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A solution-generating method for the self-duality and the Bogomolny equations is given. We
point out the existence of an infinite-parameter invariance group of these equations.

During the past few years a great deal of progress
has been made in the study of the self-duality equa-
tions (SDE) and the Bogomolny equations of SU(N)
gauge theories. Recently, Atiyah et al. ' have con-
structed the general n-instanton solution of the SDE
using algebraic geometry. However, in Ref. 2 it was
shown that there exist non-instanton-type solutions
of the SDE as well which have finite action and, in

general, noninteger Pontryagin number. Further-
more, it is known that the SDE in the static case are
equivalent to the Bogomolny equations which de-
scribe multimonopole solutions. It appears quite dif-
ficult to classify and construct explicitly these in-

teresting solutions by the geometric methods of Ati-

yah et al. ' alone, and we think it would be helpful to
develop solution-generating methods for these equa-
tions. The construction of such a method is the main

point of our paper. Applying these ideas we actually
found multiply charged axially symmetric mono-
poles. '

There are some hints that the SDE are completely
integrable, such as the existence of infinitely many
(nonlocal) conservation laws4' and Backlund
transformations. In this paper we show yet other
indications: the existence of an infinite-parameter in-

variance group and an "inverse scattering" problem
capable of generating a huge family of solutions. It
has 'also been proved earlier in Ref. 7 that the SDE
can be reduced in a special case to the Ernst equa-
tion of general relativity for which all the above-
mentioned properties are known.

As a first step, we show that the SDE can be inter-
preted as the vanishing of the invariant trace of the
curvature tensor of a Hermitian metric with a special

cylindrical symmetry defined on an (N +2)-dimen-
sional complex manifold:

ds =dy dy +dz dz +g &(y,y, z, z) d( dip

g bdZ dZ

Zi =y =Xi + IX2, Z2 =X3+iX4

z 2+a —(a

For the curvature tensor of this metric the Hermitici-
ty of g implies that

R'&,d = R'„,-» =0, Va, b, c,d

and the nonvanishing elements are Rzz++g,-» (together
with their complex conjugates) for a, b =1,2, where
R,'+&,—,=8,-[(8„g)g ']& (from now on we suppress
the indices n, i1). Now we impose the following co-
variant equation on the curvature

g"R,—,= $ (g,g '),-=(g,,g ');+(g,,g ');=o
(2)

This is the central equation of our interest, Next, we
connect this equation to the self-duality equations of
an SU(N) gauge theory by assuming that detg =1
and g =D D where D C SL(N, C). Indeed, defining
the gauge vector potentials as 8, = —D,D ',
B, =Dt '(Dt), (a =1,2) we have F„=F,;=0and—
F,„=—Dt '(g, g ') ~D-t, i.e., the SDE F +F„=0-
are really equivalent to Eq. (2). In this formalism a

gauge transformation is defined as D GD,
Dt DtGt, G C SU(N), i.e., g is gauge invariant.

The connection we found between the SDE and

23 1876 C1981 The American Physical Society



23 RAPID COMMUNICATIONS 1877

I 4'I+PP —
P

($ real, p complex) parametrization one obtains
from (2) the Yang equations in the R gauge"

$'7'7Q —V$VQ+ Vp'7p =0

V(y-'V p) =0,
V(y 'V'p) =0,

V=-(B,, B,), V-=(B,, B,) .

(3a)

(3b)

(3c)

We observe that (3b) and (3c) are identically satis-
fied if we introduce a new function m by the defini-
tion

—
qh z'7p = V'co, V =—(B„—By)

In terms of @,co, r» the SDE take the form

$V V$ —V Q '7 @+ @4V'co V ru =0

V(pz'7a)) =0, V(pzVco) =0 (4)

Now with the aid of P, co, co it is possible to construct
such a Hermitian matrix g,

with detg = —1, that Eq. (2) for g yields Eqs. (4).
We remark that Eqs. (4) can be interpreted as the
SDE for an SU(1,1) gauge theory; however, this is

the geometry of a complex manifold makes it possi-
ble to find the invariance transformations of the
SDE. It is easy to see that the "external coordinate
transformations" leaving both the form of the metric
in (I) and the value of detg invariant, g Q(y, z)g Qt
with Q(y, z) 6 SL(N, C), constitute a group of invari-
ance transformations for Eq. (2). This is the geo-
metrical meaning of the invariance transformations of
the SDE (2) investigated in Refs. 4 and 10.

In the case of SU(2) (i.e., N =2) the geometrical
picture can be used to obtain an alternative form of
the SDE exhibiting a new group of invariance trans-
formations. To this end we recall that for N =2
adopting the

not necessary since the introduction of co can be
viewed as a reparametrization of the original SU(2)
theory. Therefore, there exists another "coordinate
transformation" leaving detg and the form of g [see
(1)] built with the aid of g invariant: g A (y, z)gAt,
A (y,z) C SL(2,C). While A (y,z) acts simply on g it
produces a nonlinear action on $, p, p obtained by
solving in a suitable way the system of equations con-
necting the ($, co, ra) and ($, p, p) sets. The action
of an A (y, z) transformation defined this way on
P, p, p is not an Q(y, z) covariant expression and,
therefore, the product of an A and 0 transformation
is not contained in any of these two groups. Thus
the repeated applications of these two transforma-
tions generate an infinite-parameter invariance group
of Eq. (2). This group is very important for studying
the solutions of (2). In fact, without mentioning the
existence of this group, it was used in Ref. 10 to gen-
erate the infinite hierarchy of Ansatze of Atiyah and
Ward. ' The existence of an infinite number of (non-
local) conservation laws for the SDE4' is the conse-
quence of the existence of this infinite-parameter
group.

Recently, several authors derived Backlund
transformations4 ~ for Eq. (2). This fact 'together
with the existence of the aforementioned infinite
number of conservation laws leads one naturally to
attempt the derivation of an inverse scattering prob-
lem for this equation. To this end, we rewrite Eq.
(2) introducing the quantities A, =g, g ' (a = I, 2):

B,A, -B,A, +[A, ,A, ]=0, (A, ),+(A, ),=0, (5)

which may be expressed by the closed ideal of four-
forms spanned by the forms n; defined as

a~ =(dA tndzt+dAqndzq

+ [A ~, A2]dzzndz&) ndztndz2

a2 = (dA t ndzz- dA2ndzt) ndz~ndz2

%e determine an inverse scattering problem for Eqs.
(5) using the notion of prolongation structures.
Indeed, using the method of Ref. 13 one obtains a
linear three-form v that prolongs the ideal spanned
by n.

r = dgn[dztndz2+ X(dztndzt+ dzzndz2) + h. dztndzz] —dz2ndz~ n(dzz —
A dzt)A 2&+ dztndz2n(dz~ + A dz2) A &p

where A. is an arbitrary constant parameter. If we
section this three-form onto the solution manifold of
Eqs. (5) we obtain the inverse scattering equations'

(~B, +B,)q A, q( ~=B, +B,, )y-A, y . (6=)

From these equations we immediately see that

p(&=0yyzz) =g(yyzz). It is straightforward to
obtain the transformation properties 'of p under the
coordinate transformations discussed above; if g is
transformed by Q ( y, z), g' = Q g Q, then P' = Q pF
where F = Q ( y + iiz z —hy). The other remarkable
property of (6) is that by expanding P in powers of h. ,
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i]i = X„h,"g("), we obtain the infinitely many conser-
vation laws of Refs. 4 and 5:

~(g(o) —(g(n+1)) (g(0)—i ~g(o) + ~)(g(p) —i (n))

Carrying out this expansion in the transformation law

of ([i one obtains the result that the infinitely many
conserved quantities form an infinite-dimensional
representation of the invariance group O. In the
case of SU(2) we obviously have two similar sets of
equations corresponding to the possibility of working
with either g or g matrices. This means that in SU(2)
the SDE have yet another set of infinite conservation
laws. .This underlines the fact that our inverse
scattering equations are intimately connected to the
existence of the infinite=parameter invariance group
of Eq. (2), 'z to be contrasted with the equations of
Ref. 1S which are connected with a hidden O(4) sym-

metry as was shown by Pohlrneyer. 4

At this point we would like to make contact with

certain four-dimensional nonlinear o- models. If g is
the matrix describing a four-dimensional principal o-

model then the field equations take the form

X [(g.g ').+(g.-g '), ] =0
a=1, 2

Now if g is a unitary (or quasiunitary) matrix —i.e.,
we are working with an SU(N) or SU(N, M) principal
a model —then a sufficient (but not necessary) con-
dition for g to solve (7) is the satisfaction of Eq. (2).
This equation in these models may play a role similar
to that of the SDE in gauge theories. As we derived
the inverse scattering equations (6) directly from (2),
(6) can be used for this class of solutions of these cr

models as well. (Note this argument remains valid

for any reduction of these models. )
In what follows, we discuss how one can use the

inverse scattering equations (6) for generating new
solutions of (2) restricting our attention to the con-
struction of "soliton" solutions. [It was shown that
the inverse scattering problems can be connected
with the solutions of (matrix) Riemann problems,
and this approach defines the soliton solutions with

G(h. ) =1.)b] The process we follow is the generaliza-
tion of the method of Zakharov and Mikhailov' dev-
ised for two-dimensional o- models.

We suppose that a iiio(x, y,y, z, z) solution of (6) is
known in the case of an initial gp soiution of (2), and
look for new solutions of (6) in the form (b = X(X) iiip.

[This implies that g = X(0)gp is the new solution of
(2).] In the case of the SDE the Hermitieity of g [or g
for SU(2)] imposes a very important restriction on
the analytical properties of X in the complex A. plane:
x()() =gx' '( —x ')gp '.

Motivated by this we look for X(A.) in the form'7

n

X(x) = I + X
k=1 " IJIk

~here Ri, , p, & are independent of A. and p, k is any

solution of tb, '7p, „+'Vp,b =0 [for X '(h. ) we as-
sume a similar form with Rk replaced by Sk and p, k

by tbb =—p, b ]. Solving the equations for R, , S„em-
erging from (6) we finally obtain the new solution

g.b
= II I t .I (go).b

—X (t bi, ) 'I',
b '&.' '&b'"'

k, r

(9)

=mb (go)b, with mb =M, Qp ( tLb, y, y, ,zz) bb

and M(") = M(")( y p, , —z, z p, „+y, p,„) but otherwise
arbitrary vectors.

It is possible to show that detg = (—1)"detgp,
therefore if we start with a go having detgo= j. then
taking an even number of poles yields a g matrix that
can be interpreted in the $, p, p formalism, while tak-

ing an odd number of poles yields a g that can be in-
terpreted in the $, p), (p formalism.

The method we just described yields an abundance
of new solutions. As an illustration, we show here
how the 't Hooft —Witten instantons in SU(2) emerge
from this process by suitably choosing the arbitrary
functions M, " . %e find it more convenient to work
in the @, pi, pi formalism and choose for the starting
(vacuum) solution $p =1, olo = cUp = 1. Further-
more, to preserve the sign of the determinant we as-
sume two poles for the one instanton p, ~

= —z 'y and
{{bz=y (z + b) (b is a constant parameter). It is im-

portant to realize that in the final expression for X or
g it is possible to carry out the b 0 limit. Indeed,
choosing m,")= (O, m (z 'R', —z 'y)) and
m(') = (by ) (R z + bz), A'(2y) '(z +—b )), respec-
tively, with R =yy+zz and arbitrary A' arid
m(z 'R, —z 'y) from (9) we finally obtain in the
b 0 limit for the one instanton @=I+A2/Rz,
pi=pi = —

i)) . Proceeding in a similar way one can
prove that it is possible to iterate this "two-pole"
step N times leading to

(

4w &

p(bt)
1 0

A, ' y+a,
4N +

;=i 2R; A.(z+b;) +y+tt

z+b;
z+b; —X(y+ a;)

which yields at X =0 the SN-parameter multi-
instanton solutions of 't Hooft and %itten.

This method looks rather promising and it is rea-
sonable to expect that one can find all finite-action
solutions. of the SDE and the most general family of
multimonopole configurations carrying out the pro-
cedure outlined in this paper.
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