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A real-space renormalization-group method for the two-dimensional @* field theory on a lattice is proposed. The
blocks are treated using a canonical transformation of variables followed by an effective decoupling. A satisfactory
picture is attained for the phases and low-lying excitations of the theory.

I. INTRODUCTION

The main reason for the large number of papers
devoted to lattice field theory,! by high-energy
physicists, is the search for new nonperturbative
approaches capable of describing such phenomena
as confinement, coherent states, phase transi-
tions, etc., which are supposed to play a major
role in hadron physics.? One of the new methods
provided by the lattice strategy® in its various
ways is the renormalization group.*% A Hamil-
tonian blocking procedure conceptually related to
the spirit of the renormalization group is due to
Stoeckly and Scalapino® and to Drell, Weinstein,
and Yankielowicz.” It constructs progressively
and iteratively an effective ground state for the
theory under study.®®

These techniques have obviously severe limita-
tions to describe a general interacting theory; for
example, the description of the interaction of two
fields has not been accomplished so far even in the
most simple cases. However, they are simple,
intuitive, and in some cases have shown them-
selves as powerful to reproduce with great accu-
racy exactly known nonperturbative numerical re-
sults.'® ‘

One of the main difficulties one faces with this
method in analyzing an interacting theory appears
at the time of decoupling the block variables. Even

for a small-size block, the criterion for choosing
the effective variable one retains is not obvious.
Therefore it is interesting to find simple, approxi-
mate, and of course reliable recipes, which can
be a safe help in analyzing more ambitious theo-
ries. With these remarks in mind I present here
a model of a block-spin approach to the two-di-
mensional ¢* theory.!* It is quite simple to set up
the recursion formulas of the coefficients, and it
provides a very clear picture of the two phases

of the system, predicting correctly the second-
order character of the phase transition of the
vacuum,'? and also the particlelike and kinklike
nature of the minimum excitations.

The paper is organized as follows: First, a re-
view of the application of this technique to the free
bosonic theory is given, which is useful in estab-
lishing the notation which will be used afterwards.
Section III is devoted to the ¢* theory. Two-site
blocks are formed, and effectively decoupled to get
the renormalization group equations. They are
written explicitly in the two limiting cases where
we can present them in a compact way. The nu-
merical results for any value of parameters are
given in Sec. IV, with plots of different observ-
ables. Section IV also contains the conclusions
and a brief comment about the performance of the
method with other theories. Finally in the Appen-
dix some formulas used throughout‘the text are
collected.

II. FREE BOSONIC THEORY ON THE LATTICE

The Hamiltonian of a free bosonic field on a one-dimensional spatial lattice is’

N
H=A3 32 +5(W2+2)x 2 = x,x,,]
=N

@)

with the canonical equal-time commutation relations [p ,,x,,]: -8, and periodic boundary conditions.
The exact solution of this theory describes a system of noninteracting oscillators of frequency

27

W =[“'2+ 4 Sinz(—é"()]l/zy K= SN+1

with ground-state energy density

<0=—1- I dx[p?+ 4 sin®(3k)]H/2,
. 2r %

n, n=0,+1,%2,..

., x=N (2)
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The correlation function I'(J) ={x,x ;» is also obtained by transforming to momentum space. One gets

r(J)= 2; (21\34_1') cos[(zbz;i_ 1) mJ] /2 {u2+4 sinz[(

To begin the iterative procedure, the lattice is
dissected into say two-site blocks. So the Hamil-
tonian H is expressed as a sum of independent
block Hamiltonians and the interblock terms. One
of the block Hamiltonians is'®

h=3p"+3(1*+2) x,?
+5p 7+ (B +2) 2~ x x5 (5)
Let ﬁs define two new variables, an average vari-
able and a relative one,
x=3(x+%,), %' =%, —%,. (6)
In terms of them we have
X=X 45X, Xp=x—3x", @)

9, =39 _+9

i
N 8:2_28

-0,

x° x

and # becomes decoupled,
n=3{zp%+3[4(n*+2 - 1)]x%
+205p 2+ 52 (24 2+ 1)]x'% . (8)
Our approximation now is to replace any power
of the relative coordinate x’ by its ground-state
expectation value. In this way we pass in the gen-
eral Hamiltonian to a new problem where the num-

ber of degrees of freedom has been reduced by a
factor of 3. The new Hamiltonian is

HY =37 355,24+ 3[4W? +2 - 1)]x > - 25, %}

DI ©)

Its ground state has approximately the same infor-
mation that the vacuum of A had.
Iterating this process n times we get

H™= ) [d™ + (3P(3p,2+50™2x 2
5
- 2% 10 %X o) ]

=2 [+ (B3 24k #2005, 2
=

- 2% 1% )] (10)
with :
/2
d(n-o—l) =2d(n) +%‘(‘J’2+23_n> ,
1
Zm2o 2y (3). v
In
(n)
8, =1im? (12)

n 9
€= a2

o2 \m)/2
_N+1)?} . (4)

I
one can easily recognize the prediction of the

method for the ground-state energy density.” For
p®—0, which is the most unfavorable case, &,
=0,67 to be compared with the exact result of (3),
&,=0.64. On the other hand, aside from the global
factor (3)7, as we iterate, the truncated Hamil-
tonian becomes that of a set of quantum oscillators
with quadratic coefficient 4”1.? coupled between
neighbors with a strength 2", i.e., they become de-
coupled at will. So, by inspection, the effective
vacuum we get consists of the state of having all
the oscillators in their ground state. This state is
unique, and the perturbation of the coupling terms
is irrelevant. Thus the minimum excitation of the
theory consists in exciting one of the oscillators.
The mass gap will be (3)"(4"u?)Y 2=y, which is the
exactly correct result.

To compute the two-point correlation function
I'(J) = (x(0)x (J)) with this approximate technique,
we follow, adapting it to our problem, the method
developed for Ising spins in Ref. 14. The result is

1

I'(J)= (é)q’l{— [uZ+ 3/279)]

L ~ 1 yj=q-1 1
+§[§1 (z )j [uz+!(3/21—1)]1 2]} N

(13)

where J=2% ¢ being the number of blocking steps
which are necessary to bridge the distance J. In
(12) we have used the formula (A2) of the Appendix
for the primed nth oscillator, i.e., the one we dis-
card in each step. Equations (13) and (4) provide
similar decaying to zero functions.

M. ¢* THEORY ON THE LATTICE

The ¢* theory with nearest-neighbor interactions
is described on the lattice by the Hamiltonian

H=) [% Pz WP +2)x 24 x,t —xx ] (14)
i

In analogy with the free case, we begin dissect-
ing (14) into two-site blocks, with a Hamiltonian
given by

h=30,"+3 (1% +2) 2,2 + x5,
+3P7+3 (B +2) K2+ A, —x, x, (15)

and define x and x’ as we did in (6). Now % is not
decoupled,
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23[4(w?+2-1)]x2+a0x%

+2{5p 2+ 3 (L2 2+ )]0 2 G+ 3 x% "2
(16)

and we need an effective procedure to get it. An
expeditive, however too crude, way would be to
substitute the x’% factor of the coupling term by its
ground-state expectation value (using as ground
state that of the primed oscillator). With an ex-
ample we can easily convince ourselves that this
is not adequate. Let us suppose that the initial
parameters correspond to what will be deeply
ordered phase, i.e., large and negative p2 for a
fixed A. With the former recipe we would have

~ 352 +3[4(pP+2 - 1)]x% +4Ax G +3 2 (1) x2

2<%p'2+%[%(u2+2+1)]x'2+{%x'4> i a7

As by hypothesis we are deeply in the magnetized
region, {(x’2) may be well approximated by its
classical value (see the Appendix),

—3

(=23 Mo, 18)

h—~const+3{3p2+3[4(2M2 - 8)x%]+41x*} (19)

and we see that the oscillator of the average coor-
dinate has changed the geometry of its potential to
a single-minimum well (in other words the quad-
ratic coefficient is positive now). This is clearly
nonrealistic. Using a simple classical argument
we will see that the basic effect of the coupling
term in (16) is not to destroy the two-minima ge-
ometry of the coordinate x but to do that only with
the x’ coordinate.

Forgetting for a minute the kinetic energy of
(16), let us see which one of the four following
classical situations minimizes the energy:

(i) Both particles are lying at the bottom of their
respective wells. The energy would be

-1

M?
h"z{ap +2 4([-1 +1)]x +4>\x4}+zX ar

F_;{ [4(M2-1)f}_ (M2 1)
"2 T8

16 X4x
o [EMP-3)]Y  (M*-3)?
E’Z{" 16(7t/16)}_ 8y’
(20)
4(M?-1) 3(M2-3) 3(M*-1)(M>-3)
V=395 Y/ 4 ’
Eoo_ MP-1)?+(M*-3)° 3(M?- 1)(M?-3)
i== 8\ + %Y .

(ii) One particle lies on x =0 and the other at the
bottom of one of the two minima of x’,

E=0, V=0,
(M2 _3)?

s T -
(M2 - 3)*

E“=_——-—_—87t .

(iii) One particle at one of the bottoms of the x
well and the other at x'=0,
(M?-1)?
g
(Mz - 1)2
8x ‘
(iv) Both particles are at zero,

iv=0‘

E=- , E'=V=0,

(22)

Eyy=-

For M? large the energy is minimized by the
third situation, so that, roughly speaking, in the
ground state of (16) the x particle sees a double
well, and the x’ a single well. From these simple
remarks we conclude that the manipulation of (17)
is not good. '

To decouple (16) we will proceed more symmet-
rically between x and x’. The coupling term is
divided into two equal pieces 3Ax2x’2. One of them
serves to modify the x’ oscillator with a term
$Mx?x’2, where (x2) has been computed in the
original x oscillator. The other piece $Ax%x'2is
used to modify the average oscillator x using the
already modified x’ oscillator.

With this basic philosophy let us work out all the
expressions for the deeply ordered phase. Here

(xz)— — 1 (23)

2+ 3ax2x 2+ 2{5p 2+ 5[5 (12 +3)] 42+ Eaxd

=3{3p% - 3[4(M2 - 1)]x? +4xx G+ Iax2x24 2{3p 24 3[5(M?+3)] "2+ & Ax"}

-%{%pz-—%[4(M2—1)]x2+4 Xx4}+%7*2[(M2+]é g7z x”+const

%{%p2—§[4(M2—1—\/—3:2 zm%s-)—ﬂ—z)x"’] +4>~x4}+const. . (24)
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Hence the new global Hamiltonian would be

b2 %3 3
oSG (w2 -1

[]

Iterating this process » times one obtains

H™ = 35 (D32 +hom2x
ll

+ Ay, A 2% x ., 1) + CODSE
(L)n pl'z Lgpn,mz2, 2 n 4
= 3 T+2 z X, P+ 4"\,
ll

- 2"x,.x,.,1}+const (26)
with
Z™2= 242,
3

V2 2n[]Z(n)2| +5(.12_)n]1/2 ’
@)

Zo.+1)2=Z(n)2__ (%)n +

1

M 1
)2 _ 2, 9N 1
Zre e L sy @9)

So we see that in the effective Hamiltonian that
governs the deeply ordered region, aside from the
global factor (3)" which will set the magnitude of
the excitations, the anharmonic oscillators be-
come progressively decoupled, and we can consid-
er the coupling terms as a perturbation of the
single-site Hamiltonians. For a negative and large
enough pu? the series Z%™ converges for a large »
to a finite number Z%, which is negative, and which
obviously depends on the initial u2 and . These
anharmonic oscillators have two minima; the posi-
tion of them is a constant equal to |Z2|/4) and
1

)] +4x,t le,xm}+ const. (25)

|
their depth increases at will with a factor of 4 for
each blocking step. In this situation, the two low-
est-energy eigenstates become degenerate, and so
our ¢* field theory would have a largely degenerate
vacuum, corresponding to any situation of having
the different particles indistinctly in one of the two
minima of their respective double-well potentials.
The pertubation coming from the coupling terms
removes obviously this large degeneracy giving a
twice-degenerate vacuum, corresponding to the
states with either all the particles at the left or

all at the right. That is we are describing a mag-
netized phase, with an order parameter

(x) =%(l izl) v (29)

With respect to the low excitations, it is obvious
that here the most economical one corresponds to
setting up a kink or domain wall. Its mass would
be

N A
My, = (2)7[274x)7] “Ton (30)
Let us see now the expressions we get for the
iteration in the deeply disordered region, i.e., p?
is large and positive. Here we are allowed to do
the harmonic approximation for the different {x2)
values. From (16),

1

<x2)=2[4(“2+1)]1 Z @61

1

~Llfli2 Lrac2 o 2 35,202, 35,12
h=3{3p2+3[4(p2+2 = 1)]x2+4 xS+ IAx2x2+ 30x AT D
+2{3p 2 +3[5 (L2 +3)]x" 2+ HAx"G

A
=%{§P2+%[4(P~2+ 2 - 1)]x2+4xx%+ Irxx’? +2{%P'2+%[%(“2+ 3+ [4(#2:1 DF 2)]x’2+1%lxr4}

1121 2 3 1 2 4
2{21’ *2[4(“ +1+2>\[u2+3+3x/4(u2+1)]”2)]x AT const. 52
Hence the new global Hamiltonian would be
1 1 3
HWL _ 12 (%)1{§p12+ Ex12[41 <u2+ 1 +2{“2+3+ 3 7\/[4(I»12+1)]” ﬁ)] +4 - 21"1’5“1} +const . (33)

Iterating » times,

y 1 1 1
H™= Z @zp 2+ 30 ™% 2+ Ay - 27 x 1ea1 F+ CODSE
e

= zl: @){Ep:2+34"Z 2% 2+ 4"\x, = 2" ,x ., L+ const (34)

with



23 BLOCK-SPIN METHOD FOR THE ¢* THEORY ON A LATTICE 1849

Z(O)Z: u2+2’/
3
(n+1y2 = 7 (m2 _ (Lyn
Z Z (2) 2n+1{Z(n)2+ (D" +3x/27 [z ™2 _ (%)n]uz} ’ (35)
3Ax~1 1
(n+ -
VA "2-u2+7 yers PY {Z(l)2+(%)l+3}\/21+1[z(1)2_ (%)1]1/2}' (36)

The iteration process leads again to progressive-
ly decoupled anharmonic oscillators. The differ-
ence with the above lies in the sign of Z2—here
this limit is positive. Therefore, the vacuum of
the theory is given by the superposition of the
ground states of each single-well anharmonic
oscillator. This state is unique, there is no mag-
netization, and the perturbative coupling terms
play no role. The minimally excited state cor-
responds to having one oscillator minimally ex-
cited and the rest in their ground states. This is
a sort of particlelike excitation; its mass would be

M aeio10 = (3) (4222 = (Z2)1 /2, 37

To end this section we present the formulas
which allow us to compute the correlation func-
tions in the two extreme regions. For ['(J)
=(xox ), if J=2%we find

N
1
F(J)=Z(—<x’z>q+ Zq; (x’2>,) +(x®) v (38)
i=
with N—~e. (x%, stands for the expectation value
in the ground state of the x oscillator, in the nth
step of iteration. In the deeply ordered region,
(38) is computed using

a1 1
(x 2>j“'2" 2j-1[,z(j)2;/2+_2§(%)j]1/2’
(39)
) y= 312
NT 4 A

On the other hand, in the deeply disordered region
we use instead

A 1
(x 2>j "2 X 2j-1{Z(j)2+ (%)j_*_sk/zju.[z(jm - (%)j]uz}l/z ’
(40)
(x® y=0.

The formulas presented so far for the computa-
tion of Z%(x, u?) have been computed in two ex-
treme regions, which has allowed us to approxi-
mate the (x% of an anharmonic oscillator either
by the classical value or by the harmonic approxi-
mation. In general these approximations are not
good, and one should compute the (x? values more
carefully. For this quantum-mechanical computa-
tion we rely on the Hartree-type linearization of
the anharmonic oscillator!® as explained in the
Appendix. The numerical results for any initial

I
value of the parameters appear in the next section.
They are improved in accuracy. However, one
should realize that the picture we have seen in the
two extreme cases holds at any time. That is,

if the final Z2 value is negative the vacuum is
doubly degenerate and (x) is different from 0. If
it is positive the vacuum is unique. Furthermore,
for any Z? final value and for any of our approxi-
mations, (29), (30), and (37) are correct. This
may be easily seen, for example, for (37). Using
(AT),

0\, . 4"7?
: Mpart1c1e=(§> [(4 A)llsg(ly W)]

1\" 2" 2\1/2
-(3) [(4"7\)1/%%%,?}{22. (41)

IV. NUMERICAL RESULTS AND CONCLUSIONS

As commented above, the use of the two extreme
approximations (A2) and (A4) to compute {(x* for
anharmonic oscillators is clearly bad for the in-
termediate region, where we will stick to the pre-
diction of the Hartree approximation (A5), main-
taining always the blocking philosophy explained
at length in Sec. III. The results collected here
are for A=1, which can be obviously changed at
will.

The prediction for the magnetization (x) is
plotted in Fig. 1, showing the second-order na-
ture of this phase transition.’? In Fig. 2 the mass
gap of the theory is represented. The left part

<X>

-4 -3 -25 -2

-15 R /«?
FIG. 1. A plot of the magnetization {(x) vs u? for A =1.
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MASS GAP

2 A 0o M2
FIG. 2. A plot of the mass gap to the first excited
state vs i for A=1. The unit of energy is A.

of the curve corresponds to the kink, and the right
one to the particlelike excitation. Both leave from
0. Finally in Fig. 3 we have drawn the results

for the two-point correlation function in two ex-
treme situations. 3(a) is in the ordered phase

and 3(b) in the disordered one. We have omitted
the computation of the ground-state energy density,
which is stored in the successively accumulated
constant terms. Obviously any of the predictions
of the method may be easily improved in accuracy
by using more exact expressions for the basic

(x% value of the anharmonic oscillator. That would
be certainly important for the numerical computa-
tion of critical parameters. However, we believe
that our method at the level presented here is
remarkably good for its simplicity and economy,
leading to a quite simple picture of the asymptotic
regions reached after iterating.

In a coming paper we study the higher dimen-
sions of this model and others with continuous
symmetries. However, we shall advance here the
main qualitative features of the asymptotic beha-
vior one gets after iterating.

For the ¢* O(2) model in (1+1) dimensions, i.e.,
for a chain of two-dimensional anharmonic os-
cillators,

H= Z [3D2 +30%F 2+ 2T 2+ 5(T, - T,,.)°] (42)
J

with T =(x,y), two phases are obtained. They are
characterized by the sign of Z2. When Z% >0 we

are again in a disordered phase with a finite mass
gap. For Z%2<0, we get that the low-energy physics
of this phase is equivalent to that of a set of quan-
tum rotators with constant length, where the kinetic
energy becomes as small as we wish in compari-
son with the coupling terms. In spite of this rela-
tive smallness we know that perturbation theory

is not adequate.!®* A simple recursive method

built ad Zoc for this special situation'” tells us

that we are in massless phase with (%) =0.

(n-2186)x10°

02 8 16 32 J
nx10f
5
4
3..
2<
1_
oh 374 8 % 32 J

FIG. 3. A plot of the correlation function I'(J)
={(x(0)x ) vs J. (a) A=1, p?=—10. (b) A=1, p®=+10.
In both cases we have used the formulas (37)—(41).
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For the ¢* O(3) model, i.e., a dynamics given
by (42) with ¥ =(x,y,z), for any initial value of
u% and A we get Z2>0. Thus there is only one
phase. Technically this appears when one makes
the basic manipulation of (24). Then the positive
coefficient of x% one gets from the T’ oscillator is
always bigger than the original negative coefficient.
This happens simply because now the quantum os-
cillators are tridimensional. Thus we get a mas-
sive theory for any value of the coupling.'®

With respect to the (2 +1)-dimensional case,
we have begun exploring these models, extended
in a hexagonal lattice. Each block contains four
sites, and we retain the average variable. One
always finds two phases, even for the O(3) case.
The signal is, as usual, the sign of Z2. Here for
the Z2% <0 phase, perturbation theory is correct
and, therefore, the corresponding global symmetry
is spontaneously broken.

We believe that armed with a blocking procedure
like this and the equivalent for fermions of Ref. 8
we will be able to describe satisfactorily the inter-
action of two fields and to analyze the physics of
compound boson-fermion systems on the lattice.
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APPENDIX

Here we collect some formulas of quantum os-
cillators, frequently used in the text. For the free
case we needed the expectation value of x? in the
ground state of harmonic oscillator. For the
Hamiltonian

=107+ dmn?, (a1)
1
(xz>=%. (A2)

For the ¢* theory we need equivalently {x2) in an
anharmonic oscillator. For the Hamiltonian
h=3p*+3m3x2+ A, (A3)

if we are deeply in the double-well region, i.e.,

<>

-2 -1 0 1 m2
FIG. 4. A plot of {x?%) in the anharmonic oscillator
with a Hamiltonian % =%p 2+ & m% 2+ Axt, for A=1. The
dashed line corresponds in the double-well region to the
classical value {(x2) = —m?2/4A. The continuous line is
the prediction of the Hartree aproximation. For A =1,
the intercept of both regimes happens for m?~—1.3.

m?<0 and |[m?|=M?>0, we assign the classical
(geometrical) value

()= (ad)

On any other situation of parameters we stick to
the prediction of the Hartree-type linearization of
the anharmonic oscillator.'® Here (x?2)=a® veri-
fies the condition

1

“om?+ 122272 (A5)

aZ
Equation (A5) for a large and positive m® eventual-
ly reaches the harmonic value (A2).

In Fig. 4 we plot (x?) vs m? for A=1, showing
the intercept of the two different regimes. This
interpolating procedure is apparently crude but
quite sufficient for our purposes here.

Once one knows the value of {(x2) for x=1, and
any quadratic coefficient, any other situation is
also known by using the scaling relation

(o200, m2) =52, m2 /2 (46)

The difference in energy between the two lowest-

energy eigenvalues also verifies a scaling relation

g\, m?)=AY3g(1,m2/x?/3). (A7)
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