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K-matrix analysis of the J =3 and 2+ dibaryon systems
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A multichannel K-matrix formalism which accounts for the effect -of inelastic thresholds is used to study the
J = 3 and 2+ dibaryon systems. An analysis, carried out previously for the J = 2+ system, is presented for the
J = 3 system. The relationship between phase-shift behavior and background contributions to the scattering
matrix is then probed by studying both J systems using explicit K-matrix poles. Possible effects of the ~d channel
are considered and a three-channel analysis is performed for the J. = 2+ system. The analyses are consistent with
the existence of a J = 3 and a J = 2+ dibaryon resonance.

I. INTRODUCTION

Structure which is suggestive of dibaryon res-
onances has been observed in polarized proton-
proton scattering cross sections' and in the
pp('D, ) and pp('E, ) partial-wave solutions of re-
cent phase-shift analyses. ' ' The interpretation
of this structure is complicated by the proximity
of a strong threshold in pp-N4 scattering. In a
recent paper4 a K-matrix analysis incorporating
this threshold behavior' was applied to the pp('D, )
and na" ('S,) channels which couple to the J'~ = (2')
system. The analysis indicated the existence of
a pole in the scattering matrix on an unphysical
sheet whose features resembled those of the
J = 2+ 2;17-GeV dibaryon found in Hoshizaki's'
single-channel study.

In this paper, the analysis of dibaryon systems
with the K-matrix formalism is continued. In
Sec. II, the J =3 system is studied using recent
PP('E, ) phase-shift solutions. ' ' In Sec..III, an
alternate analysis is given for both the J~= 2' and
J~= 3 systems which is intended to provide some
insight into the behavior of the phase shift in the
n~ channel. In See. IV, the effect of the 7rd

channel is discussed; in particular, an analysis
of the pp('D, ), nb, ('S,), and ~'d('p, ) system is
performed.

II. THE J = 3 SYSTEM

A. Choice of channels

The pp('F, ) channel couples to many J~=3 in-
elastic channels of which only the Nb, ('p, ) chan-
nel is treated here. The possible exclusive
single-7r channels include both the hard and NN7r

channels. The 7rd channel is much less im-
portant than the N&Tr channels' for the ener-
gy region of interest; its possible effects are
discussed. in Sec. IV. The NNTr three-body
state is assumed to be dominated by the quasi-
two-body N~ state. ' This, with isospin con-
servation, gives pp- np7r' production 5 times

larger than pp- pprr' production, in reason-
able agreement with experiment. ' The (Nb, )z
state is predominately n5" and is referred to as
such throughout; the analysis may, however, be
regarded as a treatment of the full (Nb, )z

state. ' The dominant partial wave of the n~
state is the 'g, wave, the other partial waves
('E„'H„'E,) being negligible near threshold.
Two 7r exclusive channels, though open for s) 4.6 GeV

p
do not become significant until the

(2b, ) threshold, sa 5.9 GeV', these channels are
also not included in this analysis.

This choice of channels is supported in part by
measured inelastic cross sections. At s-5 GeV',
where the J = 3 resonancelike structure appears,
the total inelastic pp cross section is approxi-
mately 21 mb of which about 16.1 mb is pnz+, '
3.5 mb is pp~', ' and 1.4 mb is 7r'd. " The total
triplet inelastic cross section is about 1.4 mb. "
This is consistent with a F, inelastic cross sec-
tion of 6 mb (q-0.68). If the pp('E, ) inelastic
cross sections occur in roughly the same propor-
tions as the total inelastic cross sections, the
pp N~-NN7r process accounts for more than
5 mb of the pp('F, ) inelastic cross section, with
pp- xd accounting for most of the remainder.
These estimates should be compared with the re-
sults of Hoshizaki's' single-channel analysis
which suggests that the J~ = 3 dibaryon gives an
inelastic contribution of 3 mb. While threshold
effects in pp -Nb, or pp - 7rd might produce such
a large resonancelike contribution, it is unlikely
that any further channel could.

T(s) =Z(s)[1 —C(s)K(s)] (2.2)

B The K-matrix formalism

The notation and conventions used here are
those of Ref. 4. The unitary 8 matrix with proper
threshold behavior in all channels is

8 (s) = 1+ 2~ 'E (s) = 1+ 2i p'~'(s)Z()sp' '(s)', (2.1)
where
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K,~ (s) = a,.~+5, s+c„s'. (2.3)

The effect of using poles in the K matrix is dis-
cussed in the next section.

At present 8» is known approximately for 8
& 5.4 GeV' through the phase and inelasticity
parameters of the pp phase-shift analyses, ''

S„=ye"'& . (2.4)

No constraints exist on the n~ phase 5,. A var-
iety of K matrices are expected to reproduce the
given i5, and q values.

The 8 matrix is, by construction, analytic with

a sheet structure inherited from the known Chew-

The K-matrix elements are meromorphic func-
tions of s and the Chew-Mandelstam functions
C, (s) [ with p,. (s) = ImC, (s)] describe the kinemat-
ics in channel i.

In the present problem, channel 1 is PP('E, ) and
its Chew-Mandelstam function describes two stable
particles of equal mass in an I.= 3 wave. Channel
2 is nb, "('P, ) and its chew-Mandelstam function is
that appropriate to two particles of unequal mass,
one of which is unstable, in an I.= 1 wave. These
functions are given in the Appendix .

The K-matrix elements are taken to be simple
polynomials in s:

Mandelstam functions. Once the K matrix has
been chosen, it is straightforward to examine 8
for poles at complex s. A pole occurring on an
appropriate sheet is interpreted as a resonance. '
Note that with a polynomial parametrization of
the K matrix, the 5 matrix need not necessarily
exhibit poles near the physical region —i.e., a
dibaryon resonance is not assumed & Priori to
exist.

C. Results

Four solutions are presented here which are
typical of many more which have been found. Sol-
utions 1 and 2 are illustrated in Fig. 1, solutions
3 and 4 in Fig. 2. The K-matrix parameters of
these solutions are given in Table I.

Solutions 1-3 reproduce the pp('E, ) phases of
Amdt's analyses' reasonably well, while solution
4 has pp('E, ) phases more closely resembling
those of Hoshizaki's analysis. ' Solutions 1 and 3
have an inelasticity which varies quite slowly,
reaching a minimum at q-0.68. Solutions 2 and
4 show sharper q behavior with minima at @=0.66
and q= 0.55, respectively. A variety of n ('&,)
phase behaviors are seen, from the undramatic
ones of solutions 1 and 4 to the very dramatic one
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FIG. 1. Solutions 1 and 2 for the 4 =3 system. The phase-shift-analysis results are those of Hoshizaki (Ref. 2)
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FIG. 2. Solutions 3 and 4 for the J =-3 system. The phase-shift-analysis results are those of Hoshizaki (Ref. 2)

(crosses) and Amdt {Ref.3) (energy independent —triangles; energy dependent —squares).

TABLE I. Parameters of the J~= 3 system solutions.

Sol. 1 Sol. 2 Sol. 3 Sol. 4

of solution 2.
All solutions have a zero of det(1 —QK), i.e. ,

a pole of 8, on the second sheet of the pp and npn'
cuts —see Fig. 3. This pole is interpreted as a
resonance at an energy similar to but slightly low-
er than that found in Hoshizaki's single-channel
analysis. Based on all the solutions obtained, the
resonance parameters lie in the following ranges:

M~ - 2.18-2.20 GeV,

1" - 50-160 Me&,

I",- 5-95 MeV,

I', - 40-95 Mey .

All of the solutions have another 8-matrix pole
which is farther from the physical region. This
pole is on the second sheet of all the cuts and is
found by circling the nh branch point —see Fig.
3. Both poles have reflections on more distant
sheets, as explained in Ref. 4.
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FIG. 3. The complex s plane indicating the pp, nprr,
and n~ unitarity cuts. The approximate positions of the
S matrix poles are indicated (P& and P2).
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III. PHASE BEHAVIOR IN THE SECOND CHANNEL

A. Eigenphase behavior
60- J Soln. 2

All of the solutions found for the J = 2+ and
3 systems display an 8-matrix pole correspond-
ing to a dibaryon resonance. However, not all of
these solutions demonstrate dramatic phase-shift
behavior. Because phase behavior may be used in
conjunction with a generalized I evinson's theo-
rem' "to characterize solutions as elementary or
dynamical resonances, it is important to under-
stand the cause of the instances of untraditional
resonance phase behavior. "

The distorting effects of a large inelasticity
may be removed by examining the eigenphases of

4

=1 [1—q'cos'(5, —5,)]'i'5, + 5,+ arctan
g cos(5, —g, )
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The phase shifts and eigenphases for two J"=2'
solutions are shown in Fig. 4 and for two J"=3
solutions in Fig. 5. In all instances, the eigen-
phase behavior proves only as dramatic as that
of the corresponding phase shifts.

Possible effects of threshold kinematics may
be removed by examining the eigenphases of T."
For the J~=2+ and J~=3 dibaryon systems,
these eigenphases differ from those of & by less
than 10 with the largest difference occurring
near the resonance position.

The remaining standard explanation" for the
undramatic phase behavior is the presence in
these systems of a large nonresonant inelastic
background. In fact, Hoshizaki' had to assume
such a background in his single-channel analysis.

B. K-matrix poles

K (s)=a,. +b, s+c s'. + +g'—
fg 8 —SR

(3.2)

Note that since Kf& is assumed to be real, s~ is
real. The corresponding 8-matrix pole will oc-
cur at a complex value of s whose real part is
approximately s~. Since a K-matrix separation
of background and resonance does not correspond
directly to a &-matrix separation, the "coupling

One way to separate background and resonance
contributions is to use explicit poles in the K
matrix. ' The analyses of the J~= 2' and 3 sys-
tems performed earlier are now repeated, allow-
ing for K-matrix elements with a smooth back-
ground and an explicit pole.

The K-matrix elements are taken to be
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FIG. 4. The phase shifts (6) and eigenphases (Q) for
two J~=2' solutions (Ref. 4).

strengths" g, of (3.2) are not immediately con-
nected to the resonance partial widths. In fact,
the ratio g, /g, is easily extracted from elastic
channel phase-shift analyses. "

Earlier treatment4 of the PP('D, ) and nb, "('S,)
system indicated an 3-matrix pole at s-(4.55- 4.70) —i(0.23- 0.45) GeV' on the second sheet
of the pp and np~' cuts and on the first sheet of
the nh" cut. Several K-matrix-pole solutions
have been found for s„-4.625 GeV' (g, /g, -1.7),
each differing in its choice of background and g, .
In all instances, a rather large background K
matrix is necessary. The behavior of 5, re-
sembles solutions 2 and 4 of Ref. 4—rising to
about 30'near s=4.7 GeV' and leveling off or
falling slowly thereafter. The pole in the 8 matrix
is located near s-4.6 -i 0.2 GeV', not unlike in
the analysis with no explicit K-matrix poles.
Furthermore, the partial widths are consistent
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0 P. —60- J =3

30—

So ln. interpretation as elementary. The positive,
though not necessarily dramatic, phase behavior
found in the K-matrix-pole solutions for the
J~=2' and 3 systems adds credence to the Lev-
inson's-theorem mnemonics of Ref. 4 —solutions
with 5, + 5, increasing have elementary dibaryons
while solutions with 5, + 5, level or decreasing
have dynamical dibaryons.
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with those obtained earlier.
In Sec. II, the pp(3E~) and nn, ('P, ) analysis

demonstrated an 8-matrix pole at s-(4.7-4.9)
—i (0.13-0.35) GeV'. Solutions with K-matrix
poles have been found using s„-4.725 GeV' (g, /
g, -8.3) and a large background. These solutions
resemble solution 2 presented in Sec. II—6, rises
quickly through 90 leveling off about 150 . As
before, two 8-matrix poles appear. One is on
the second sheet of the Pp and nP~' cuts and on the
first; sheet of the n~~ cut near s- 4.8-i 0.1 GeV',
quite close to the physical region. The second is
on the second sheet of all the cuts, not far from
the n~~ branch point, s- 4.6-i0.1 GeV'.

An expl. icit pole in the K matrix is quite analog-
ous to a Castil. lejo-Dalitz-Dyson pole in the D
matrix of anN/D calculation. The ad hoc nature
of both these structures leads naturally to their

IV. EFFECTS OF THE 7Id CHANNEL

A. Cross sections and phase-shift analyses for pp ~ wd

The total pp-7td cross section is well mea-
sured" over the energy region of concern in this
analysis —it rises steadily from threshold (s-4.1
GeV') to about 3.2 mb at s -4.6 GeV' and is down
to 2.5 mb at s-4.8 QeV'. A sizable fraction of
this cross section is expected. to arise from the
coupling of zd to the Pp('D, ) and Pp('E, ) channels
and it is important to understand the effects of
this coupling on the results and interpretation of
the resonance analysis.

Several. analyzing-power coefficients for pp-7td
have been measured" for 4.1&s& 5.0 Qeg'; these
indicate that more than one pp partial wave con-
tributes to the pp- nd scattering. These analyz-
ing-power coefficients may be used to place con-
straints on the partial-wave amplitudes" a, It
is clear that a, (PP('D, )- n'd('P, )) and a,(PP(' P)
—md('S, )) are the most important amplitudes but
that a,(PP('P, )-wd('D, )), a,(PP('E,)- nd('D, ))
(Ref. 6), and a,(pp('E, ) wd('D, )) (Ref. 18) cannot
be neglected. The polarization information is con-
sistent with

o(PP('D, )-wd('P, ))- ', o"' (pP- wd-) (4.1)

8. Three-channel calculation for the J = 2+ system

The inelastic cross section for PP('D, ) is about
5 mb at the energy where the two-channel analy-
sis indicates an 8-matrix pole. Of this, by (4.1),
2 mb is expected to arise from PP('D, )- nd('P, ).
The possibility exists that the 8-matrix pole
found in the two-channel analyses is a manifesta-
tion of forcing all the inel. asticity into a, single

for s& 5 Qeg'.
A phase-shift analysis has recently been per-

formed" for several pp-xd partial waves for
s ~ 4.6 Qeg'. This analysis supports the sugges-
tion that pp('D, )-7rd('P, ) is the dominant wave and
is reasonably consistent with (4.1). Results for
pp('E, ) —wd('D, ) vary widely giving v(pP('E, )
—nd('D, )) as low as 0.2 mb or as high as 1.5 mb
a,t s=4.6 Gey'.
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inelastic channel, the nb."('S,), and that this
pole would disappear if the xd ('P,) channel were
considered as we1.1." In this section, this possi-
bility is investigated by carrying out the three-
channel analysis.

A three-channel symmetric unitary 8 matrix
may be parametrized by three phase shifts and

three inelasticity parameters:

g .
g g2i ~$
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N

Q
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'72
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~tgt 112 Mev,

33 MeV,
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I'3- 33 MeV.

(4.3)

where the extra phases P, &
in the off-diagonal

terms are known functions of the three q's.
Equivalently, 8 may be parametrized by a, 3x3
real K matrix according to (2.1) and (2.2). The
Chew-Mandelstam functions for the PP('D, ) and
nh" ('S,) channels are taken as before. ' The
«('P, ) channel consists of two stable particles
of unequal masses in a relative L, = 1 state; this
Chew-Mandelstam function is given in the Appen-
dix. The discussion of Sec. III indicated that a
polynomial parametrization of the K-matrix ele-
ments is not only simpler than including explicit
poles in the K matrix, but it perhaps also admits
a wider variety of solutions. Here, the six K-
matrix elements are taken to be quadratic func-
tions of s [compare (2.3)].

The pp phase-shift analyses' ' provide 5, and

g, . The estimate (4.1) of o(pp('D, )-~d('P, ))
determines

~ S»~ and hence (1+@,' —q,
' —q, ')' '.

For s values near threshold, this estimate sug-
gests that pp('D, ) —~d('P, ) saturates the pp('D, )

inelasticity and so, near threshold, q, - q3 and

qq &q2-1.
The phases and inelasticities of one three-

channel solution are presented in Fig. 6. Notice
that the Pp inelasticity drops from 1.0 at 4.1
GeV, through 0.99 at 4.2 GeV and 0.93 at 4.4
GeV' to 0.77 at 4.6 GeV', in agreement with the
phase-shift analyses. ' ' This is a marked im-
provement over the two-channel solutions of Ref.
4 for which q remained almost 1.0 until 4.4 GeV'.
This solution has a pole at s-4.63-i 0.24 GeV'
on the second sheet of the pp, npn', and ~d cuts
and on the first sheet of the nA" cut. The reso-
nance parameters are

02
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E
b pp~7Td
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I
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I
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FIG. 6. A three-channel solution for the J =2' sys-
tem. The channels include pp('D2), n&" ( S2), and
~d('P, ).

I

5.3

C. The J =3 system

The pp('F, ) inelastic cross section is 5-9 mb at
s -4.8 GeV', where the 8-matrix pole is observed.
By (4.1), the pp('F, )-«('D, ) cross section is ex-
pected to be less than 1 mb. The results of the
J = 2' system three-channel calculation, where
the nd channel is relatively more important, sug-
gest that the pole structure of the J~=3 system
scattering matrix should be unaltered by the con-
sideration of the w (' d)Dchannel.

Inclusion of this channel. would, however, affect
small details in the behavior of the-phase-shift

All other three-channel solutions demonstrate the
same improved q, behavior and a pole in approxi-
mately the same position. In all instances, a 52
behavior similar to that obtained in a two-channel
solution is found. A variety of 63 behaviors also
emerges, none of which are particularly dramat-
&C.

Inclusion of the zd('P, ) channel yields solutions
which better reproduce the phase-shift parameters
for pp('D, ) elastic scattering, but do not appear to
affect the arguments concerning the existence, of
a J~= 2' dibaryon resonance.
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parameters. The solutions of Sec. II seem to
complement those of the Pp-md phase-shift analy-
sis" well, —solutions 1, 3, and 4 are consistent
with a small pp('E, ) )rd('D, ) cross section, while
solution 2 clearly could be improved in a three-
channel analysis by allowing a substantial pp('F, )- «('D, ) cross section. Until the PP('E, )-«('D, )

amplitude is better understood, a three-channel.
analysis of the J"=3 system would be prema-
ture.

V. SUMMARY OF RESULTS

The J = 2' dibaryon system has been studied
with a two-channel and three-channel K-matrix
approach. In both instances, the 8 matrix re-
constructed from pp('D, ) phase-shift information
demonstrated a pole indicative of a dibaryon
resonance. The calculation using K-matrix poles
suggested that the undramatic phase behavior
found for this system was a result of a large back-
ground. The inclusion of the ~d channel assured
that the dibaryon was not an artifact of forcing all
of the pp inelasticity into the nh" channel —the

= 2' dibaryon is a feature of each of the pP,n~, and ~d systems.
The J = 3 system has been examined using a

two-channel E-matrix approach. A dibaryon res-
onance, similar in features to that found in Hosh-
izaki's single-channel analysis, ' was found in
analyses with and without K-matrix poles. Some
solutions displayed standard resonaneelike varia-
tion of the phase shift in the ng channel.

The second pole found in all of the J~=3 solu-
tions, though rather far from the physical region,
may prove an interesting subject of speculation.
Its position near the nA branch point suggests that
it may be a recursion of the J ~=2' pole discussed
above and, if so, these two poles are likely of
dynamical origin. "

As emphasized before, 4' "the questions of in-
terpretation are not clear cut. The distinctions
between resonances and virtual bound states and
between dynamical and elementary origin may be

impossible to make. The analysis just presented
has, however, been able to address carefully the
existence of 8-matrix poles —both the J~ = 2' and
J~= 3 systems do admit 8-matrix poles which
correspond in a natural way to dibaryons.
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APPENDIX I: CHEW-MANDELSTAM FUNCTIONS

The Chew-Mandeistam function for two stable
particles of mass m in a relative I.= 3 state is
obtained from

7/'2

p(s) =
s

by the once-subtracted dispersion relation

o(.)='-' '"' f 4. "' ', . (Ar)thro':. )o(d (s' s )(s' s)

Performing the subtraction at s = 0,

2 (4m' —s)' '+(-s)' ' 4m' —sC(s) = —— p(s)ln +
7t' 2m 8

4&l 2 —s 2 1 4@22 —8

(A3)
C is real for s&4m' and has the required discon-
tinuity of 2' for s&4m'.

The Chew-Mandelstam function for two stable
particles of masses m and M in a relative L, =1
state is obtained from

([ s —(M+m)'] [s —(M —m)']]"
p(s, M, m) = (A4)

2 [(M+m)' —s]' -+[(M —m)' —s]' '
C(s, M, m) = —— p(s, M, m)ln

M (M' —m')' 3(M' —m')(M'+m') 3(M'+ m') M' —3M'm' —3M'm4+ m'
SS s' s(M' —m') (M' —m')'

(M' —m')' l(M'+m') )1M' —IOM'm' ~ llm'
I2s' 2s 12(M' —m')' (A5)

If the particle of mass M is unstable, this function must be smeared' over a range of Ivalues,
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C(s, I*,m) = — ds'W(s')C(s, vs', m) .
threshold

(A6)

The weighting function 9 for ~" decay into p~' is described in detail in Ref. 4. The same smearing is
performed here on the nd, "('P, ) Chew-Mandelstam function as was performed there on the na" ('S,)
Chew-Mandelstam function.

The extension of the Chew-Mandelstam functions to complex s is analogous to the extensions performed
in Ref. 4. The I, =3 equivalent of Ref. 4 (A9) is

J(~S-ffttt )2

ds', „,p~='(s, vs', m„)
(mp+ 1'~ )2 S ™

S

(s, +s )(s, ' —10s,s + s ') (s, + s,)'/'+ (s + s„)'~'

[s, (s + s,)]'/'+[s (s, + s,)P/'

where

s, = (~s+m„)' —m*g, s = (Ws —m„)'-m~n', s, =m~n' —(m~+m„)',

a=1 for Im(s )&0, s= —1 for Im(s )&0.
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