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A formal Lie-algebra approach to symmetry breaking is studied in an attempt to reduce the arbitrariness of
Lagrangian (Hamiltonian) models which include several free parameters and/or ad hoc symmetry groups. From Lie
algebra it is shown that the unbroken Lagrangian vacuum symmetry can be identified from a linear function of
integers which are Cartan matrix elements. In broken symmetry if the breaking operators form an algebra then the
breaking symmetry (or symmetries) can be identified from linear functions of integers characteristic of the breaking
symmetries. The results are applied to the Dirac Hamiltonian of a sum of flavored fermions and colored bosons in
the absence of dynamical symmetry breaking. In the partially reduced quadratic Hamiltonian the breaking-operator
functions are shown to consist of terms of order g7, g, and g° in the color coupling constants and identified with
strong (boson-boson), medium strong (boson-fermion), and fine-structure (fermion-fermion) interactions. The
breaking operators include a boson helicity operator in addition to the familiar fermion helicity and “spin-orbit”
terms. Within the broken vacuum defined by the conventional formalism, the field divergence yields a gauge which
is a linear function of Cartan matrix integers and which specifies the vacuum symmetry. We find that the vacuum
symmetry is chiral SU(3)XSU(3) and the axial-vector-current divergence gives a PCAC (partially conserved axial-
vector current)-like function of the Cartan matrix integers which reduces to PCAC for SU(2) X SU(2) breaking. For
the mass spectra of the nonets J© = 07,1/2%,1~ the integer runs through the sequence 3,0, — 1, — 2, which indicates
that the breaking subgroups are the simple Lie groups. Exact axial-vector-current conservation indicates a breaking
sum rule which generates octet enhancement. Finally, the second-order breaking terms are obtained from the
second-order spin tensor sum of the completely reduced quartic Hamiltonian. The breaking terms include the
“anomalous” *F, F,, term found by Schwinger, as well as fermion and boson helicity-breaking terms.
Nonvanishing of the axial-vector-current divergence indicates the presence of solitons or, for electromagnetic
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coupling, of magnetic monopoles as the sources of strong fields.

I. INTRODUCTION

Several approaches to hadron symmetry-break-
ing problems have been studied from both general
viewpoints and for specific models.'”® The break-
ing terms £'ina Lagrangian £o+£' are interac-
tion terms, for example, the spin-orbit term in
atoms, or the J"A, term for fermion-vector-
boson interactions or the higher-order terms in
a gauge-field Lagrangian. Then for £, symme-
tries SU(3), SU@3)xSU@3), or SU(2) x SU(2), the
£ terms have served to classify various models
and assumptions of £,. The interaction terms are
related to level or mass splittings which are func-
tions of the breaking parameters. In the SU(3)

X SU(3) decomposition and in the 0 model, the bag
model, and related models, £’ contains several free
parameters which are empirically fitted to yield,
for example, nonet mass spectra. The number of
parameters is usually representation-dependent
and the physical bases of the parameters are not
clear. These and related considerations have led
to the observation that symmetry-breaking models
that contain several free parameters are not
unique and cannot distinguish among different £,
symmetries. It follows that the assumption of an
£’ with several free parameters is not satisfactory
even when the fit to data is good.

Recent gauge-field theories have provided a
more systematic approach. Renormalized theo-
ries offer the hope that all operators (functions)
can be represented in terms of a single parame-
ter.”*® Nevertheless, the unbroken gauge symme-
try is an ansatz.

Without the assumption of the interaction terms
or of the £, symmetry, it is yet possible to ob-
tain significant results by considering the alge-
braic structure of a sum of Lie operators which
correspond to observables of fermions and bosons.
From Lie algebra it can be shown that unbroken
symmetries of such systems can be identified
from a linear function of integers which are Car-
tan matrix elements; let A, € L*(G*) be opera-
tors of the algebra L* of the Lie group G, Then
operators A , € L4 exist such that

i.A o,[A;uAv]] :gopAv:anouAy: 1
where
Roy _28qu , @)
Sup

are the Cartan matrix elements of G% and ¢ is a
normalization constant. The Cartan matrix ele-
ments are integers which unambiguously identify
G*. For the simple rank-2 groups, ng,=0,-1
and n,,=0,-1,-2,~3. For rank-2 groups if
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Mgy =7, 4=0 then G* is SU(2) xSU(2) and for n,
=n,,=~-1 the group is SU(3). These well-known
results are discussed in several texts and pa-
pers.?'® We are here concerned with applications
to the breaking part of an arbitrary Lagrangian.
Let A, be replaced by a sum of operators g,A’,,.
Then the right-hand side of (1) becomes a sum of
terms c; n},, A} belonging to the unbroken algebra
and terms which are functions of the breaking
operators and Cartan matrix integers which iden-
tify the breaking symmetries provided the opera-
tors form subalgebras.

We consider in this paper an approach to sym-
metry breaking based on Eq. (1). The result re-
places the parameters in breaking terms with
functions of Lie-group structure constants and in-
variants. The functions are linear in the Cartan
matrix elements and identify the unbroken and
broken symmetries. The results are applied to
the problem of finding the symmetry of the Dirac
Hamiltonian of several fermion and boson opera-
tors with interactions. The basic result is a
first-order invariant of the medium-strong inter-
actions which is a PCAC (partially conserved
axial-vector current)-like function of Cartan
matrix elements of the breaking symmetry. Van-
ishing of the invariant in the chiral limit together
with degeneracy considerations specifies an un-
broken SU(3) X SU(3) symmetry of the quadratic
Hamiltonian; for SU(2) x SU(2) breaking the in-
variant reduces to the PCAC expression without
pole dominance and saturation approximations.
For the mass spectra of the low-lying nonets
J¥=07",%*,1", the integer runs through the se-
quence 3,0,-1, -2, which indicates that any break-
ing operator belongs to one of the simple Lie
groups.

II. FORMULATION OF THE PROBLEM

In a broken symmetry if the breaking operators
have an algebra then that algebra generates a
linear function of integers which identify the
breaking subgroup or subgroups and the unbroken
group. Let

hoky=k,, ig,A{‘ =A,
and ' 3
Eu =k ptAL,
where &, are fermion momentum operators of the
algebra L* of the group G*, the « are flavor in-
dices, A,€L*(G* are boson operators, and j are
color indices. The g and h are dimensionless cou-
pling constants and A, may be, for example, a

sum of vector and axial-vector field operators.
In the Dirac equation D(£,)¥ =0 the vacuum sym-

metry is defined by the algebra L* where £, are
obtained from

[¢,,D]=0. )

The & ,', for which (4) holds give the vacuum-state
Hamiltonian D(E;) in the absence of Higgs fields.
Equation (4) is a set of coupled commutator
equations for which the eigenvalues & ,', are diffi-
cult to find and the breaking operators are not ex-
plicit. The Dirac Hamiltonian D is reducible and
in the partially reduced quadratic block-diagonal
form the breaking operators are contained in the
linear spin terms o*[&,, (£, £,]] which are of the
form (1). In the completely reduced quartic
diagonal form the breaking operators are quadratic
spin terms which include the Pontrjagin density as
well as helicity-breaking terms. Assuming (4),
the symmetry of D is defined by the algebra Lf’ or

b =& 8 1=Fy +[A A ]+ F], +|k, 0]

=Gy +Ghy ®)
Fy.n/ =kpAu ‘kpAu’ FZ,, ::Apku"Ayku’ (6)
Fu+Fu,=[ky,A, 1+ (AR, ]. (1)

The commutators in (7) are of order g and are
defined interaction operators

[ky,4,]=ch,C,EXC, ()
where cf,,, are not necessarily Lie-group structure
constants and X € is a set of operators which do
not necessarily form an algebra. The right-hand
side of (5) forms a hierarchy of terms in powers
of the coupling constant to order g°. If the g°
terms belong to the vacuum-symmetry algebra
then the g terms are breaking terms associated
with medium-strong interactions'' and the g°
terms are responsible for the fine structure. If
the operators of order g have an algebra then the
medium-strong interactions can be identified with
a definite symmetry. Then we have the basic
questions: (1) Does the broken symmetry have an
algebra? (2) If so, then do the C and C" operators
form subalgebras? If so then the medium-strong
interactions can be identified with a definite sym-
metry group. :

Although these questions cannot be answered
generally, for conserved systems the first ques-
tion can be answered in the affirmative. For ex-
ample, a system of interacting currents J , for
which k‘&f,‘}‘:o has a symmetry group. Similarly,
a conserved Hamiltonian with interactions has a
symmetry group. The answer to the second ques-
tion is affirmative if the series

[Cu’kulalc(n[c;uku]]"-' (8)

terminates'® at an operator in X °x X °*,
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III. VACUUM CONSIDERATIONS

The linear Dirac Hamiltonian is ideal for study-
ing interactions as additional fermions and/or
fields add linearly and each matrix element is a
linear sum of fermion and field operators. Then
for any number of fermions and bosons the vacuum
states of the total momentum and the vacuum-state
Hamiltonian are defined by (4). This representa-
tion consists of four coupled first-order commuta-
tor equations from which §,', is difficult to obtain;
moreover, the breaking terms, although present
in the linear form, are not explicit. In the quadra-
tic Hamiltonian, first-order breaking terms ap-
pear in the spin tensor sum but the vacuum re-
presentation still consists of four commutator
expressions which are coupled in pairs. More-
over, the second-order spin terms which include
the *F, F,, term do not appear in the quadratic
Hamiltonian. The second-order spin terms do
appear in the quartic representation which can be
completely reduced. In this form the vacuum-
state representation is a single expression defined
by (4). As the chiral and helicity structures are
not clear in the quartic form we consider both the
quadratic and quartic forms of

+ -
D quartic =D quadratic D quadratic » (9)

where Djudntc 1S defined by Eq. (11). The vacuum
is then obtained from

D*(&,,D"]+[¢,,D"]D"=0, (10)

where D* denote the + sum of spin terms [Eq.
(11)]. We now consider the breaking operators of
the quadratic forms.

IV. BREAKING OPERATORS OF THE QUADRATIC
HAMILTONIAN

The partially reduced quadratic Hamiltonian in
Euclidean space can be written in a block-diagonal
representation

D=t"E,+(M+®)° - b0’ £,

+dynamical breaking terms, 1)
where b is a constant. The Minkowski-space re-
presentation adds diagonal terms {(M + &), £.} and
dynamical-breaking terms, which will not be con-
sidered here. The non-dynamical-breaking terms
in (11) are the familiar helicity and spin-orbit
operators which commute with the Hamiltonian.
The vacuum state D(E;) is obtained from (4) for

& =0 and the vacuum-breaking operators of the
quadratic Hamiltonian are obtained from the spin
terms or

0 [&,, £y )= 0" {nl by + 0l Ay + ko, [A,,4,]]
+[Aq, [k, k)] + &g, (B, +FI ]}
(12)

The first two terms include Cartan matrix integers
which identify the unbroken groups G* and G*.
The remaining terms include breaking operators
which generate Cartan matrix integers which iden-
tify the breaking symmetries.

The unbroken symmetry of Gt is that of the
vacuum algebra defined by (4). However, it is
evident from (12) that the algebra L8 x X¢x x°¢*
may generate a hierarchy of subalgebras accord-
ing to powers of g. With g=#°/a for soliton or
Schwinger monopole coupling, the g% commutators
represent strong boson-boson interactions, the g
commutators represent medium-strong fermion-
boson interactions, and the g° commutators re-
present fine-structure fermion-fermion interac-
tions. Similarly, the invariants of L* form a
hierarchy within which g?A*A , belongs to the
strong-coupling subalgebra L# and the invariants
of L are A"k, and £*A , and vanish in the case of
exact current conservation.

We now show that within the broken vacuum de-
fined by (4) and (12), the field divergence, which
is an invariant of the interaction subalgebra L°C,
generates a linear gauge function which specifies
the medium-strong breaking symmetry and the
scale factor. Then (4) determines a gauge which
is a linear function of the integer Cartan matrix
elements and is equivalent to the current diver-
gence in the quartic Hamiltonian. The completely
reduced quadratic D for operators defined on
Euclidean space reads

D=t"E, + (M+ @)%~ bo’“’[gu, £,]
~ ERE + (M +®)" +3S[E,, £_],
S:{H SPe= (s 0a)
—1:9_= (@, )
(60 E]0e=1=(8, EL] 0,
L& E- 10, =0=[8&, E_Jus, (13)
[ &0, £4]9-=0=1&, &.]y_,
(€0 €l =1=[8, £ ]y_,
(&, &1=0,

together with the chiral algebra'? for ¢, and
®=2;¢", is a sum of scalar fields which have the
symmetry of Gfo. Equations (13) and (4) give
; : b
AL AR &= iy O e [ & 1)

1 S
"E m[gp;[g-mg—]]' (14)
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The second line of (14) is in correct form for ex-
pansion in Cartan-Weyl operators k,—- E, , and
A,~E;g. Then the [£,, £_] commutators give a
sum of diagonal operators and we find

’

EkAl :5%%3(1 199, (15)
where b’ is a constant, n°=7° are Cartan matrix
elements of the breaking subgroups, and #° are
the transposed elements. The unbroken symme-
try can now be identified for 1 +#°=0. In the
chiral limit (15) =0 so that the symmetry is un-
broken if G€ is SU(3). Then the chiral symmetry
is SU(3) X SU(3). The breaking symmetry (or sym-
metries) can now be identified by the values of »°
and 7°. For the mass spectra of the low-lying
nonets J¥=07, 3%, 1~ the integer runs through the
sequence 3,0,-1,-2, which indicates that any
breaking operator belongs to one of the simple
Lie algebras.’” In other words, the mass spec-
trum appears to select a different simple group
for each mass state. However, current conser-
vation with (15) imposes an SU(3) “envelope” and
implies a sum rule which generates octet en-
hancement within the breaking.

With j, :mzAu ‘or normalizing to p we obtain the
PCAC result at n°=0 or SU(2) X SU(2) breaking
symmetry. Equation (15) then specifies the
SU(3) X SU(3) unbroken symmetry in the conserved-
current limit, gives no massless excitations, and
is independent of pole dominance and saturation
approximations.

The current divergence obtained from the
quadratic Hamiltonian does not include the Adler-
Bell-Jackiw anomaly which is a second-order
spin term in the quartic representation. The
total current divergence reads

, M b
kM]i_.__

T 2g; 1-h m*S(L+n)p +d*Ey, &y (16)

where *§,, is the dual tensor. In Sec. V we con-
sider the second-order breaking terms.

V. BREAKING OPERATORS OF THE QUARTIC
HAMILTONIAN

The quartic Hamiltonian can be written in a
completely reduced representation

unatti(::[gug;l + (M + @)2 +b0"“’ gpu]
X [E*E, + (M + ®)* - bo* £, ] (%))

and the sum of spin terms commutes with D*.
The breaking operators in (17) are related to the
second-order spin tensor sum by

%(0‘"’ £",,)2=§§u,,2+%y5*§“,,§w, (18)

where *£,, is the dual tensor and

*Eyy By = 2€ o Moy Ryl gt G, AYA )
+ *ku,,A ppt XA Ry,
+*(yy +A ) (Fuy + F 1)
+*(Fuy+Fp) (kR +A )
+*(Fy,+Fh)(Fy,+F}L). (19)

The right-hand side includes a fermion helicity-
breaking operator *,,k,, and a boson helicity-
breaking operator *A ,,A ,, which generate the in-
teger Cartan matrix elements in the first two
terms; the remaining terms represent the inter-
actions of fermion and boson helicity operators,
spin-orbit operators, and the Adler-Bell-Jackiw
anomaly, which appears as a second-order spin-
orbit term for Abelian G*. We consider (19) for
the Abelian special cases and in the chiral limit.
For Abelian G4, Eq. (19) reads

€y £y =Ry Ry, + ¥k, (Fu, +F L)
+X(F y+ F:ﬂ,,)ku,,
+*(Fuy+F 1) (Fup+ F1) (20)

which relates the axial-vector-current divergence
to the Pontrjagin density for £, =93 ,. In the chiral
limit, (20) becomes

Ry Fuy=Fyy *F;w:_é(*kuvkuv‘”}*FwFuv)
0. 1)

The k, *F,, term gives the axial-vector-current
divergence and *F,, F,, is the anomalous term.
The *k,,k,, term is a color neutral helicity-
breaking term which vanishes for Abelian G* and
for SU(2) X SU(2) breaking for which n%,=0. Then
*Fuy Fup=0 in the chiral limit. In electromagne-
tism the left-hand side of (21) is just the diver-
gence of the pseudovector current which vanishes
if there are no magnetic monopoles.

For Abelian G* and G4, Eq. (18) becomes

%(quFm;)z=Fpu2+75*FuuFuu (22)

which gives the Schwinger result'® for 2, =3,. In
the chiral limit the sum of breaking terms Eq.
(19) vanishes identically: 1+#n°=0 and k¥4,

=A"k, =0 by the chiral algebra so that *F,,F,,
=0.

A. Lagrangian vacuum

The Hamiltonian —D(£,) which results from (17)
for £,=0 is equivalent to the Lagrangian vacuum
broken by *i;‘,,,,‘g’",, or the quadratic spin terms.
'The breaking terms can be identified with definite
symmetries provided the group *G® XG? exists
and there is an overall symmetry G® X G%. Then
(18) reduces to
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(304 Eu)® =38 E7 + 58, Y€ wopottvotuler  (23)

where a'=(d5,)?, df, are structure constants of
GEt, &y is the diagonal Killing form, and n,,to-
gether with n,, identify the symmetry of the
breaking subgroups of *G® X G%. However, (23)
implies that *G¥x G*® is chirally symmetric, that
A, is axial, and

%Ys*F;n;Fpu= Tligu yysepvponquuAp' (24)

If *G¥x G¥ is SU(2) X SU(2) then (24) vanishes.
Consider instead the spin terms in the more
familiar form

(20 k) =2k )7 + 375 Ry Ry (25)

EOWA W =24, +37* A Ay, (26)

GO F ) =3 F '’ +37*F F oy, @7)
provided

( uy+ *R )Gl + (A + *A )G,
+(Fup+¥Fu) ey +Ay) =0 (28)

for F,,=F},. In this form the helicity and current
breaking are symmetric and can be identified with
the breaking subgroups *G®*x G*, *G4xG*, and
*G® X G4, as the integers obtained from

*kuukuuziguuepuponuokukp (29)

together with n,, identify, for example, the
breaking subgroup *G*x G*®. In spherical symme-
try, ky,=2(L,,+K,,) and

i*k“,,k“,sD“:x33+y3y+za,+t3,, (30)

where D* is the Euclideandilatation operator. The
operators *k,, represent rotations in the opposite
direction; the algebra *L* is therefore the same
as the &, algebra but the operator indices are
anticyclic. The couplings of *G* and G* are both
of order g° so there is no medium-strong breaking
of G*. The dilatation operator D* is characteristic
of the conformal and Weyl groups and indicates
k,—~L,+K,+D, which generate operators of the
form x9,+y9, and spectrum-generating subgroups
such as SU(1,1) and SU(2,1).

Nonvanishing of the axial-vector field diver-
gence in (19) indicates the presence of solitons or
for electromagnetism of magnetic monopoles.
Noting that A, —~ g; A}, with g=a and *g=n"/a for
Schwinger quantization the strength of the elec-
tromagnetic breaking can be found by means of

a2
Ay =al, A% ¢~ Fr) (31)

in spherical symmetry and

2

n’ n 1
Ay =Yaf, A~ 5 Y F() . (32)
J

The coupling of A, is of order a® and *A uy 18 Of
order a™? so that the fields of the breaking sub-
group *G4Xx G are of order a° compared to the
unbroken group. A similar result for the field
tensor breaking term *F,, F,, leads to the con-
clusion that the strength of the vacuum coupling
must be @~ and the strong field sources are
magnetic monopoles or solitons. This conclusion,
which has been reached by many authors, is also
supported by the equation of motion

("8, + M+ @)°)E, - iRV (ke +G )
—dyk”(*k yy +*G ) =0 (33)

in which the dual field tensors are of order a™!

and a, compared to @ and a®>. The pseudovector
current is therefore of order a~! compared to a.

VI. SUMMARY AND CONCLUDING REMARKS

In this paper we have introduced a Lie-algebra
approach to symmetry breaking in an attempt to
reduce the arbitrariness inherent in models having
several free parameters and/or an ad %oc vac-
uum symmetry. In addition to 0 models we hope
in this way to improve vacuum-symmetry identi-
fication and formulations of symmetry breaking in
bag models as well as non-Abelian Higgs field and
non-Abelian vector-gluon theories. The method
essentially replaces the free parameters with
functions of structure constants and invariants.
Then vanishing of the sum of vacuum-breaking
terms gives an algebraic function or functions
which may identify the vacuum symmetry as well
as the breaking symmetries. The condition is that
the breaking operators form subalgebras of the
broken symmetry and it is argued that this con-
dition is satisfied for conserved systems: As a
conserved system has a definite symmetry, the
breaking operators have subalgebras at least by
adjoining some vacuum-state operators.

The symmetry of the Dirac Hamiltonian of a
sum of flavored fermions and colored bosons is
considered in the partially-reduced quadratic and
irreducible quartic representations. In the
quadratic form we find that the unbroken symmetry
consists of a hierarchy of subalgebras in powers
of the coupling g. For soliton or magnetic mono-
pole fields the g® commutators and invariants re-
present strong boson-boson interactions, the g
commutators and invariants represent medium-
strong fermion-boson interactions, and the g°
terms represent the fine-structure fermion-
fermion interactions. The broken vacuum defined
in the conventional Hamiltonian formalism is then
considered in order to find the breaking functions
within the hierarchy. We find that within the
broken vacuum the field divergence yields a gauge
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which is a linear function of integer Cartan ma-
trix elements and which specifies the vacuum
symmetry. The result is a PCAC-like expression
which vanishes for SU(3) X SU(3) vacuum symme-
try and reduces to PCAC for SU(2) X SU(2) break-
ing symmetry. In this case the current diver-
gence cannot vanish without the Adler-Bell-Jackiw
term which is a second-order spin term in the
quartic Hamiltonian. The breaking terms in the
quartic representation are second-order spin

terms which include fermion and boson helicity-
breaking terms in addition to the spin-orbit
breaking term *F,,F ,. The Abelian special
cases and the chiral limit are discussed.
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