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In the Born-Oppenheimer approximation to the MIT bag model the color-singlet n-quark (and/or antiquark)
system is studied. Analytic approximations to the spin-independent n-quark potential energy are developed, based
on spherical and cylindrical trial bag shapes. The domain of validity of these results is established in the qq case
through tests against a numerical solution. The resulting three-quark potential contains Coulomb-type and confining
parts. The Coulomb-type terms are purely two-body in nature, and the confinement term is a three-body potential.

I. INTRODUCTION

Recently, Haxton and Belier' have studied
mesons composed of a heavy quark and antiquark
by treating the MIT bag model' in an adiabatic
(Born-Oppenheimer) approximation. ' lt is as-
sumed that the glue field changes on a time scale
which is much shorter than that associated with
the motion of the quarks, whose separation is
treated as an adiabatic variable. It is further-
more assumed that the transverse degrees of
freedom of the glue field are not excited. In the
first step, they' solve the Yang-Mills equations
for the glue field generated by the fixed quark
sources, to lowest nonzero order in the quark-
gluon coupling constant g. In order to satisfy the
bag boundary conditions, it is necessary to deter-
mine the bag surface and the color-electrostatic
field simultaneously. The resulting bag energy
(for each separation of the quark and antiquark)
is, in the next step, regarded as a potential for
describing the relative quark motion. With only
two adjustable parameters (apart from the quark
masses) which describe the variation of the run-
ning coupling constant with distance, a good fit
to the spectra of mesons containing charmed
quarks and bottom quarks was obtained. ' It was
also argued that this potential has approximate
validity for mesons containing strange quarks, or
one strange and one heavier (anti)quark.

In the present work we will apply the same physi-
cal picture to baryons composed of three heavy
quarks. Although data on such systems are al-
most nonexistent at the present time —with the
exception of the 0 which consists of three strange
quarks —the formalism is nevertheless interest-
ing, because of the structure of the potential-
energy function which emerges. It contains read-
ily identifiable two-body terms, and also an im-
portant three-body term. The former represent
the color-Coulomb interactions and the latter
represents the confining interaction. This is in
marked contrast with the .phenomenological at-
tempts which have been made to describe light

baryons' ' and multibaryons' with (not-so-light)
quarks interacting by two-body potentials only.

In Ref. 1 the bag shapes (including cusp singu-
larities), the color-electrostatic fields, and the
bag energies were obtained by a numerical solu-
tion of the equations and boundary conditions, '
summarized in Sec. II. It would be vastly more
difficult to attempt a numerical solution for
three quarks because of the much greater geo-
metrical complexity. With the numerical solution
of the qq pro&lem in hand, however, the accuracy
of approximate analytic solutions can be judged,
and those same approximations can then be carried
over to the qqq problem in the'ir respective do-
mains of validity.

For example, it is shown in Ref. 1 that a spher-
ical approximation to the shape of the bag yields
an accurate value for the energy provided the qq
separation is less than 1 fm. ' Since an analytic
solution is available for a sphere, we shall use it
for the qqq problem when all the separations are
sufficiently small. This is the most important
region for the low-lying states of systems com-
posed of very heavy quarks and is discussed in
Sec'. III; The situation in which at least one quark

)

is widely separated from the rest of the system
is studied in Sec. IV. In Sec. Va global approxi-
mation is presented which joins the small- and
large-separation regions. In Sec. VI we discuss
some necessary extensions and problems en-
countered there.

GENERAL FORMULATION

In the Born-Oppenheimer approximation to the
MIT bag model, one starts by taking the n quarks
static. As a result the quarks enter the equations
of motion only as fixed color sources, and to
lowest nonzero order in g we have to solve'

n

-v'p'(x) = p'(x) =g Q;.&(x- x~) inside the bag,

(I)
and
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nvy'(x) = 0

1
on the surface

(2)

(3)

where G~ is an appropriate Green's function for
the surface. The absence of a surface term in
Eq. (4) is due to the boundary condition Eq. (2).
The energy of this system of static sources in a
bag is

x[S ( Jd(x -',=Q(x( )'+8

dV —,
' p' '+B

a

(5)

where use has been made of Eq. (2). It depends
on the positions of the quarks, of course, and be-
cause of the one-to-one correspondence between
the surface S and the fields Q', W can be regarded
as a surface functional. Given P', Eq. (3) deter-
mines which surface is consistent with a bag solu-
tion. This problem can also be stated as an

energy variational problem. " The condition that
W, subject to Eqs. (1) and (2), be stable with
respect to arbitrary surface variations, indeed
yields Eq. (3).

The variational formulation is particularly use-
ful for complicated cases like the heavy qqq sys-
tem. Here, determination of the correct bag sur-
face S~ would be a tremendous task. Instead, it
is'much more practical to approximate S~ by a
trial surface S(a,.) which is a function of a small
number of parameters a, One then requires that
W be minimal with respect to variations of S(a,.),
or equivalently

BW/Ba,. = 0, (6)

which yields the optimal parameters a, The cor-
responding fields (t) will not satisfy Eq. (3), since
these variations are not the most general ones
conceivable. Rather, one satisfies it "on aver-
age. "

From Eqs. (1) and (4) it is clear that the pre-

in terms of (t)'(x), the p, =0 component of the glue
field &' (x). The eight (a = 1, . . . , 8) color charges
Q;. =g&;. generate the color-SU(3) transformations
of quark j. One has I"'=2X' for quarks, and I'"'
= =,'X'r for antiquarks (T =transpose, A.' are the
usual Gell-Mann matrices). The unit surface
normal is denoted by n, and B is the MIT bag
pressure B' = 0.145 GeV."

For a given bag surface S Eqs. (1) and (2) speci-
fy a Neumann problem which has a unique solu-
tion (to within an additive constant")

( ' (x) fd'x =G„(x)p'' (x),, x

III. SPHERICAL APPROXIMATION FOR SMALL
SEPARATIONS

Consider a color-singlet system of n fixed
quarks and/or antiquarks, at positions x, , inside
a bag. When the distance between every pair of
quarks is small compared to the scale set by the
bag constant B ' =—1.4 fm, we expect the sur-
face to be far away from all the quarks. This
can be seen as follows. " According to Eq. (3);
the surface is that set of points where the pres-
sure of the color-electric fields - K', balances
the vacuum pressure B. For a color-singlet state
of quarks sufficiently close together, the domin-
ant contribution to the color-electric field will be
the dipole term: E gx/r', -where r is the average
distance from the quarks. At the surface (r=R)
one then has x'-BR'/c(„or R-x' ', where x
gives the effective size of the quark distribution.

When&�«B

' ~, also x«A. This relation sug-
gests that the energy of such a system will be
rather insensitive to the details of the bag shape.
In particular, a sphere (which has some practi-
cal advantages over the actual shape which may
contain topological singularities such as cusps')
can be expected to be a good approximation.

Using the Green's function for a sphere of
radius R, the solution to Eqs. (1) and (2) is"

g ~ ' A R'
4 R~F

+ constant,

2 ~ ~
~

x
2h ~

~I8,'-x x,. + IR'g —x,.xl—ln

(8)

under the restriction that one consider only color-
singlet systems, for which Z, F; =0. From Eqs. . .

(1), (5), (6), and (8), the energy of the spherical
bag can be obtained, but the minimization of
W[R] with respect to R requires a numerical solu-
tion of a transcendental equation.

If one omits all homogeneous terms in Eq. (8)
but the dipole (I = 1) term, it reduces to

and from Eqs. (1) and 5 the energy becomes

scription given above can be applied to any number
of quarks and antiquarks in a color-singlet state.

Finally, the potential energy of the n-quark sys-
tem is identified with the bag energy, evaluated
for the optimal parameters

V(x„.. . , x„)= W[S(a,.)].
This potential satisfies translation invariance.
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W~[R] = ,'mB-R'+o', QQ
),.)j l x,. —xj~

Ejx; ~ xj
i j

where o!,=g2/4m, F,. 'F, =Z, F;F;. , .and the infinite
self-energy terms have been omitted. From Eq.
(6) the bag radius is determined to be

' PPF, F,.x,. x,
i j

and the potential energy of the n-quark system in
one spherical bag in the dipole approximation has
a simple analytic expression

(12)
The first terms on the right-hand side of Eq. (12)
represent the two-body color-Coulomb interac-
tions. The volume energy and the homogeneous
part of the color-electrostatic energy contribute
equally to the final term in Eq. (12) which is an

n body conf-ining Potential. In this paper we will

be concerned only with n =2 and n =3 quark sys-
tems in detail, but in this section we formulate
our results for arbitrary n in order to stress the
extent to which they can be treated in a similar
fashion. '4

For the cases of qq and qqq in color-singlet
states, Eq. (12) becomes

V~-(x x-) =- ' +(-')'»a~x -x-~ (12)3l x, —x,-t

V 3(xg~ x2~ xg) = -3 QQ ~ ~ +kp,
t&j t j

where the slope of the linear term is

(6~B~~ 2)&&2

(14)

and the relations E'=-' E E- =-- and E F,= ——'
e 3~ e e S~ q a'

have been used. Note that the q confining term in
the dipole approximation has a very simple form,
depending only on the hyperradius p—= [&Z,&,

.(x,.
x )2)i(2

Comparing Eqs. (14) and (12), we see that the
q' Coulomb-type terms are a direct generaliza. .ion
of the corresponding qq term, with the, substitution
FP;, for F,F;. The q' confinement term is a gen-
uine three-body potential which results from Eq.
(6), or more generally Eq. (2), since the glue
field and the correct surface depend upon the posi-
tions of all the particles. This phenomenon is
due to the confinement property of the MIT bag
model, and may be a quite general feature of the
n-heavy-quark potential.

The accuracy of the spherical-bag approxima-
tion can be tested in the qq case. In Fig. 1 we
have plotted the numerical solution, "and the

I.O
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FIG. 1. Comparison of the heavy-quark-antiquark potential VH, as obtained from Haxton (Ref. i5) (solid), with the
full spherical-bag result V& and the dipole approximation to the spherical result, V&. VH minus the Coulomb potential
is shown on the left-hand scale. The differences V& —V& (dashed), and VH-VD (dot-dashed) are shown on the right-
hand scale. Also the 1s ec ground-state wave function is shown (thin solid curve) in arbitrary units. Here we used
n =0.55 and B ~ =0.145 GeV (Ref. 9).
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amount the full spherical-bag result for V,-, dif-
fers from it. We also plotted the difference one
gets using only the color-electric-dipole field.
For comparison, the ground-state wave function
for the cc system has been plotted also. Clearly,
there is little difference between the three poten-
tials in the region relevant for this charmonium
state, and they yield energy eigenvalues for this
state which are within 5 Me V of each other. ' We
are confident, therefore, that the use of the di-
pole approximation will yield a reasonable des-
cription for the lowest few states of the three-
heavy-quark system, also. To improve the num-
erical accuracy, especially for the excited states,
one would like a more accurate description of the
potential beyond 1 fm. This is achieved in the
next section by first examining the behavior of the
bag at large separations. Although large separa-
tions are not very interesting in themselves, be-
cause of the possibility of light-quark-antiquark
pair creation, this study will enable us to extend
the domain of our potential approximation.

IV. THE TUBULAR APPROXIMATION FOR LARGE
SEPARATIONS

As r = ~x, —x—, ~

increases, the dipole approxima-
tion to the qq system gradually gets worse (Fig. 1).
The color-electric field E' =-vg' thus can no

longer be regarded as that of a dipole. Under in-
fluence of the-bag pressure B, the field lines be-
come increasingly collimated as the quark and the
antiquark move further apart. When r - , an-
other simple shape with axial symmetry emerges:
the cylinder. In this limit the qq system is a tube

of color-electric flux, which connects the oppo-
site color charges at the tube ends [Eq. (1)].'~'
The field E' is uniform and tangential to the sur-
face [Eq. (2)]. Its strength is proportional to the
strength of the color charges (Gauss's law) and

together with Eq. (3) the radius A of the cylinder
is determined to be"

/-0

FIG. 2. Solid line: tubular approximation to the
quark-antiquark bag. The dashed lines indicate the dis-.
tortion near the quarks.

three quarks close together, and then moving one
of them away from the other two, one finds. a
confinement term highly similar to the qq one:
kx, with x= ~x, —x,2 ~. The next step, to arrive
at. the most general q' configuration, is to separ-
ate the two quarks in the diquark. Considering
only the two simplest forms, one obtains a tripod
(Y) [Fig. 3(a)] or a triangle (L) [Fig. 3(b)] shape.
In case of the F, each quark sits at the end of its
own tube which connects it to a common junction.
For each quark the junction seemingly has the
color properties of an antiquark, although there
is no net color charge at the junction. The con-
fining term in the potential energy of this system
is then Ar„where r„ is the sum of the lengths of
the legs, with the position of the junction x ar-
ranged in such a way that this total length is
minimal:

x —x,. =0.
i

Equation (17) states that the angles between the
legs of the tripod must be 120' and so r~ will
clearly depend on the positions of all three quarks

simultaneously:

(a)

for the qq system. The energy per unit length,
stored in this flux tube, is 0 [Eq. (15)], as cal-
culated from Eq. (5).

The above remarks suggest that when r is large
(»A „) the bag shape may be approximated by a
finite cylinder of suitable length I. and a radius
A =—8„. This approximation will reproduce cor-
rectly the dominant part of the potential energy
which grows linearly with r, but it may be clear
that it will be less successful in describing the
situation at the ends of the bag, near the color
charges, where the fields E' will no longer be
uniform (Fig. 2). One can generalize these con-
siderations easily to the q' system. Starting from

FIG. 3. Shape of a bag, containing three widely sepa-
rated quarks f(a), (b), and (d)] when none of the angles
in the quark triangle exceeds 120, (c) when one of the
angles exceeds 120 . The solid (dashed) lines indicate
the part of the geometry of which the energy can(not) be
computed reliably, using the tubular approximation.
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2 2 2 2 2 2 g L/2 1/2
(3)1/ 2 1 ~3 4 12 13 13 23 12 23

I

(18a)

in terms of x, , = ~x,~ (
=

~
x,. —x,. ~. When one of the

angles ~ in the quark triangle becomes larger than
120', Eq. (18a) no longer is valid, and a two-
legged bag shape emerges [Fig. 3(c)] for which

(18b)&& -&y3+&23

in case 8= ((x„,x„)). Finally, a special case of
this is three quarks on a line, within one cylin-
der, where r„=x». Examination of Eqs. (18a) and
(18b) for fixed p shows that the more collinear
configurations have smaller x~, and therefore
smaller "non-Coulombic" potential energies.

In case of the 6 shape [Fig. 3(b)], in which
each pair of quarks is joined directly by a tube
of flux, one finds the same energy (I3x~) and the
same domain of validity as for the Y shape. The
way in which this result comes about is somewhat
different though. For a b. shape the length of the
legs is fixed, but not the amount of flux going
through them. It is then by adjusting the flux in
the legs, or equivalently their diameter, in ac-
cordance with Eqs. (1) to (3), that the energy of
the 4 configuration is minimized. Going one
step further one finds that the intermediate bag
shape which is partly I', partly & [Fig. 3(d)] will
also have the same energy and domain of validity,
independent of the relative amounts of flux going
through the Y or 4. We have no way of distin-
guishing between the various geometries. We
will assume that the correct energy can be ob-
tained from Eqs. 18(a) and 18(b), and that more
involved geometries will not yield lower energies.

Considering quark systems with n ~ 4, one has to
be aware of the fact that now other than triplet
and singlet color charges may occur. The effect
of such charges, generated by composite quark
subsystems, is most clearly seen in case they
terminate a single flux tube, which then contains
a definite color flux. Both the energy per unit
length in the flux tube and its diameter are chang-
ed. The new values for these quantities can be ob-
tained from Eqs. (15) and (16), respectively, by
replacing E; with the proper charge E;=Z,.&;., the
sum ranging over the quarks in the subsystem.
This replacement is, of course, also the proper
one, when the subsystem is located at a junction.

The Coulomb (= inhomogeneous) part of the po-
tential energy does not depend on the shape of the
bag and will be identical to that found for the
spherical bag. Its contribution to the potential
energy will only be relevant for quarks close
together, of course.

The only remaining contribution to the bag

energy appears to be that associated with the ends
of the tubes, something which does not grow with
the overall scale of the system. Calling this term
Vp, we write the tubular approxim ation to the po-
tential as

(19)

and expect this to be useful when at least one
quark is far away from the rest of the system.

The suitability of Eq. (19) can be tested in the
special ease that all the quarks are collinear and

n & 3 so that only color-triplet charges are pre-
sent. One can then try a finite cylinder as bag
shape, using again the Green's-function technique.
One puts the quarks on the cylinder axis, which
is also the z axis. The quark positions then are
completely specified by their z coordinates z,
Equations (1) and (2) will give the glue potential

and Eq. (5) the energy W.
In addition to eliminating the cylinder parame-

ters R and L, according to Eq. (6), one also has
to make sure that for, a given quark configuration
these quarks are placed optimally inside the cylin-
der. This is done by replacing z,.—z,. +zp and
determining for which value of zp 8' is minimal.
Typically, the cylinder will have to be placed
symmetrically around the two color charges
which are closest to its top and bottom surfaces,
since their positions dominate W. Such a color
charge may be a quark, an antiquark, or a di-
quark. Only when another quark is within a dis-
tance 0&d &R„will this symmetric arrangement
be affected slightly. Denoting the distance between
the two outermost color charges by x, we consider
the limit r»B„. (In this geometry 2~=3.) Equa-
tion (6), for a,. =8 yields Eq. (16), and for a,. = L
yields I =—x+0.55'„.

For the case of a color-singlet qq state, the
resulting potential energy has precisely the form
of Eq. (19), with V, =-0.86o'.,/R„.

V. GLOBAL APPROXIMATION TO THE POTENTIAL

The information which can be gathered from
studying the spherical and tubular approximations
suffiqes to construct a representation of the q-q
potential which is both accurate enough for doing
spectroscopy, and simple enough to serve as a
model for other, less tractable systems. Note
the following: the cylinder bag yields the correct
slope for ~- , but not quite the right intercept.
One obtains Vp=—-0.11 GeV from the numerical
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result and V0=-0.083 GeV from the analytic
formula. %'e note that V', —, would intersect V",—,

ates=A„,

if we set V, =-0.094 GeV. This sug-
gests the following global approximation to V, -,:
use the dipole approximation for x~ R, and the
tubular approximation for r- 8, but with V, ad-
justed to make the potential continuous:

V,',-(~) = V',,(~),—

(20)

where V,';=-0.98o.',/A„. This potential has been
plotted in Fig. 4, as Vo (solid curve) for the
values of the parameters given in Ref. 9. The
Coulomb term has been omitted. For comparison
the difference of this potential and the numerical
result V„of Haxton, ' has been plotted as VH

—VG.

As can be seen, V~ will represent V,-, accurately
below 0.5 fm and reasonably well all the way out
to -2 fm which, in practice, is more than ample.

The potential energy of a color-singlet q' state
in the cylinder also has the form of Eq. (19) when
the two outermost quarks are widely separated,
but now V, depends upon the position of the third
quark z,. V, is the same as for the qq ease if
there is a diquark at one and a quark at the other,
but V, =-2.33o.JA„ it z, is midway between the
end quarks.

Vo change s most rapid ly as the diquark splits
up into two separate quarks and is virtually con-
stant when ~z,. —z,

~

&R„, i = 1 and 2. The change

in V, accompanies the transition of a one-leg
quark-diquark bag to a two-legged three-quark
one. However, the remarks made above regard-
ing the limitations of the cylinder approximation
as a bag shape apply here equally well to- the
quantity V,. Furthermore, Vo becomes incal-
culable analytically in case of the F- or 4-shaped
bags, where one has to account for the contribu-
tion to the energy of the end points and the junc-
tion [Fig. 3(a)] or the corners [Fig. 3(b)]. The
best we can do then is to fix V, by generalizing
Eq. (20), and match V,'~ to V,3 at a suitable point.
For example, one possible prescription based on
the observation that the antiquark-quark and the
diquark-quark systems are very similar, would
be to set

V 3(x„x„x,) = V', (x„x„x,), p (g (k)1/2

+ V,'g(x„x„x,), p o 8„(-,')"',
(21)

with V 3 chosen to make the potential continuous
for every geometry. Since p is fixed V,3 will de-
pend on two variables only.

VI. COMMENTS AND QUESTIONS

In Ref. 1 it was found that the fixed MIT coupling
constant" n, =2.2 yields a potential which is much
too strong at small separations. This problem was

I.O

V

(Gev j

0.5 O. I

I0 R I.5
r ( frn)

0.0

FIG. 4. The global approximation, VG (solid), to the q-q potential is shown on the left-hand scale. It consists of
the dipole approximation to spherical-bag result for y &8 (dot-dashed for y &R„), and the tubular result for ~&g„
{dashed for g &g„). The Coulomb term has been omitted. The small-dashed curve represents the difference between
the numerical result {Ref. 15) and the global approximation VH- V& (right-hand scale).
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4m 1
11 —2'/3 1 n(1/A r2') (22)

in terms of the number of quark flavors n& and the
QCD scale parameter A. The MIT value for n„
quoted above, was determined for light, relativis-
tic quarks which can be found with comparable
probability throughout the bag, and are at an
average separation of about 1 fm from each other.
The qparks in cc and bb bound states are highly
localized, and their separations range from 0 to
beyond 1 fm. Their interaction at short distances
should therefore be sensitive to the variation of
n, . In Ref. 1 x was identified with the q-q separa-
tion and the quark-gluon coupling constant g oc-
curring in Eq. (1) was simply replaced by g(r)
—= [4vc.,(r)]'~', with n, parametrized as

o(r) =
4m 1

11-2n~/3 1n[(1/A'r')+y] (23)

in order to give the correct small-r behavior and
avoid singularities for positive r. ~ and y were
treated as free parameters. A good reproduction
of the cc and bb spectra was obtained with ~ = 0.24
GeV and o., (1 fm) = 1.0 (corresponding to y = 3.36)."

The identification of x with the q-q separation
is fairly unambiguous. For q-q separations of the
order of 0.5 fm and less the quarks still are well
inside the (spherical) bag and this separation then
is the only available distance scale. It is not
clear, at present, how to incorporate the varia-
tion of coupling constant into the q' system, where
the choice of (a) distance scale(s) is much more
ambiguous. One might guess that the coupling
constant in the Coulomb-type terms will depend
on the two-body separations. But the coupling-
constant scale dependence in the other terms
(k, R„) is not at all clear. More systematic ways
of investigating these problems are being studied
at present. Once this issue has been resolved,
we will be able to treat the heavy-q3 system on the
same footing as the heavy-qq system. ' At that
point also the geometry-dependent part of the
zero-point energy of the confined fields should be
included in the potential energy of the q' system. '

To proceed with the second step of the Born-
Oppenheimer approximation, a variety of tech-

partly resolved by noting that the quantum-chromo-
dynamics (QCD) coupling constant depends on the
scale r, relevant to the problem. For very short
distances its leading behavior can be calculated"

niques to solve the resulting three-body Schro-
dinger equation is available. We find that both
separation of the Schrodinger equation into coup-
led Faddeev equations combined with a partial-
wave expansion, "and the use of a hyperspherical
expansion" converge rapidly for the ground-state
configuration of the q' potential of Eq. (21).

VII. SUMMARY

In the previous sections we calculated the poten-
tial energies of a qq [Eq. (20)] and a qqq [Eq. (21)]
system, in an adiabatic approximation to the MIT
bag model. It was shown that although these sys-
tems can be treated on the same footing, the re-
sulting q3 potential cannot be obtained by naive
generalization of the qq result. The reason, we
think, is that the interactions between the quarks
depend, in the presence of confinement, on the
configuration of the entire system.

We have shown that a simple and accurate ap-
proximation to the central part of the heavy-
quark-antiquark potential energy for small dis-
tances is provided by the sum of the color-Cou-
lomb potential and the dipole approximation to the
spherical-bag confining potential [Eg. (13)]. When
the. same approximation is applied to the q' sys-
tem, the confining term —which is a three-body
potential —has a very simple form, linear in the
hyperradius [Eq. (14)].

By joining the dipole approximation for small
distances with the tubular approximation [Eq. (19)]
for large distances, a global approximation to the
potential is obtained. This is accurate out to 2 fm
for the q-q system, and we presume that is also
accurate for the q system.

The proper way to incorporate asymptotic free-
dom into the confined q' system remains to be
ascertained.
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