We denote by Y and X the
field monomials multiplying H, and H, in the orig-
inal Lagrangian. Thus the shift yields

M
sln2ew=1- w

M 2'

Since we will not be considering quark and hadron
amplitudes we shall ignore Cabbibo mixing for
simplicity. The WS Lagrangian then gives rise in
a natural way to a perturbation expansion. The
propagators are given with physical masses m„,
M~, Mw, and mz, and v ' is the loop expansion
parameter. This follows from the fact that quad-
rilinear couplings are of the form ~'/v' whereas
trilinear couplings are of the form n&/v or M'/v.
Thus with n„ the number of trilinear vertices,
and n4, the number of quadrilinear vertices, a
connected amplitude with N external legs at L -loop
order obeys

-v(Xv~ —p, ) H= tH-
plus the mass terms of the physical fields:

H: n&„'= (3A.v' —p, '),
v2z:I,'=—(g"+g'),~ g 4

2

:Mw =—g 2
w 4

v
(q . nz(- ~G(.

V2

(2.6)

(2.7)

2n4+n3= 2L +N —2

and hence

& —v-«&&-

&(ling

v- + ~ ~ ~ +&«, v- I+ ~ ~ ~ )

This expansion is expected to make sense if M'/v'
and n&/v are small enough for all renormalizable
vertices of the model.

Except for the Higgs-boson mass, all paramet-
ers are fixed by low-energy phenomenology test-
ing

The proper ground state is characterized by p.

= Xv' such that t =0 and m~'=2XV'. The mass ma-
trix has been diagonalized by the orthogonal trans-
formation

~g gi
(2.6)

(g~2 ~g2)1/2 e
v

(2.9)

v

M2nz,
v

The photon field A, associated with U(1), remains
massless. In our notation the charged-vector-bo-
son field is W,' = (W„+iW~)/u 2.

With the mass parameters fixed we have the La-
grangian, in particular its free part &„ in a form
suitable for the perturbation expansion. When we
are given v and the masses from (2.7) the cou-
plings are determined by the important relations

m 2
H

2

M =
2

. =778GV,w-
2 sinew

M~ =
&

=88.7 GeV.Mw
cos~w

(2.12)

A lower bound on the Higgs-boson mass follows
from the fact that the couplings of H to the gauge
bosons destabilize the ground state and the Higgs-
boson self-couplings and Higgs-boson-fermion
couplings must compensate this effect. ' Owing to
the fact that the known fermions only have small
masses rnid «~w, with the assumption that there
are no unknown heavy fermions, the Higgs-boson
mass must be large enough to keep the ground
state stable. An interesting possibility is pro-
vided by the observation that the Higgs-boson mass

G(Z'„Z' —+ Z„Z;)+eq", A, , (2.11)

with ~=-J;+sin'6Iwj~ . From the Fermi cou-
pling 0 = 1.164 & 10 GeV 2, the fine structure con-
stant c& = e'/4&& = (137) ', and the weak mixing angle

,
sin'6w=0. 23 we have

v = (v 2G) '~' = 246.5 GeV,
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can be generated by radiative corrections in a
purely massless theory so that p, 2=0 in the origi-
nal WS Lagrangian. ' In this case the Higgs-boson
mass is fixed to one-loop order at m„= 10 GeV.
In any case m~ is not expected to be much less
than this value, if the theory is to be sound.

For large mH the Higgs sector gets strongly
coupled. Thus an increase of the radiative correc-
tions is to be expected. Owing to the breakdown
of the perturbation expansion for

m„&v,

it might, however, not be easy to get an upper
bound on m„ from the observed smallness of radi-
ative corrections. Actually, Veltman' has found
that there is an important screening of Higgs-bo-
son effects, due to the fact that the nonrenormal-
izability of the pure massive-vector-boson sector
only shows up at the two-loop level; in the fermion
sector it is suppressed by a factor (mz/M~)' at the
one-loop level.

N'evertheless, an investigation of the Higgs sec-
tor is needed because the fundamental property of
renormalizability of the WS model relies on it.
The aim of the present investigation is to extend
existing results on this subject. 4 As a first step,
we present an extensive study of the one-loop cor-
rections to Higgs-boson decays, particularly in
the region of large Higgs-boson mass.

III. RENORMALIZATION

According to the preceding discussion, the per-
turbation expansion is parametrized in a natural
way by the physical propagator masses m~, M~,
M~, m& and the loop expansion parameter v '.
The bare quantities are defined by means of the
dimensional regularization. ' We assume y, to
anticommute with all the other y matrices, thus
avoiding spurious anomalies. ' The amplitudes are
considered in the 't Hooft gauge with free gauge
parameter &, so that the vector-boson propagators
used are of the form

The gauge invariance is tested by the indepen-
dence of the physical on-shell amplitudes. The
advantage of this procedure is that only physical
amplitudes need to be calculated. When working
in a fixed gauge, the gauge invariance can be
checked only by the explicit use of the Slavnov-
Taylor (ST) identities. This makes the evaluation
of ghost amplitudes necessary, so that a much
larger number of diagrams must be considered.
Therefore, the advantage taken from the possible
simple choice of the gauge, e.g., & =1, which

leads to the much simpler form of the vector-bo-
son propagator

gV V

O'-M'+i& '

&",= v z„&', w; = Mzw, z; = v z,z,
HO=a Z„H and P~ IZ~g~. -—

(3.3)

The Z factors are determined to yield unity for the
residues of the real parts of the corresponding
propagator poles. As the fermion singlets and the
doublets are renorma1ized independently, Z& be-

(

comes a matrix of the form

Z~ =Zs '+Z~ ' = (1+z,)+z,y, .1+y, 1 —y, (3.4)

At this stage there is only one additional renormal-
ization left.

(iv) Vertex xenoxmalization. This corresponds
to a multiplicative renormalization of the loop ex-
pansion parameter v '. The physically most suit-

is partial only.
In our choice of the renormalization procedure,

we make use of the fact that apart from the gauge-
dependent wave-function renormalizations, all
other counterterms may be chosen to be gauge in-
variant. Starting from the bare Lagrangian we

generate counterterms by the shifts

vo=v+&v, , Mo =M'+~M, and mo=m+&m
(3.2)

of the parameters. Considering the baze ampli-
tudes these counterterms are determined by the
following procedures:

(i) The additive xenormalization of v. For the
proper value of v the tadpole condition (H) =0 must
hold. This condition thus fixes &v, . In Appendix
A we prove that, by taking into account the proper
value of v, it amo. unts to an inclusion of the appro-
priate tadpole terms in the amplitudes.

(ii) The additive ienoi'malization of the masses
The y-Z mixing mass counterterm must be chosen
such that the "mixing propagator" (TA~Z") has no

pole at P'=0. For details we refer to Appendix B.
As usual, &M' and ~m are then determined so that
M' and m are the real parts of the locations of the
poles of the propagators of the physical fields. By
definition &M' and ~m are the differences between
the bare mass and the renormalized mass, which
are both gauge invariant. We notice that, if the
mass counterterms were defined to involve wave-
function renormalization factors, then, for exam-
ple, ~M =ZM02-M could not be gauge invariant.

We then perform the following procedures.
(iii) Multiplicative renormalizations of the physi

cal fields. We write
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able choice to fix this renormalization is charge
renormalization

&v' 1 5G
v' 2 G'

e, =e+~e, (s.5) ~e &G & sin'6
~w e G sin 6w

(3.9)

with ~e determined by the electron form factor
&e &G 1 —2 sin'6w ~ sin'6w

~z' e G 1 —san 6w s 6w

ren
On- she(I.

By using the relation

e M 1
(M M )l

we obtain to leading order

&a &e 1
a e 2M M2

&Mwx (M' 2M')

(s.6)

(3.7)

(s.s)

The masses ~w and ~~ would get extra contribu-
tions from radiative corrections.

Some remarks concerning the unstable Pa~ticles
are necessary. Only the low-mass fermions and
the photon are stable within the WS model. Thus
the S-matrix elements must be defined with some
care. Unitarity requires the counterterms to be
real so that they must be determined from the real
parts of the bare amplitudes. We have listed the
counterterms in Appendix C in analytic (complex)
form. Only the real parts of these expressions
are to be considered as the counterterms.

Owing to threshold effects, analyticity in the
masses is lost for the renormalized amplitudes,
which are given by

for the renormalization of a =v '.
By these renormalizations of parameters and

fields the WS model is finite and properly normal-
ized. As a consequence all other vertices are non-
trivially renormalized. The radiative cor rections
are finite calculable functions of the masses, and
v'ore.

One advantage of this renormalization scheme is
that all counterterms are determined by two-point
functions. Actually by the Ward- Takahashi (WT)
identity the electron vertex counterterm &e is giv-
en by a tadpole.

We have computed a complete set of one-loop
counterterms (except for the quark propagators)
in the 't Hooft gauge. They are listed in Appendix
C. Appendix D contains a list of counterterms for
the remaining physical vertices. These yield the
vertices finite and on-shell gauge invariant. The
given expressions for the counterterms thus pro-
vide important consistency tests of the renormal-
ization. Our parametrization is not considered to
be a very appropriate one to describe the low-en-
ergy data. In particular, the use of unstable par-
ticle masses might not be very useful. It is not
difficult, however, to introduce more convenient
parameters as, e.g., e, G, and sin'6w as defined
by (2.11), replacing v, M~, and Mz by means of
(2.12). After fixing &e, &G, and &sin~&~by appro-
priate four-fermion processes we could calculate
&v ', &~w, and ~~@ from

Re v Z, ' ' ' Re WZ„

&& &b'~', (p; M'+ Re &M', m + Re &m, v ' + Re&@ ',o')

(s.lo)

(m -M)' m'
M~2 '

(M~ +Ma)2
& &max (s.11)

The right-hand side is smaller than. m 2/M~2
with m the heaviest physical particle mass of
the model. Supposing ~&&~~ we have to choose

The analyticity in the momenta is not affected, of
course, since the renormalization terms are poly-
nomials in the momenta.

Problems with the gauge invariance show up if
the imaginary parts of the "complex counterterms"
are gauge dependent. This happens if the massive
ghosts, having the masses 0 &M~ or Wc.'M~, are
not heavy enough, so that physical particles can
decay into them.

From our choice of the renormalization scheme
only the Z factors are gauge dependent. Since the
gauge-invariant integrals B,(m „m,; m, ') have
gauge-invariant coefficients, only the integrals
B,(MaM„M;m ) and B,(WnM„v &M2; m') can de-
velop gauge-dependent imaginary parts. ~, and

M, are gauge-boson masses. Both integrals are
real provided
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M 2

Q ) 2 ~ ~ j 3
M~ cos6~ (2.12)

in the case of a light Higgs particle m„&~~ or

(3.13)

for a heavy Higgs particle.
%e conclude that for a proper evaluation of the

imaginary parts of the amplitudes which are to be
renormalized, the gauge parameter must be
chosen large enough so that G,', is gauge invariant
near the, mass shell. In particular, the Feyman-
't Hooft gauge is not suitable for this purpose in
general. At the one-loop level, however, there is
no problem as the imaginary parts do not contri-
bute to the width and the cross sections to this
order if there is a Born term.

IV. RADIATIVE CORRECTIONS TO FORM FACTORS

%e have computed the radiative corrections to the form factors yl'l, Zl'l, Hyy, HZy, HZZ, HR"'W,
and HHH containing about 200 diagrams through the use of the computer program st:HOONscII&I .'" The
gauge invariance and the finiteness of the resulting on-shell amplitudes have been checked analytically.
For the analytic investigations a reduction of all one-loop integrals of the form

1 y&y e ~ e p)'n
d~k

(2w)~ .(t,' —m, '+io) [(k +P„)'-m, '+ '0]. ~ ~ [(0+P,)' —m „,'+ io]
(4.1)

to linear combinations of standard integrals is
necessary. In our case n=0, 1, 2, 3, 4- and l =0, 1,2.
After making a covariant decomposition of (4.1),
contracting with g„,and the P, 's, and inserting

u2 = (a'- m ')+m '

and

2P,. u=[(I+p,.)' m,.„'] (u' m, ')
2 2 2

P + 1%i ] FH

I

explicit reduction formulas has been given by
Passarino and Veltman. "

In d =4 —z dimensions (e -+0) the standard inte-
grals we need are the following:

(i) The one-point function

into (4.1), one gets a representation of (4.1) in
terms of the scalar one-loop integrals (n =0,
l=0, 1,2, . . .). A systematic treatment with the

&,(m) = -m'(Re g+ 1 —lnm') .
(ii) The two-point function

(4.2)

FA)

P (2m) (~' —m, '+iO) [(@+p)'—m, '+i01 16m'
FAp

1
& (m„mz;s) =Reg — dz ln[-sz(1 —z) +m~ (1 —z)+m z —io].

0

(4.2)

The derivative of 8, is denoted by
8

&Bo(m„m„' s) = B,(m„m2., s) . —
(iii) The three-point function

(2')4 „(0'-m, '+io) [(0+P,)' —m, '+io][(k +P, +P,)' —m, '+io]

/ ~ 2 2 2%
2 0~ l, 2 ~3 Pl P2 P3~].6'I

1 x

C,(m„m2, m„s„s„s,) = dx dy (ax'+by'+cxy +dx+ey+f) ',
0 0

(4.4)
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with
2 2 2 2 fl

2 b =
x c =s3 —s~ —s2, d =m2 -m3 —s„e=ma ™2+s2 3 nd J ~3

Thus we have

X,((m,.];(P,'), Iteg) =X,((m,.];(-P,'],
b, +Inp, '+In4v')v„, . (4.6)

Obviously the shift Beg- 4 does not affect renorm-
alized (finite) quantities. The only relevant prop-
erty of the pole term is

g~ Beg=d Beg=4 Beg —2.
Thus by

dA, (m)=4A, (m)+2m'

and

dB,(m„, m„s) =4B,(m, „m„s)—2,

(4.7)

constant terms appear in the standard decomposi-
tion of amplitudes.

The scalar one-loop integrals have been calcu-
lated analytically for arbitrary masses and mo-
menta in terms of Spence functions and logarithms
by 't Hooft and Veltman. " The integrals B, are
symmetric in the masses. The symmetry rela-
tions for the , 's follow easily from the associated
diagram.

The different functions X,((m,.];(P,']), in gener-
al, form an independent set of integrals. Hence
in a gauge-invariant amplitude the coefficients of
gauge-dependent integrals must vanish and the co-
efficients of gauge-invariant integrals must be
gauge invariant.

In special cases, e.g., due to the validity of a
WT identity, the standard integrals are not inde-
pendent. The relations between them, given in
Appendix E, will then be needed to make obvious
such general properties as gauge invariance.

For the necessary infrared regularization we
consider the photon and the neutrinos to be mas-
sive. The zero-mass limits are performed when-
ever they exist.

In the following we briefly discuss the form fac-
tors which we have considered. A number of them
have been investigated previously, mostly in the

The z pole is included in

Beg= —+lnp, +y+ln4m,
2 2 (4.5)

where y is Euler's constant and p, is the arbitrary
renormalization mass scale. We have chosen the
definitions of &0, B„and Co to agree with the def-
initions given in" up to a sign in the p,.'in our no-
tation and the replacement

26=—+y —lnw- Beg.

Feynman-'t Hooft gauge and neglecting terms pro-
portional to fermion masses.

Since there is a large number of diagrams to be
considered, we shall not give them explicitly. A

collection of diagrams will be denoted by for
~ ~

connected diagrams, by for one-particle ir-
~ ~

reducible (1PI) diagrams, and by for proper
~ ~

(nontrivial) 1PI diagrams. The number of dia-
grams is given in brackets. Crossed diagrams
obtained by an interchange of identical particle
lines are not counted.

A. Electron-photon vertex

The irreducible bare vertex is given by

I"„„=i[- (e + fe)y '+ Il"„,],
where (4.8)

e, p2

T, qiH +

O', P)
(7)

z
+ C.T.

+~ y
2m ' ' 2m8 e

(4.9)

with o""=i/2[y', y "], p" = (p, +p,)", and q' = (p,
-P~)". The WT identity reads

q. II"„.,(P„P,) = —[Z, (P,) Z, (p,)], (4.1O)

with Z, the irreducible self-energy of the electron.
On the mass shell, using the Gordon decomposi-
tion, the amplitude may be written in the form

rl"„„.,= [y "(E,+&,) —io" (&, &,+) y"+y, &,].,
e

By (&)„we denote the on-shell limit of an ampli-
tude I" . The renormalized vertex is

&e=i -ey~ 1+—+—Z„—1 + Z, —]. +II~„.
e

(4.11)

According to (3.4) we can write (Z, —1)=g, +g„y,.

The covariant decomposition of II', for p2'=py is
pP
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The electron charge form factor

F»=-e+F~+Fz —e[~z(Z„—1)+z,] —&e (4.12)

is used for the definition of e. F»(P, ', P,', q'=0) is
infrared finite as m, -0. Hence e may be defined
by the condition

vanishes identically for massless on-shell neu-
trinos.

lim E (P
z P,'qz —0)—

p 2 p 2~m 2
1 "2 8

by which

&e =(F,+F, -e[-,'(Z„-1)+z.]}„.
The WT identity then yields

(E,—ez„).,=0.

(4.13)

(4.14)

(4.15)

C. HZZ and 04'+fV vertices

The vertex parts are

M 2 t

Fz"vv(Pi Pz)=i 2 g' +IIzvv(Pi Pz)
i

with (4.20)

Furthermore, due to the WT identity, &e takes an

extremely simple form given in Appendix C. Im-
portant tests of the computations are (i) F4 and E,
+F, must be finite and (ii) (F,+E,)„and &e must
be gauge invariant.

Av H
~H VV +

q z(N-) (8

B. Hl+l vertex

The irreducible vertex

rn~I"z)(=i = +liavor I ~
V )

(19,30)

We can write, for p2'=p, ',

u v p P1P2 P1P2
Hv» g 1+M z 2+M 2 +3&

V V
(4.2i)

H
iIIHHll q

l, p2

t, p)

(4.is)
where the amplitudes &2 and &, are finite. The re-
normalized vertex reads

=i 2 v g'" 1+—(Z„—1)+(Z„—1)
M

has the covariant decomposition

IIH )( =Ex+&Fz+ASF3+Pd P4
for P,'=p, '. The on.-shell amplitude is

II„„„=(E,+ 2m, F,+m, 'F,)„.
The renormalized vertex is given by

(4.1V)

rnZz(gz 1+z(Zz 1)+z+
La l

~a
+—+IIH fg

(4.iS)

Keeping rn„& 0 the on-shell vertex exists. Thus,

(4.19)

is gauge invariant and finite for small rn„. c1, to
one-loop order is of the form

rn2
I[ is+2 zf1[ &

t

with f» a dimensionless function of the masses
and rn one of the masses. An important property
of the Hff vertex is that lsd „cmI. As a con-
sequence the neutrino amplitude

and thus

+ + + r[H 4.22
6M V2 5g
MV2 g

-(Z„-i)+(Z,—1)+ ', +—.
v g2 MV' a

In the case of the charged vector boson the on-
shell limit of -4, „,is infrared singular when rn„
=0. We therefore keep rn„&0 but asymptotically
small. The mass-shell restrictions (&, „„)„and
(4,)„then exist and are gauge invariant.

For the renormalized on-shell vertex we write

where the f,»are dimensionles. s functions of the
mass ratios, rn is one of the masses.

Belated to the vertex HZZ are the vertices HZy
(Ref. 13) and Hyy (Ref. 3), which vanish in the
Born approximation. The amplitudes

„,„=i2 1+c, + M, c, . (4.23pp ~ V ~1P2
V

To the one-loop order the amplitudes c,.v are of the
form

rn2
&&v= z z f v(mz Mw Mz my)

/6m v
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P2P
application we use them for the calculation of the
radiative corrections to Higgs-boson decay.

H
&"Hzy =—

q

H
tIIH yy

q

pzpV

(4.24)

V. H1GGS-BOSON DECAY

The Higgs particle couples directly to all mas-
sive particles. The coupling is proportional to the
mass of the particle to which it couples. The
Higgs boson only couples to the photon through ra-
diative corrections via charged massive particles.
It does not couple to massless neutrinos. Accord-
ingly II decays mainly into the heaviest particles
which are energetically accessible.

Up to one-loop order the decay widths are given
by

I

are due to loop corrections from charged massive
particles (y couples to charge, H to mass). Writ-
ing, for p2'-0,

H'"=a"&& +P&P2&2+Pals&3 -&&'""Pi.pa. A~~

(4.»)
the %T identity

P2„H~ v= 0

implies

(4.26)

By parity invariance of HH» obviously &~»---0.
II'" is finite and on-shell gauge invariant. The on-
shell values are

~HZy, os g + 2 ~ 2P1P2 1Z
mH z

and

9 VPV-z --, ~ 2 & P~pP2, a2g
mH z

(4.2V)

uv ~ pv~H yy os =
I C + 2PyP2 any &

mH

where a, = (A,)„and a2= (&~)„—', (ms' -Mz'). To
the one-loop order the amplitudes a,. have the form

2eMg
16m2v' '~ ' " 16m i

Again the f, 's are dimensionle. ss functions of mass
ratios only. m is one of the masses.

The above amplitudes have been computed analy-
tically in the 't Hooft gauge. Such general proper-
ties as gauge invariance, %T identities, and finite-
ness of the renormalized vertices have been veri-
fied. The results for the physical amplitudes, rep-
resented in terms of the standard integrals, are
lengthy and will not be given here. As a simple

m 'm ' 4m ' '~2
I'syy- —

2 1 ——
~ (1+2 Bec~+cb~~ ),

BwmH v mH

M 2

V V
HVV 220'vwm H v ' mH

mH1+ 2 —1 (1+2 Hec~y+cb~y)
v

1 t' nz„' m„'
+&~ &I, —I 2&,— —I —1. Rec,„l,v ' v

(6.4)
0'~ = 1 q

0'g = 2 ~

The amplitudes a,. and c,. have been defined in the
preceding section. In charged decays, the soft-
photon bremsstrahlung c„,has to be taken. into ac-
count in order to obtain finite widths as m„-0.
The detailed treatment of bremsstrahlung will be
considered ln the following section.

In general, the predictive power of the %S model
is limited by considerable ambiguities in our
knowledge of the strong interactions of the quarks.
In the low-energy region strong interactions may
be taken into account using current algebra meth-
ods." At high energies (relative to strong-inter-
action scales) the quark-parton picture applies by
asymptotic freedom of quantum chromodynamics
(QCD). Here we can use the phenomenological in-
sight from e'e annihilation and inclusive lepton-
hadron scattering. " The latter scheme is ex-
pected to apply to Higgs-boson decay, since the
Higgs-boson mass is expected to be rather large.
It may be assumed that about a few GeV above the
quark-antiquark threshold, which is formally de-
fined in terms of the current quark masses, "the
total width for the decay into all hadrons involving
a certain flavor is essentially given by the corre-
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TABLE I. Physical parameters in GeV (Hefs. 15 and 17).

Leptons

(q2 = —1)

v =246.5

m~=0.511 x 10

Mg =77.82

m„=105.66 x 10

Mz = 88.68

m~ = 1.807

Top quarks: m„=4.2

(v( = —)
2
3

Bottom quarks: m~=7.5

(q2 ——)
1

3

x ].0

mc 12

ms =150 x 10~

m, =35(20)

m~ = 4.4

sponding quark-antiquark decay width. This has
been discussed extensively by Ellis, Gaillard, and
Nanopoulos. '

Accordingly, an estimate for the total width for
decay into leptons and hadrons is

(5.5)

where I'szz is given by (5.1). The sums extend
over the flavors excited up to a given rn„. In the
hadronic resonance regions we may consider (5.5)
to be an "estimate in the mean. " Away from the
thresholds (5.5) yields in the Born approximation

me~n. ~ 8 Z
GATV

e (5.5)

For definiteness we assume a t-quark at 35 GeV
in addition to the known fermions. We have evalu-
ated the II width particularly in the heavy-Higgs-
boson region above 70 GeV. Lower ~H have been
considered in Ref. 3. In Table I we compile the
parameters we have used" "and in Table II we give
some values for the Higgs-boson widths. Figure 1
shows the branching ratios. A detailed discussion
of our results will be given in Sec. VII. At this
point a few comments are in order.

Provided no further unknown heavy fermions ex-
ist, say above 50 GeV, the WS model makes pretty
definite predictions in the case of a heavy Higgs

particle. For yy&„~ 300 GeV the hadronic de-
cays get negligible and radiative corrections be-
come important. However, this also is the region
where a breakdown of the perturbation expansion
is to be expected. At the one-loop level radiative
corrections become large only for m„-1 TeV.
We cannot conclude from this fact that our Results
are sensible for m„~300 GeV, since screening of
the one-loop corrections is expected. ' In any case,
the Higgs-boson lifetime & = I"„„t' decreases ex-
tremely fast with increasing m„such that in the 1-
*eV region I'„«-m„. Thus a very heavy-Higgs-
boson particle is so unstable that it will never be
detected in the particle spectrum. It is amusing
to observe that in this case, although the Higgs
boson hardly could be considered an existing par-
ticle, it would, nevertheless, do what it was aimed
to do, that is to render the WS model renormaliz-
able. Although in this case there would be no Higgs
particle, the Higgs field would show up in the
structure of the weak processes of fermions and
vector bosons. Effects related to a heavy Higgs
particle in such processes have recently been ana-
lyzed ~8

VI. BREMSSTRAHLUNG

The contributions from soft-photon bremsstrah-
lung to Higgs-boson decay into charged particles c

TABLE II. Some Higgs-boson decay widths I H~ in GeV (m& =35 GeV). Quark contributions
to I' t,t are estimated using Eq. (5.6).

m~ (GeV) 10 20 50 100 200 500 1000

I H.r
IH~
I'azr
~HWW

I'Hzz

2.S x10~
1.S x10-'

3.9 x10 7

1.1 x10
3.7 x10
2.2 x10

8.0 x10
4.1 x 10
2.0 x10
1.4

x10 '

2.7 x10
4.2 x10

4.7
4.3 x10 8.6 x10 2.2 x10- 9.8 x10 2.p

1.6 x10
9.6 x10
6.7 x 10
4.0 x 10'
1.8 x10'

4.0 x10
2.1 x 10
7.0 x 10
3.9 x 10'
]..7 x10'

5.4 x 10' 4,7 x 10
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has the standard form

e' " d% 2(p, p, ) m, ' m, '
HeB, br HC 0bn(2&)3 ~ 2~ (/ p )(/ p ) (/ ~ p )2 (y,p )2 (6.1)

, dI, is the Born-term differential width, u is the
photon cutoff energy, and (db= (k'+mr')~' with m„'

he condition for the validity of the soft-
photon approximation (6.1) is that the photon four-
momentum is negligible in four-momentum con-
servation. 'This must be taken care of by re-
stricting ~ appropriately. For "elastic events"
/3=0 we have E,=E,= —,'m„, p, =-p„and ~p,

~

=2mH(1-y)~', where y =4m, '/m„'. For the given
energy E,= (p, '+ m, 2)~2 the emitted y is soft when
it has a minimum energy of

1 — '&x&o.
PE+

Hence, by choosing for x the energy resolution
x„of the charged-particle counter, we set"

xf
1+x„+ 1-x„'-y ~' (6.2)

For small enough x„ the factorization (6.1) is then
justified.

The bremsstrahlung integral is given by

2

c„,= —, 1-—I,"(y) -yI,"(y) (6.3)

In this case k is parallel to p, . If x is the frac-
tion of the "elastic" energy going into soft y's,
such that E, = (1-x)-,'mH, we obtain

x is restricted by the threshold condition

where

2(d'( )I= ninn—-r, (n)),
y

2'I,"( )y= E,( y)ln —-E2(y )
y

(6.4)

1 1+ (1 -y)~2
a(y) 2(1 ))/2 1 (1 ))/2 9

E (y)= Isp[(1 y) ] —Sp[-(1-y) ]+~2Sp —'S2(1-y)~' (

1+ 1—
+ —,

' {in[1—(1 -y )~2]]2—,'- (in[1+ (1 -y))/2]]2 + —,
' ln2 ln

1 —(1-y)~'I ' (6.5)

The Spence function is defined by Sp(x) = —f,dt/t
x ln(1 -xt). The infrared singular parts must cancel
with corresponding terms in the renormalized
amplitudes c„.Actually,

and

An, (m„, in. ; .')=m, *(in—'-i)
y

e2
jc'IR 2 yo&2 H 2 ~pk~y~~c&~c~4m'1

m, ', mH2, m, ')

+ 8m, 2&&o(m„, m, ; m, ')

exhibits the infrared-singular terms as

F4 is regular" and

Pl@ Vlg

1 1+ (1 -y)~2
+3(y) 2(1 ))/2 ln

1 (1 )g2, BeE3= F, .

Up to the one-loop order only Re c„contributes.
Thus we have that
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100
VII. RESULTS

oI

b-hadrons t -hadrons

50—
HWW

u-d-s- c-

Leptons
I I i I I

40 100
I I I 1 I I I

1000

mHt; ~eV)

ecayFIG. 1. Relative contributions to the total H deca
width in per cent. The dashed line gives the Born-term
contribution above the O'W threshold.

We have evaluated numerically the amplitudes
Hl'l, HW'W, HZZ, HZy, and Hyy, and the cor-
responding Higgs-boson decay widths as functions
of the Higgs-boson mass mH in-the range from
2-1—500 Qe7. As input for the numerical computer
program, we use the reduced analytic forms of the
one-loop amplitudes in the 't Hooft gauge, which
have been discussed in the preceding sections.
The standard integrals Ao, Bo, ABO, and Co are
computed using Veltman's computer program
FORMFRMF. The parameters we use for the extended
WS model, " including three generations of leptons
and quarks, are given in Table I. For the unknown
mass m, of the, as yet unobserved, t quark we
have considered the values m, = 20 and 35 GeV.

Numerical results are reproduced in Figs. 1-6.

(~)
Her AMPLlTUDES

( Rec&, +cb )», (2-y)E, (y) ln -ln—
2'

2xl0 2— 1~, (35)

Clv, q (20)

(6.6)

is infrared finite.
In fact, the infrared problem leads to a break-

down of naive perturbation theory. The charged
one-particle states do not exist and (d cannot be
made arbitrarily small. Physically, the charged
one-particle states are "dressed" by many soft
photons. This is taken into account properly by
exponentiation of the one-photon IR-sensitive
terms. Therefore, we have

1+ (2 Re c„+c„„)»+~ ~ = exp[(2 Re c„+ch„)»]
2t= exp —,ln —- (2 -y)E, (y) ln —

~

. (6.7)
m rnH) '

In the Hcc decay width accordingly we set

1+c = e"a+ (c -c,„}, (6.8)

with c = 2 Re c„+c~„. 'The exponential represents
the dressed Born term and the remainder, the
radiative corrections. This interpretation is phys-
ically reasonable. For x„-0, ~-x„{t»e/
[1+(1 —y}'~']) and

(x 'P l t f2& 2v2E2(w &&& 0&&-
r

1.5xl0

lx10

5x10

4x10

3x10 4—

2xl0

1@10

I

50

50

l

100

100

150

m„teev~

150

m„[GeV ]

I

200

200

since (2 -y)E, (y) —1& 0 for y & 1, i.e. , the pro-
bability of finding a highly resolved charged par-
ticle tends to zero. Furthermore, at the thresh-
old

cZR
2

e = exp — ln2 = 12r2

is independent of ~. Since c»& 0, there is a
screening effect on the naive Born term due to
soft photons.

FIG. 2. {a)H7.~ decay amplitudes c;~, (i =1,2) in re-
lation to the Born term. x = b, E, and q stands for the
virtual bosons, leptons, and quarks (mt =20 and 35 GeU)
in the intermediate states, respectively. (b) H 77. width

up to AH =200 GeV. Curve 1 is the dressed Born-tern.
width, curve 2 includes the corrections from vector bo-
sons, in curve 3 the lepton contributions are added, and
in the curve 4 the quark contributions are added (m,
=35 GeU).
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FIG. 3. (a) H~decay amplitudes c;z „(i=1,2) in
relation to the Born term, labeled as in Fig. 2(a). (b)
HWWwidth up to m„=1500 GeV, labeled as in Fig. 2(b).

FIG. 4. (a) HZZ decay amplitudes c;z „(i=1,2) in
relation to the Born term, labeled as in Fig. 2(a). (b)
IIZZ width up to mH =1500 GeV, labeled as in Fig. 2(b).

The amplitudes c&, , c«, and c&~, defined by (4.19)
and (4.23), are normalized relative to the Born
terms. We have split the amplitudes into the loop
contributions from the bosons c,.„„the leptons
c,, „and the quarks c,„,. The quark contributions
are drawn for m, =35 GeV. For the cases with a
significant m, dependence we have included m, =20
GeV. Instead of the infrared singular amplitudes
c„,„and c~~ „we have plotted c,*, , =-,'(c —c,R)
with c =2 Rec&, , +c„„,i.e. , the infrared regular
part of c&, b including the infrared regular part of
the associated soft-photon bremsstrahlung, which
has been defined in (6.8).

For the widths we have added up successively
the contributions from the Born term, the bosons,
the leptons, and the quarks. For the decays into
the charged particles, we have depicted the Born-
term width using the dressed Born term exp(c«),
defined in (6.8), with x„=0.1. This leads to a
physically reasonable separation of the radiative
corrections from the singular soft-photon effects.

From the figures we can read off the following
features. The II77 amplitudes clearly exhibit the
threshold effects, which are more pronounced the
heavier the excited virtual particles relative to the

8xl0

jxlo

6xl 0

5x10 "—

4xlO

3x10

2xlO

lxl 0

200 400 600
I

800
I

1000

mH [GeV)

1200

FIG. 5. IIZy width up to m~ =1000 GeV, labeled as in

Fig. 2(b). The cusp occurs at the WS" threshold. Below
the Zp threshold the indicated width is the ZHy decay
width (rn& =35 GeV).

external particles are. We observe that the fer-
mion contributions are roughly constant and that

'the quark threshold effects are relatively small.
According to our discussion in Sec. V, when we
are a few hadronic binding energies away from the
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4x10 4

3x10

2x10

1x10

400 600 800

mH [GeV]

1200

FIG. 6. JIyy width up to mz =1000 GeV. The cusp at
the W%'threshold is very much pronounced (mt =35 GeV).

quark thresholds, we can assume strong-interac-
tion effects to be negligible. Then, since the
quark contributions are relativel. y structureless
and by the relatively weak dependence on m„we
conclude that the WS model makes rather unam-
biguous predictions for the radiative corrections
to the processes involving the heavier nonhadronic
particles. This is the case particularly for the
HW'8' and HZZ amplitudes due to the heavy ex-
ternal particles involved, and also because we are
far enough above all the fermion thresholds.

In the case of the HW'W and HZZ amplitudes,
the dominant bosonic contributions cfw |, and cfz,
show a characteristic minimum at m„= 500 GeV
and mH = 600 GeV, , respectively. This implies
that the radiative corrections decrease at first
with increasing mH in the region where we would
expect them to grow. Of course, this is due to the
fact that we are not yet far enough from the vec-
tor-boson thresholds. Only above m„= VOO GeV
the corrections grow fast. The amplitudes c2w,
and c2z, tend to small, nonvanishing values. Ac-
cording to (5.4) the c2~ contribution to the width is
enhanced kinematically by a factor mH (M), rela-
tive to the c«contribution.

We have to point out that the curves drawn up to
about 1 TeV do not show up the asymptotic behav-
ior of the amplitudes for m„-. The asymptotic
behavior actually sets in only at much larger val-

ues of m„of about 10 TeV. This will be further
discussed at the end of this section.

The corrections to the widths reflect the features
of the amplitudes. The H77 width clearly exhibits
the excitation of vector bosons yielding a destruc-
tive contribution above the thresholds. The de-
crease of the radiative corrections in the HV V

widths, which we mentioned above, can be seen
clearly in Fig. 4(b). For the IIZy and the Hyy
widths, which have no Born-term contribution, the
threshold effects are particularly pronounced.

Figure 1 shows the branching ratios. The fer-
mionic contributions for mf «m„have been esti-
mated using (5.6). Instead of the f quark we have
taken into account a 35-GeV lepton supplied with a
color factor 3 in order to estimate the magnitude
and the qualitative behavior of the t-hadron con-
tributions. The radiative corrections to the HV V

decays are of the order of 10% in the range up to
1 TeV (see also Fig. 1).

The stability and the accuracy of the numerical
computations have been tested by varying the
small photon mass, the renormalization q-pole
term Beg, and the gauge parameter n. In any
case, changes in the numerical results occur far
beyond a 0.1% accuracy and are in agreement with
simple estimates.

The dependence of the charged decay widths on
the charged-particle counter resolution x„ follows
from (6.7). The x„dependence is small near the
thresholds and increases monotonically with

m„/M, -™according to

2 ( -e2 /2 ~) (f - 2 j nx„)
exp fc }~(x )

(8 /2~)(1+21'l2) H

C

(7.1)

Changing x„ from 0.1 to 0.01 lowers the HW'lW

width by about 0.5% at 200 GeV and by 4% at 1000
GeV. For the lighter leptons the dependence in-
creases for given m„as follows from (7.1).

We can complete our discussion by considering
the asymptotic behavior of the HZZ amplitudes
c,z, defined by (4.23), for m~«M)q, Mz, m„and
for large m„.

The asymptotic expansion for m f ~ Mw Mz mH

yields for the fermionic contributions

Rec(z f 2 2
—(3Mz —10M)]s + 8Mz M ) + 8q)q2(Mz —3M)(c + 2Mz M„)

16m v

2 2 2

+(-,Mz cot 8)q —M„) ln 2 +2M)q sin 8)q q& ln 2 +q2 ln~z 2 2 2 ~z 2 ~z
w mf m2

2 2 2 2
~ 2 2 2 4AIz m mH 2 Mz—4sin 8)q(mg qua( —m2 q2a2) In 2 +—+(mq +m2 ) ln 2

—cot 8„ln
mH Mw Mw

2

—(~, (1 —eq o, cosqe )+css (1+Hq, , casse )]+02 2 mf 2Mw

~w ' m„
(7.2)
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nd

1 JI/Iz
2

~ 2 2 2 , 4M, 2 2
2 mH

2

R ec2z, f 2 2 Z 8 2 2 sin )9)»{m1 ]f101 m2 $24z2) ln —
2

+—+(m& +m2 ) ln-
16m v f„rn„ m+ 3 ivz

—[mg ]1 —4&a&sins )+ms ]1+sasassin 4 )]+ —m, m~
gf mH

(7.3)

where a& ——1 —2q& sin 8 and a2 ——1+2q2 sin 9 . In
the region mz «M~, m„-M~ the dominant contri-
bution is given by the terms without a factor mz .
Thus we get

M
Rea, , = 8.871n)0 e g in *, 40.788)

. l ml

for the lepton contribution. The main contribution
is due to the electron. The value we get from this
term agrees with the result obtained by the nu-
merical analysis in the range 2 GeV ~ m~ - 1 TeV
within 0.05/p accuracy. The m„-~ asymptotic
terms proportional to ln 4Mz /m„and lnm„ /M)»'

are suppressed by a factor mf /M)» .2 2

For the quark contribution we have

Hec&~, —- 3.871 x10 'x —,
'-

M~ M~a I 4 in * +in * +18.711}
m2

and the light quarks contribute predominantly.
This explains the relatively weak m, dependence
mentioned before. The values obtained agree with

the values from the numerical analysis in the
range 2 GeV~ m„~800 GeV within 5/4). Since m,
is quite large, the corrections proportional to m, 2

are important now, in particular for the larger
values of m„. In the region m„»M~ we obtain
from (7.2) the corresponding correction

4M mg m pm„Mg

+0 M~ j.n

2
= 6.78lx10 4

M z
(7.4)

This term of course dominates for asymptotically
large m„.

The asymptotic behavior of the bosonic contri-
butions for 2M~ «m„ is given by

1 t
2 2

Rec» b
——6» 15+20 3m —2)]' —16M, sm 8

)m„
16m v ~) 4

= 4.170xl0 4. (7.5)

Obviously the numerical results in the 1-TeV re-
gion do not yet show this behavior. It turns out
that only above 10 TeV the asymptotic tails clearly
show up.

The conclusions following from the above con-
siderations may be summarized as follows.

(i) At the one-loop level the radiative corrections
to the IIVV form factors asymptotically grow as
m„ /M» due to the bosonic contributions. The
amplitudes c«and c2~ yield comparable contribu-
tions to the widths, since c2~ is enhanced kinemat-
ically by m„ /M» .

(ii) The contributions from fermion. loops are
asymptotically negligible since they grow logarithmm

mically only.
(iii) Owing to the logarithmic approach to the

asymptotes, the leading asymptotic regime sets in
only at about 10 TeV.

(iv) Although the region of the numerical analysis
is far from being asymptotic, the radiative cor-
rections are large for 200 GeV ~ mH and grow fast
above 700 GeV.

A final remark may be necessary concerning the
significance of the radiative corrections to on-
shell form factors. Obviously the sPlitting of the
value of an on-she' ll form factor into a Born term
and the radiative corrections depends upon the
particular renormalization scheme (i.e. , the
choice and the definitions of the physical parame-
ters) used. As an example, in our case, we could
redefine the masses M~ such that

2M~ 2M ~(1+Rec, ) =
v v

and there would be no radiative corrections due
to Rec« in the new parametrization. Obviously,
by such a parameter change we cannot, however,
reenormalize away Ime, ~ and c,~. The reparametri-
zation does not change the physics, since the
widths are not altered. The radiative corrections
would show up at different places as in our exam-
ple in the locations of the propagator poles (see
also Sec. III).

1
Rec2z b= z [(8v 3v ——)] —4)Mz —16M~ sin 8)»]167t v2 3

+0] ——
s in —-7

z4 ma'
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I

Qyt

(e)

i
I

mHo

(A8)

For the Higgs-boson mass we get

I

Graphically bmH is given by

-zAm„= —z6~vp&v, = (A10)

m„= 3xvp p, + 6xvp&vg —mvo + AmH ~ (A9)2= 2 2 2 2

APPENDIX A: TADPOLES

In this appendix we consider the problems re-
lated to the shift (2.4) of the Higgs field. The
quantities considered in this appendix are the bare
ones if not indicated otherwise. If the shift param-
eter v has the correct value, the physical Higgs
field satisfies the gauge-invariant condition

I „"'= f [P' —m„„„'—6m„'+ 11„(P')j, (All)

with

Thus the bare negative inverse Higgs-boson prop-
agator may be represented by

-it I

(H) = o- ———~ ~ o-——— = o (Al)

l

when the trivial tadpole

t=vm, =v(Xv —p )
2 2 2

and the Higgs-boson mass

and

2=
mHp mH ren

mH =3Xv —p.

are given the ground-state values

mp ——0 and mz ——2~v2=

(A3)

(A4)

m„„,is the renormalized mass and hence

6m„=II„(m„„,) .2 2 (A12)

V =Vp+ ~vg ~ (A5)

Inserting (A5) into (A2), (A3) and the relations
(2.5) and (2.7) we generate terms proportional to
6v, . Considering these terms as counterterms,
fixed by the condition (Al), and identifying vo with
the proper value v, we achieve the proper treat-
ment of the v shift in perturbation theory.

To lowest order (Al) yields

tp =0 P = Avp and mHp = 2Avp
2 2 2= 2 (A6)

At the one-loop order from (A2), (A5}, and (A6)
we have

The proper value of v, however, is not known
a priori and it must be determined order by order
in the perturbation expansion. We denote by vp and
v the proper values of v to the nth and the (n+ 1)th
order, respectively. Thus we write

Qy = p- —— Xt 2
-fA Ho

2
Ho

m» has to be identified with the proper bare
Higgs-boson mass (A3). By this definition, which
takes into account the proper v, the mass counter-
term 6m„ is gauge invariant.

Similarly the proper value of v is taken into ac-
count in the remaining mass terms and vertices
appearing in (2.5). Before we can give the corre-
sponding relations, we give the proper definition
of

t = ~t = 2')p ~vg =mHp ~v| ~

2 2

This result together with (Al) yields

(Av)
valid now to all orders in the loop expansion.
By amputation of the external H leg in (Al) we ob-
tain
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APPENDIX 8: y-Z mixing

%e briefly discuss some problems in perturba-
tion theory related to the mixing of the photon and
the neutral vector boson. If not indicated other-
wise all quantities considered are the bare ones.

X X X
1. Mass mixing

The bare free y-Z I agrangian

&c,z = —4(B,.B""+W3,.&3")

+ ,v (g—B-gW3) (Bl)

0 gvp p' O and ALH0 = 2&vp Thus2 — 2 2= 2= 2

6v, is defined by the nonlinear relation"
is diagonalized by the orthogonal transformation
(2.8) yielding

X X X X X

I

ibt = ~ = ~ + ~
I

I
I

I I

(A14)

In these equations, the couplings and combinatori-
cal factors are given by the Feynman rules with
-~tH as a Lagrangian tadpole counterterm. Equa-
tion (A14) can be solved recursively in perturba-
tion theory. The solution to the one-loop order is
given by (A8).

Now by inserting (A5) into (2.5) and using the
Feynman rules we get the relations depicted in Fig.
V. With t fixed by (Al) we identify v, with the
proper v. By this procedure we achieve that the
correct value of v is taken into account in the fun-
damental relations (2.7) and (2.9) between the bare
parameters.

The crucial point of a proper inclusion of the
tadpoles is that mass and coupling counterterms
can be defined in a gauge-invariant manner. 1

Z [(1+c)2+ 52]1/2

t+c
5 ~+cd & Zp

The orthogonality implies the form invariance of
the kinetic term.

In the perturbation expansion we denote by gp
and g, the couplings and by (A„Z, ) the fields which
diagonalize Zo„~ to nth order. To (n+ l)th order
with the couplings g'=gp+ 5g' and g=gp+ 6g we
obtain

g'B -gW, =(g +g )'~ Z

=(go' +go ) i [(1+c)ZO+ bAO], (B3)

with

+g 0&g

+80

(B4)
gp&g -80&g

gp +&0

It follows that the fields which diagonalize R»~ are
related to (Ao, Zo) by the orthogonal transformation

1/
2

a)

2
I/2 v

/
/

/
/

b)

01 -Q~ 'A.

~b 1 Zp,
+O(5') . (B5)

According to (B3) the mass term has the form

„„g——
~ [(Mog + 5M~ )Z0 + 26 AOZ0 + O(5 )] .

e)

SAv pilvp

/ & x/ I x / I

e)

FIG. 7. Tadpole terms induced by the relation v = v 0

+a, [Eq. (A5)).

We notice that the bare photon mass remains zero
and, apart from the usual bare-Z-mass shift 5M~2

=2cM«, there appears an induced y-Z mixing
mass term ~=bM0~ . The renormalization of v

entering as an overall factor does not affect the
diagonaliz ation.

Instead of transforming the fields, the diagonal-
ization of the mass matrix may also be achieved
by adjusting the mixing mass term as a counter-
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term through the condition

i4
7 Z

X
i —'

Z =0

(87)

are given up to a sign by the on-shell. values of
the mixing-mass-term contribution

iGzxb = —zGzx 2 2 &&
I /=0

P Mz +iq

and identifying couplings and fields with g', g and

(A, Z), respectively. The equals sign attached to
a line means that this bne is considered on the
mass shell. From (87) it follows

(87a)

and (89)

Z
0+ (87b)

2. Vertex mixing

The y-Z mixing of vertices follows from the
transformation (85}of the fields. Accordingly the
bare vertic'es are represented by

GzXzZ, —GzXzZ „+bGzXzAD„+O(5 )

and

G~X„A~ =G~X~Ap„—bG„X Z~+00(6 ),
where X" denotes some field monomial and G the
corresponding coupling. Considering the induced
mixing vertices as counterterms fixed by the con-
dition (87}and identifying couplings and fields with
g', g and (A, Z), respectively, the y-Z mixing is
properly accounted for.

Graphically the (n+ 1)th-order contribution to an
amputated amplitude is represented as shown in
Fig. 8.

According to (88) and (87) the mixing vertices

As a result for og-shell A and Z lines, the mixing
counterterms cancel. Thus the proper on-shell
amplitudes are given by including the nontrivial
mixing diagrams only as depicted in Fig. 9.

3. The y-Z propagator

Owing to the mixing the y-Z propagator is to be
considered as a symmetric 2 ~2 matrix C. In the
' t Hooft gauge, the gauge function is chosen such
that, to the lowest order, the free propagator Gp

is diagonal. Thus the negative inverse propagator
I' has the form

r=-G =-G, -iran=
-irr„z -Gp —illzz,

(810)

The irreducible self-energies are given diagrama-
tically by

iA

a)

FIG. 8. Off-sheQ vertex contributions induced by y-g mixing.
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Il

II
'

Ij

the masslessness of the photon no longer follows
from the existence of II2,„(o,c.) alone. Actually

Iii„z(p, e) is singular at p =0 and

11,„,(O, n) = —»m P'II, „z(P', n) ~O.
p2~Q

(814)

Hence the y-Z counterterm must be fixed by the
condition (B7), that is

lim I i„z ——i[bMz2 —Ili'„z(0)] =0.
p2~Q

It follows that

Giyy ~iyy, P = 02

(B15)

(B16)

FIG. 9. On-shell vertex contributions, induced by
y-Z mixing, containing only the nontrivial mixing dia-
grams.

so that the pole of the y propagator is given by the
zero of I'&„, as usual.

On the other hand the pole of the Z propagator

1

-rizz+ ri„'(ri,z)' (B17)

zz

appears shifted, relative to the zero of I"»z.
Furthermore, we notice that the condition (B15)
also guarantees that an additional pole at P =0 is

ent in G&zz
According to (B17) the g-mass counterterm

&Mz' is determined from the condition

G is then formally given by the geometrical series
generated by

llm [r„,—r,„„'(r„,) ] =o,
p2~N

where

r, „„=f(-p' ll, „,) = fp'(I -11„„),
r,„,= f(f Mz' - Ii,„z),
rizz =i( P ™zren+ ~Mz liizz) ~

2 2

(B18)

(B19)

1
Q 1+ 'IIG (B11)

To the one-loop order the mixing term does not
contribute and we have as usual

-rizz ri,z'l
(B12)1

G) ———
r,„„r„,-(r,„,) . r, „, -r,„„.l

Obviously the matrix I' can only be diagonalized
for one particular value of P by fixing the y-Z
mixing counterterm introduced above.

The relevant condition is that the photon is
stable and massless. Although we have from the
electromagnetic WT identity

II,","=(P'P" - 'aP'"") 11(2' Po. )

(B13)

For simplicity we shall restrict our discussion to
the g"" parts I"& and G& of I' and G, respectively.
The p'p" parts I'2 and G2 are determined, given
the g"" parts by the WT or ST identities. 6&, which
exhibits the pole structure, is given by

5Mz =Rellizz(Mz„, ) .
The "mixing propagator" G&,z is given by

G&,z=-G~zzI"&yy ~&,z
-i

(B2o)

(B21)

and by virtue of (B15) has no pole at P =0. How-
ever, the Z-propagator pole is obviously present.

APPENDIX C: COUNTERTERMS

Below we give a list of the one-loop renormaliza-
tion. counterterms in the 't Hooft gauge. Apart
from the one vertex counterterm, which we have
considered in Secs. III and IV [Eqs. (3.8) and

(4.14)], we need the mass and wave-function re-
normalizations of the physical fields. In this ap-
pendix m~, M~, Mz, m~, and z)

' are the renor-
malized parameters; bare quantities are indicated
by an index b. The renormalized propagators are
defined by G,"„'=Z 'G,"' with Z the wave-function
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renormalization factor. By I""'=-G"' ' we de-
note the negative inverse propagators. The tad-
poles and the mixing terms are taken into account
according to our discussion in the Appendices A

and B. In particular the irreducible self-energies
always include the nontrivial tadpoles. For our
purpose we need to consider only the g"" parts.

The bare H, y, and Z propagators have been
given above in (All) and (819). For the W propa-
gator we have

By hermiticity yp5„typ Q we must have D—= 0. By
virtue of the relation

u(p, v')y, u(p, v) =0

and the mass-renormalization condition

u(p, v')[Z„(p)+5m, ]u(p, r) =0

the gauge-invariant mass counterterm is deter-
mined from

r„„=z(-p'+ M,'+ 6M,' ll„„),
with

b

1WWb~

The gauge-invariant mass counterterms of the
massive boson fields X are then given by

(Cl)

6m, = -m, (A+C)(m, ') .

Furthermore, the renormalized propagator

1 1S„„= S, , Z, —l=z, +» y,
yp &yp

must satisfy

lim. —iS,„„(p—m, )u(p, v) =u(p, v),
P~mg

which implies

(C7)

(C8)

5m» -II», (m» )

and the wave-function renormalizations by

(C2)

and

», = (A+ 2m, '[s/sp'(A+ C )])(m,')

(C9)

&rr ' BH:
Z =1+ (m2) 1 b(m )x, cpa x gp2 K (C3)

We use the anticommuting y, so that the covariant
decomposition of ~ lb ~s given by

Z„=p(a+By,)+m, (C+Dy, ) . (C6)

From our discussion in Appendix B the expressions
(C2) and (C3) have to be modified beyond the one-
loop approximation. For the massless photon we
have

Z„= [1—II,„„,(0, o.)] '=1+11,„„,(0, o.). (C4)

We further have to consider the lepton propagators.
For the inverse l propagator we write

I'„=-S„-'(P)=i[/- m, —5m, —1-„(P)],
with the irreducible self-energy

»b =B(m, ') .

The above relations are valid as well for the
massless neutrinos in the limit rn, -0, where
Bye„=0 and z =-g~, such that the neutrino remains
purely left handed after renormalization.

The resulting counterterms are explicitly given
below in analytic complex form. Only the real
parts of these expressions serve as renormaliza-
tion counterterms as indicated in (3.10).

For the definitions of the standard integrals we
refer to Sec. IV. The sums ~)z, and Q~„extend,
respectively, over the single fermions and the
fermion doublets. g& and b& are, respectively,
the vector and the axial-vector coefficients of
the neutral currents. They are given by

(ui &,),=((fg»n'e~- -', b)

(Clo)

((z&, b&) 8
=

(q& sin'g ~+ —,', ——,'),
respectively, for the flavors in the top and the
bottom components of the weak isodoublets. e. is
the gauge parameter.

H Pt'opaggto J".

5m „'= ~ b Ao(m„)3m „'+Ho(MJ(m „'+6M»')+Ho(M~)(2m „'+12M~')16zz'z)'

+ Bo(M ~, M ~; m „')(m„'— 4m'M ~' 1+2 ~M)

++[A,(:~)(-8 ~')+b, ( ~, m~; . ')(8 -„' ~' —8 ~'))},
~s
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Z —1=
2 2 Ao ~z ~p ~w 2+Bp Mz~Mz~~a -rn~ +2'~ +Bo ll4w&~F&~H 2~.H +1

j 6&2&2 o z o w

+ AB()(m „,m „;m „')(-—,'m„') +AB, (MZ, Mz; m „')(—zm „'+2m „'Mz' —6MZ~)

+ ABO (M ~& M H; m H )(—m H + 4m H'M H' —12M H ) +Ao (v uM z) + Ao(MnM ~)2

P PJ'oPgf atov:

+Bo(guMZ, v nMZ;mH')mH3 +B,(gnMH, ~nM
H;

mH)32 m„z

+g [B (m&, m&, „')(—2m~')+AB ( m&', m, &'m)(-& 'm&'+8m&')]I .
fs

Z„"~' =, , (ev)3 ——", +A, (M~)(- ", M~ '—)+3n+A, (v nM~)M~3+B, (MH, WnM)r&my )(——', )

Z PxoPag atov:

t'

gf 9 + LOP Vlf 3 Pgf
fs

+A (m„)(—',m„'+2M ')+A, (M )(-—,'m 3+6m„'M '+-', M ')

+ Ao (M H) (12m» 'Mz M Ir
(-

3 M z —16Mz 3M ~ + '3 M H ) + Bo(m H, Mz; M z ) (~~ H
—

3 m H Mz + 4M z )

+ Q f(- —", Mz'+ 333 Mz'mf')(gf'+ bf') +A, (mf) [—8m „'Mz'mf'+ 33 Mzz(afz+ bf')]
fs

+Bo(mf, mf', Mz )[ 3 Mz (af +bf )+ 3'Mz mf (af —2bf )]] ~
&

i

Z, 1=, , ~ (—~4M, 3 ——,3M, -ZM, '+-', M ')+A, (m„)(-,'m„'M, ' —-', )+A,(M, )(--,'m„'M, '+-.')1 r'

p y6 2 &

( 9 z 3 2

AD(MIV)( 3MZ Mlr 3 Z IV) 0( H& Z& Z )(3 H Z 3 H)

+A3(MH)(- —,Mz MH u+ 3Mz M~ n)+Ao()) nMH)[ 3 Mz MH + 3Mz MH n+ 3Mz M~ (1 —n)]

+Bo(MH& ~nMH&MZ )[3MZ 12Mz M~ + 3Mz M~ u 3MZ M~ (1 —n) +12M~ —3M~ n]

+Bo(v nMH& l(nMH;Mz )(- 3MZ + 3M)r u)

+g (~3M, '(gf'+ b, ') +B,(m„m, ; M, ') [ —", M, '(a, '+ b,-')]
fs

+AB (mf mf Mz )[ 3 Mz (gf +bf ) — , Mz mf (—af —2bf )]].

9' pxopagat«:

5M 3=
~
(- zm 3M +4m 3M M 3+8m„zM —3M 3M 3 —~"~M )+A (m„)(—'m„'+2M )]6+2&2 ~

3 H 8'
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+ A, (Mz)(6m „'Mz'Mw'+ —,'Mz' —8Mz 'Mw'+ —,'M w') + A0(M w) (-—,'m „'+12m „'Mw'- —,'lVlz' —4M ')

+B0(mH, Mw;Mw)(~3e —pm„Mw +4Mw )

+B (Mz, Mw;Mw)(3Mz + 3 Mz Mw —16Mz 2Mw —
+~Mw )+B0(m„,M~Mw2)[-4(ev) Mw ]

+ —zM +-M m'+m' + m -Sm 'M rn'+~M ' ——m —rn
fd

+A (m, )[-8m„'Mw'm +-, Mw'+-', .(m, ' —m2')]

g —1= ~ 2 ~
(- 20Mw2)+A0(m„)(F3„2Mw' ——,')+A (Mz)( —,'Mz'Mw' ——',Mz 'Mw' —'—, Mz Mw +-', )

+B0(m„,M w; Mw') [2(ev)']+AB, (m„,Mw; Mw')(-~3„'+-, m„'Mw' —4Mw')

+AB0(Mz, M w; M w2) (- 3Mz —133 Mz2M w + 16Mz M w + 3 M w }+AB0(m„, M w; M w ) [4(ev) M w2]

+ (-, M w' n) + [A0 (v nm „)—A, (rn „)]m „'[—,
' (ev )'(5 + u) ] + A0 (lVl z) (-', M z 'M

w n —',M z —'1Vl
w

n )

+A, (~+M, )[-—;M,-'M,'u+ -', M M,'(5+ n)]+ A, (v uM, )(—';}
+B0(Mz, MaMw;Mw )[- 3Mz +6Mz Mw —3Mz Mw u + 3Mz Mw (1 —u) —6Mw + 3Mw u]

+B0(V nMz, v nMw;Mw)[3Mz Mw n(1+u) ——,Mz ~Mw (1 —u) —3Mw u ]

+B,(m„, ~nMw; Mw')[~1 (ev)2(9+ 2n+ n')]

+ Q (gMw2- [AII(n11) -A0(m2)][yMw ('m1 —m2 )]+B0(m„m; Mw')[- —,'Mw' —-', Mw '(m, ' —m22}2]
fd

~ p«pa@atom".

0( 1& 2& IV}[ 3 W 3 IV( 1 2 } 3( 1 2 } ]))I

+A0(Mz)(8m„Mz' —,'Mz'm, +6—Mw'm, ' —4Mz 'Mw m, ')+A0(Mw)( —', +6m„Mw' —Mw'm, ')

+A (m, )(1+&3M 2m, 2 —2M 2m, 2)+B (m, m, ;m, 2)(-—'m 2+2m, )

+B (M, m„; m, ')(—Mw'm, '+ ,Mwz+ ~2 I2)+—B,(m„,m, ; m, ') [-2(ev)']++ A0(my)(-4n'I & my )
fs

g) —1 =8 +zb~5

z =- [(- Y3M 2+M 2)+A (m )—yA (Mz)(3 +~Mzzm 2 —6Mz 2Mw +4Mz Mw m1 +4Mz M2 —6M2 m ) )
a ]6p~g~

+A (M )(2+M 2m, 2)+A (m, )(-1—2Mzzm, 2+2Mwm, )+B0(m„,m, ;m, )(zmH )

+B (Mz, rn, ;m, )(2M, m, —6Mz Mwm, +4Mwm, )+BII(M2, m„;m, )(M2 m, + 2M2 +ymI )

+AB,(m„,m„m, ')(-m„'n, '+ 4m, ')

+AB0(Mz, m, ; rn, )(-5Mz +12Mz'M w'- 7lVlz'm, ' —16Mz 'Mw'm, ' —8M w +24Mwzm, 2)

+ AB, (M ~ m, ; m, ')(-2M w' + M w m I' +m, ) + AB0(rn „,m, ; m, ')[—4(e v) 'm, ']
+ [A (m„) —A0(Mumr)]mr 2(ev)2+A0(MMz)(-2+ 6Mz 'Mw' —4lVlz 'M

w )+B0(v nlVlz, m, ;m, ')(—,Mz'u)

+ B0(~nM w, m„; m, ') (M wzn —m, ')]
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1
zP= 2 z [(-yM, +3M~ )+AD(Mz)(-~zMz'm, z+2M~ m, ) +A o(M~)(- z+M~ m, z)

16m'v'

+A, (m, ){~M 'm, ' 2—M 'm, ')+B,(M„m„m, ')( ,'-M-'m, '+~M '+2M 'M 'm, ' 2M— z)

+Bo(M]p, m „;.m, )(-—,'MNI'+M]p'm, ' —-.sm, ')+B(~nMz) m„m, ')(y1Viz'u —2M~'u)

+Bo(v uM~, m„;m, )(-M~ u+m, )].

v pxoPagator:

5m„=0, Z„- I =z,(l - y,),
1z„=

1 ~, [(-,'M, '+M~') —A, (m, )+B,(M „,m, ; m.„')(—', m, ') +A, (m„)pg -'(- —,'M ') +A, (~+M )-,'-

+A, (v aM,)+B,(/uM„m, ;m„')( 2m, ')].

Tadpoles:

1
5v~=n ~ z ms —2Mz —4M~ +Ao(m„)(-zm„)+AD(Mz)(-3Mz }+AD(M~)(-6M~)

lss

+A, (v uiuz)( ,'m„')+A. (W~—.M, )( re„')+Q-A, (m, )4m, ' .
~s

Chas'oe xenoxmalization:

68 =8
z z1481n 9~[M~ +A (M~)].16m'v'

yZ mixing pxopa~atov:

1 4II,'„(s)=-,—,;(ss)M 'ISI '{(I—Y M'+S—',s —'P)s/M *+[ M'M '( () s)-s2]+s( )sM)„M'( —RM 'M s)1)16m'v' '
+ [Ao(M p) —Ao(V uM~)]M~ [-z(u+9)s/M~z+ z Mz M~ + u —1 —z(u-1)Mz /s]

+B,(M, M; s)(- —,s'/M ' —4s'/M '+ IVs/M '+l2)
+ Bo(v uM ~) M ~; s) [z~s /M ~ —(u —4)s /M ~ + z (uz + 2u —19+MzzM ~ z)s/M ~z

—{u —1)'- (u —5)M, 'M + -, (u —1)'M, '/s]
+ B~(MuM N, ) V uM @I' s)(- 4 s /M ~ + us /M ~ )

+4 a q 1' '1' ' --~ M +2m 'M '+A. m 2M
fs

+ („P„.s)(s/SS,'s1 I'M )]I,

n=bM '=ll,'„(0)= —,-', (ev)M M '[2u+2+A, (M )M '+3A, (v n1Vi )M ' —8B,(v'uM, M; 0)].
—1

v

APPENDIX D: COUNTERTERMS FOR THE PHYSICAL VERTICES

Except for the electron-photon vertex, which is used for the normalization of the electric charge e, all
vertex renormalizations are determined, from the counterterms given in Appendix C, by virtue of the re-
lations (2.9), (3.2), and (3.8). In the following, we list the resulting counterterms which render the ver-
tices finite and gauge invariant on the mass shell. For the ghost vertices similar expressions can be de-
rived. %e shall include the Born. terms for the purpose of normalization. For the kinematical tensors ere
shall use the abbreviations

sfsM v PP (2g g MPgP)PPQP gsP PgPP)
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&""(P)=g"(P2-P~)'+a'"(P~ -P3)'+I"(P3-P2)'.
Furthermore we denote by II =-,'(1-y, ) the left-handed chiral projector and by T, =-,'v, the SU(2) genera-
tors. q, is the fermion charge in units of e and a=v . e is given by (2.10) in our parametrization. We
write 5Z for Z —1. Our expressions below are valid up to O(fI ) terms and hence are suitable in this form
for one-loop calculations.

1. The trilinear vertices

3 Cmn Ga-3am 1 +-&Z + — +—
2 ~ m' aH

H
,V

v, V

1 mv' aa
2aM 'g"" 1+—5Z„+5Z, + ', +—,V=Z, S"

V

1 Gm,. 5a-am 1+—&Z +& + '+-
i 2

,W
P(f 5eeV"'(P) 1+—rZ„+rZ+—

,W'

,W

-2a ' v"'(p) 1+—5Z, +&z+ ', ——;+—

1 6e
eq,.y~ 1+—5Z, + 6Z; +—

p, Z

Mw' &Mz'2aM~" 1 —
~

1+—
M M

1 mz'1+—6Z +-5Z. +-CZ +— +—
2 '2 '2 '2Mz' a

p,W
2aMqry "LI T„~ 1+—&Z+ —5Z;+-5Z~+ —

~
+—1 1 1 1 Ruw'

w
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I

2. The quadrihnear vertices

~H

J 2

-Sa m~ 1 +25ZH +—=2 +2-6m,„5a

2a MrPg'"(1+ 5Z„+ 6Zr +
q

+2-—,V =Z, W'
H V

-e T'"'" 1+5Z„+ CZ + 2—
8 )

&~w' & &~z
2eg ~ T""" 1. +—eg +—OZ +OZ+ ~ —— ' +—+-

~z 2 2 0 ~~2 2 ~z2

p, ,Z

2~W gv, pe Qg l

z

p,W'
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APPENDIX E: RELATIONS BETWEEN INTEGRALS

The standard integrals A.„BO, and C, defined in Sec. IV are not independent in special kinematical situ-
ations. In particular there are relations for on-shell integrals related to the electromagnetic %T identity.
Below we give a number of such relations which are needed for analytical checks of gauge invariance and

, other general features of on-shell amplitudes.
(i) Zero-mass integrals:

Ap(0) =0, Bp(0, 0;s) = Reg + 2 —ln(-s + i0),
(1 )1 /P

C (p0&Ot0 ts&S&im ) —'pI1 it/2 SP irl i1/2

2

Bp(0, m;s) = 1 —m pAp(m)+ —— ln(1 ——
&S g PB

(ii) Two-point functions at zero momentum:

ABp(0, 0;s) =s
+1] ' (1-y)i/ —1t 4s

P (1 )&/P ~1

ABp(O, m;s) = —s ~ 1+ ln 1—
S m'

Bp(0, m;0) = —m Ap(rn), ABp(O, m;0) =&m, Bp(m, m;0) = —[1+m Ap(m)], ABp(rn, m;0) =
p

m

(mq —mq )Bp(mq, mq, 0) = —[Ap(m() -Ap(mq)]

2(rn& —m& ) ABp(mg mp 0) =Ap(m~)+Ap(mp)+(mg +mp ) [1+Bp(m~ mp, O)] .
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(iii) Three-point functions at zero momentum transfer:

(mp -mp )Cp(mi, mp, mp, s, O, s, ) =-[Bp(mi mp's) Bp(m&, mp, s)],2 2

Cp(M, m, m;s, 0,s, ) =-—~ Bp(M, m;s), C p(O, M, M;s, O, s) = — -p Bp(O, M;s),
8 8

ABp(M, m;m )=m P[-1-m Ap(m)+M Ap(M) —(M —3m )Cp(M, m, m;m, O, m )],
ABp(O, M;m ) =m P[ —1+M Cp(O, M, M;mP, O, m )],
Cp(M, m, m;m, O, mP)=(MP —, 4m ) '[Bp(M, m;mP) —1 —m Ap(m)+2M Ap(M)],

Cp(O, M, M;m, 0, m ) = —(M —m ) [Bp(O,M;m ) —1+M Ap(M)] .

(iv) fnfrared-singular integrals: The limits m„p-0 for s=m and p, =m -s-0 for m„'=«oincide
upon identifying p,

2 =mm, .
m„Ap(m„)= —(Reg+1 —lnm„), Bp(m„m;s)= 1 —m Ap(m) (regular),

m -2 m
ABp(m„, m;s)=m —1+in-, Cp(m„, m, m;s, O, s)=m P ln- ——,

P+ m2 I

Cp(m„, m, m;s, t, s) =t ' F&(y) ln " +Ep(y)t

1 (1 -y) /P + 1F (yi) (1 )i/Q ln(1 )f/p y y 4m t )

i/2+1
E2(y) 1/p 1" i/p (in[(1 y) + 1]+1"[(1 y) 1] -21n(1 y)(1-y) (1-y)

y)i /P + 15
P (1 )i/2

I (1 y)i /P
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