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Dynanncal etluations for a Regge theory with crossing symmetry and unitarity.
IV. Coupled channels
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Integral equations for construction of a crossing-symmetric unitary Regge theory are extended to allow two
coupled two-body channels. As in the case of a single channel, spectral functions are represented as Watson-

Sommerfeld integrals over continued partial waves. A new type of partial wave is needed to represent one of the
spectral functions in a region where one channel is open and the other is closed. This leads to certain difficulties in

allowing realistic Regge poles.

I. INTRODUCTION

Integral equations for construction of a crossing-
symmetric unitary Regge theory were described in
the first papers of this series. ' ' The equations
were stated for meson-meson scattering, in the
case of one neutral pseudoscalar meson. Unitarity
is exact in the elastic region, while in the inelastic
region there are absorptive effects of multiperi-
pheral type arising from crossed two-particle pro-
cesses, plus any additional inelasticity that may be
introduced through an arbitrary central spectral
function. Given a solution of the equations, an am-
plitude rpay be constructed which would have Man-
delstam. analyticity with correct support of spectral
functions and exact crossing symmetry.

Extension of the equations to include the three
isospin amplitudes of mm scattering is straightfor-
ward. A more difficult problem is to allow several
coupled two-body channels such that the two-body
unitarity condition is not diagonal in an angular mo-
mentum and isospin basis. This is the problem
discussed in the following for the case of two cou-
pled channels called mm and MM. The formalism
is constructed in close analogy to that of Ref. 1 in
that spectral functions are represented by Watson-
Sommerfeld integrals -over continued partial-wave
amplitudes. 4

There is no difficulty in constructing the spectral
functions so as to ensure two-body qnitarity, exact
crossing symmetry, and proper support. A new
feature is encountered, however, in representing
the spectral function associated with mw -MM in the
energy region where the MM channel is closed but
wn is open. It must be represented by a modified
partial-wave amplitude which is not the usual
Froissart-Qribov amplitude analytically continued
from the region above the MM threshold. This
complicates the use of partial-wave dispersion re-
lations and the N/D method, so that the method of
treating Regge poles developed. in Ref. 2 is no long-
er effective as it -stands. Until certain delicate

problems of analytic continuation are solved, the
present formalism gives a mell-defined set of inte-
gral equations only when there are no Regge poles
in the right-hand half of the angular momentum
plane.

Section II summarizes kinematics, crossing con-
ditions, and the form of the Mandelstam repre-
sentations. Here, and throughout the paper, dis-
persion relations are written in unsubtracted form,
as is appropriate to the case without Regge poles in
the right-hand half plane. '

Section III introduces the Froissart-Gribov am-
plitudes.

In Sec. IV and V, the Watson-Sommerfeld repre-
sentations of spectral functions are derived. These
representations have the advantage of displaying
two-body unitarity explicitly. Also, the deduction
of their support properties is quite simple, as is
shown in Sec. VI.

Section VII contains bri. ef indications of the prob-
lems involved in setting up a system of integral
equations for determination of amplitudes, the
"crossing-unitarity mapping". A matrix N/D meth-
od, proposed in a recent paper, ' is incorporated in
a tentative form of the mapping. As was implied
above, the N/D method does not in itself solve the
problem of handling Regge poles, but since it goes
some distance toward that goal I have shown how to
employ it in a scheme which does not yet accomo-
date Regge poles.

In Sec. VIII the difficulty caused by Regge poles
is delineated.

II. KINEMATICS, CROSSING, AND
MANDELSTAM REPRESENTATION

There will be two spinless pseudoscalar mesons
called m and M, with masses m, and m„respec-
tively, m2 ~ m&. One is interested in the case where
ms/m, ~ mn/m„with mr and m, being the masses
of the physical K and z mesons. For simplicity the
M meson does not carry hypercharge, but there is
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no difficulty in extending the formalism to include
hypercharge so that M could be identified with the
physical K.

Just as though there were hypercbarge, mm and
MM intermediate States will be disallowed in the
mM channel, the lowest inelastic threshold of the
latter being (3n)M. Elastic channels vs, MM, mM

will be numbered 1,2, 3, respectively, and the ma-
trix of elastic and quasielastic plane-wave scatter-
ing amplitudes is written as

A, (s, t) A»(s, t) 0

A(s, t) = A»(s, t) A, (s, t) 0 (2.1)

0 0 A, (s, t)J

s )
=cos 8 )

= 1 + t/2q )' . (2.4)

Time-reversal invariance is assumed, so that; A»

In the center-of-momentum frame the momentum
of a particle in tbe ith channel is q&, where

q,'(s) =(s —4m, ')/4, i =1,2 „ (2.2)

q~2(s) = [s —(m, +m2)'][s- (m, —m, )']/4s, (2.3)

s' ' being the total energy in that channel. In
terms of t, the square of the invariant momentum
transfer, the cosine of the scattering angle for
elastic scattering in channel i is

For mm-Mj/t the corresponding cosine may be
written as

8~2 =cos8» = (q~ +q2 +t)/2q~q2

= —(q,'+ q, '+ u)/2q, q, ,
where

u =Z —s —t, Z =2(m, '+m, ') .

(2.5)

(2.6)

(2.'t)

Each of the four amplitudes has a partial-wave de-
velopment

A, (s, t) =Q(2l+1)Pg(z))a, )(s), i=1,2, 12,3.
gLQ

(2.8)

As in Ref. 1, unitarity conditions are stated in
terms of partial waves. The phase-space factor x,
of the itb channel is defined to include a unit step
function, which vanishes below the channel thres-
hold s&'.

x,.(s) = 8(s —s,)q,(s)/s'",
(2.9)

s, =4m, ', s, =4m, ', s, =(m, +m, )'.
The unitarity condition is

[a(s,) —a(s )j/2i =a(s„)~(s)a(s )

+E(s}+g~a(s), s ~ s, (2.10)

where the angular momentum index / is suppressed
and

~ 0 0 a3~ 0 0 E„O
al al~ 0

a„a, O, F= F„F, O, r= 0

0 0

0, a(s,) = lim a(saic}.
0

(2.11)

The absorption matrix (overlap matrix) E accounts
for transitions to and from channels other than the
ones treated explicitly. The lowest states appear-
ing in F„E2, and E» are 4m states, while tbe low-
est in E, is (3w)K. Notice that if m, =m, and m,
=m~, then ma 3' esl and F2 and Fl2 ar
below the physical threshold s, of the amplitudes a,
and a». The term 6~a in (2.10) is the discontinuity
of a over its left-hand cut in the s plane. As will
be shown, the element a, has a left-hand cut begin-
ning at s =s, —s„sothat d za, will appear in (2.10)
or sl ~s s2 sl when s, is greater than 2s„as it

is in the case of m, =m„m, =m~. All other ele-
ments of A~a are zero in the region of interest s
&Sl.

To discuss crossing symmetry, let us first con-
sider those amplitudes in which all four legs cor-
respond to the same type of particle A, (s, t), i
=1,2. Since s+t+u =4m,~, each amplitude may be
regarded as a function of any two Mandelstam vari-
ables:

A,(s, t) =B((t,u) =C,(u, s), i =1,2. (2.12)

Crossing symmetry is the statement that each of
the functions A„B„and C, is symmetric in its
two variables. In terms of A, alone, crossing
symmetry may then be expressed by the relations

A, (s, t) =A, (t, s}=A,(s, u), i =1,2. (2.13)

The other amplitudes may be treated similarly.
For nm MM one has

A„(s, t) =B„(t,u) =C„(u,s), (2.14)

where s+t+u =2(m, '+m2'). Since the t and u chan-
nels are physically equivalent, Blp must be sym-
metric. In terms of A.„that means

A„(s, t) ~A„(s,u}. (2.15)

For mM-mM,

A, (s, t) =Bs(t,u) =Cs(u, s), (2.16)

and C, is symmetric due to the equival. ence of s and
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u channels. Henc e

A, (s, t) =A, (u, t) . (2.17)

A,.(s, t) =A, (t, s) =A,.(s,u), i =1,2,
s+t+u =4m,.', (2.19)

Finally, one observes that the s and f, channels of
mm-MM are the same physically as the f, and s
channels, respectively, of mM-mM, so that

A»(s, t) =A»(s, u) =A, (t, s),

s+t+u=2(m~ +mz ) ~ (2.20)
A„(s, t) =A, (t, s) . (2.18)

Now (2.17) follows from (2.15) and (2.18), so that
crossing symmetry may be summarized as follows:

j

The Mandelstam representations' of the three in-
dependent amplitudes Ay A2 and A.» have the fol-
lowing forms:

=1 ( 1 1 1
A (Zz)z= ~ Cz: dZZzz(z, Z)~

( )~ )
+

( )~
—

)
+

( )~
——)), z=1, )

A„(s, t) =A, (t, s) =. , dx dy(j)(x, y)
i

+ —— + ~ dx dy)t(x, y)
1 " "

1 f 1 1 1
" "

1

Sy 83 S3

(2.21)

(2.22)

The crossing conditions (2.19) and (2.20) are en-
sured by the symmetry of p, and X,

p, (x, y) =p, (y, x), i= 1, 2

X(x y)=X(y x}.
(2.23)

(2.24)

The main task of this paper is to determine the
spectral functions p&, (t), and )t in terms of partial
waves in such a way that the unitarity condition
(2.10) and the crossing conditions (2.23) and (2.24)
are satisfied.

III. FROISSARTNRIBOV
PARTIAL-WAVE AMPLITUDES

where A. « is the t-channel absorptive part

A„(s, t) =[A,(s, t ) —A, (s, t )]/2i

dxP) xq t +
1 " I'1

(3.2)

The amplitude (3.1), analytic in /, coincides with
the physical partial wave a«(s) at even integer l;
the latter is zero at odd l due to the Bose sym-
metry implied by the relation A(s, t) =A(s, u). With
account taken of (2.5) and (2.6), a calculation for

yields

a»(l, s) = dtQ, (z»}A», (s, t),1

wq, q
(3.3)

The Froissart-Gribov elastic amplitudes for
channels 1 and 2 are derived in the standard way. '
With the help of Neumann's integral representation'
of Q, at integer l, one obtains

a,(l, s}=, dtQ, (z, )Au(s, t), i = 1, 2 (3.1)
1

FQ'
g

A„,(s, t) = — dx — ' + — dxy(x t) 1
"

X(x t)
7T X —8 7T x —u

8y 83

(3.4)

Again, a»(l, s) is equal to the physical partial wave
at even E and the physical wave is zero at odd l.

For nK-mK there is no Bose symmetry and one
must define two different E-analytic amplitudes, the
positive-signature amplitude a"(t, s) which coin-
cides with the physical wave at even E, and the neg-
ative-signature amplitude a' '(t, s) which is phys-
ical at odd l. These are obtained as projections of

A,"(s,t (s, z )) =A, (s, t (s, z)) a A, (s, t (s, -z)),
(3.5)

where A,"(s,t(s, z)) is the part of A,(s, t(s, z)) hav-
ing a right-hand cut in the z plane and A~(s, t(s, z))
the part with a left-hand cut. As is easily verified,
the total amplitude is the even part of A.,"' plus the
odd part of A. ' '
A,(s, t (s, z)) = —,'[A,' '(s, t (s, z)) +A,"(s,t (s, —z)) ]

+ —,-' [A,' '(s, t (s, z)) —A,' '(s, t (s, —z))]
=A"(s, t(s, z))+Ai(s, t(s, z)) . (3.6)

Consequently, the even (odd) Legendre projections
of A, are those of A,"(A,' ').

With the notation Z =s+t+u =2(m, '+m, '), the
terms in the decomposition A, (s, t) =A~s(s, t)
+Az(s, t) may be expressed as

1 1
A,"(s, t) = —, dx dy(t)(x, y)—

S

(
1 1

X --- ——+
y —s x+y+s —Z

(3.7)
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1
Ai„(s, t) = — dx@(x,u)

Sy

1
+ — dx)((x, u}r x —s

z, =l+l/2q, ' =1+ (Z —s —u)/2q, ',
Z =s+f+u =2(m, '+m, ').

(3.10)

(3.11)

The amplitudes a,'+' and a,' ' should separately obey
unitarity conditions

= a,"'(l,s,)r, (s )aP '(l, s ) +E,"'(1,s),

1

Sg

1 ". 1
+ dx dy)fIIx y)

$3

(3.8}

The amplitudes with signature a.re now obtained
from (3.5), (3.V), and (3.8),

as"'(l, s) =
2 dtQ, (z,)A~, (s, t)

1
2''gs

1

du Q, (-z,)A~„(s, f), (3.9)
2'll'g3

where the E, ' are appropriate analytic functions of
l to be expressed presently in terms of spectral
functions.

IV. PARTIAI WAVE EXPANSION
OF SPECTRAI. FUNCTIONS

As was shown in Ref. 1, the elastic part of a
spectral function may be expressed by making a
Watson-Sommerfeld transformation of the Leg-
endre expansion of a, corresponding elastic absorp-
tive part. The discontinuity of the absorptive part. ,
computed from the watson-Sommerfeld represent-
ation, is the required spectral function. The goal
of this section is to do the same for quasielastic
spectral functions.

For the amp1itudesA, and A, the required form-
ula is already obvious from Ref. 1. One writes

p,.(s, l) = y,-(s, l) +y, (t, s ) +v,.(s, t), i = 1, 2,
(4.1)

where @,.(s, t) is quasielastic with respect to the s
channe&; hence p,-(t, s) is quasielastic with respect
to the t channel. The central spectral function
e;(s, t) =v, (t, s) is an input parameter, involving
states which are not quasielastic in either channel,
and consequently is not to be calculated in terms
of the explicit two-body channels alone. The Wat-
son-Sommerfeld expansion of P;(s, t) is

Q;(s, t) = ~ l~ dl(2l+1)P, (z;}[a,.(l, s,)r;(s)a,-(l, s ) +~a(l, )sx,(s) a(l, s)], i =1,2; ivj =1,2; 0&a &—,
' .

(4.2)

The designation -c indicates that the path of inte-
gration is the line Rel = -z. It is not difficult to
verify that Q&(s, f) is real, if the amplitudes have
the property

a(l, s}= a(l*, s*)*. (4.3)

The implication of (4.1) and (4.2) for unitarity is
seen by computing the discontinuity of a, (l, s) over
its right-hand s cut from (3.1). The discontinuity
arises from that of A«(s, t), so that by (3.1) and
(3.2),

OO

[ a, (l, s, }—a, (l, s )] /2i = dt Q, (z,}p,(x, f}
s.

3

+5)26gan(l~ S) ~

l=0, 2, 4, . .., s~ s„ i=1, 2. (4.4)

The calculation is here restricted to physical l to

l

avoid having a cut in Q, (z,}for z, & -1; for arbi-
trary l one first divides a, (l, s) by q~2' to eliminate
that cut. '2 The remaining cut of Q, (z;}for -1
& z, & 1 produces the left-hand cut of a, (l, s}, which
for i =2 intrudes in the region s &s, 'to give the sec-
ond term in (4.4), if s, & 2s,. Now the first term of
(4.1), introduced in (4.4), gives the quasielastic
contributions to the unitarity sum:

1
dt Q, (z, )y, (s, t) = a,.(l, s, )~, (s)a, (l, s )

s]

+ a,&(l, s }r&(s}a&&(l, s ),
i = 1, 2 . (4.5)

As explained in Ref. 1, Eq. (2.30) ff. , this is proved
by substituting (4.2) and carrying out the f integra-
tion first. The remaining terms of (4.4) give the
element E& of the overlap matrix,
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1 00

F,(i, s)=, dt Q, (z, )[y, (t, s) +v, (s, t)],
s]

i =1, 2. (4.6)

The term in (4.6}due to P, (t, s) corresponds to
crossed two-particle processes and theref ore
gives contributions to the absorptive part of multi-
peripheral type. The term vq(s, t) represents par-
ticle production from collisions of a more central
type, entailing exchange of at least four particles.
The support of E is discussed in Sec. VI.

To construct the remaining spectral functions on
similar lines, it is helpful to look at the discontin-
uities of a» and d, 'l simultaneously. By (3.3),
(3.4) and (3.9)-(3.11) one finds that

[a»(l, s, )-a (l, s )]/2i
00

dt Q, (z»)P(s, t), s & s, (4.7)
'Fq ~q2

[a", ~(l, s, ) -at,'i(l, s )]/2i

00

dt Q, (z0)Q(t, s)
2%q3 s 1

OO

duQ, (-z, )X(s, u) . (4.8)
2'lTqs

3

From (4.7) and the observations of the previous pa-
ragraph, it is clear that for s & s„one term in

P(s, t) should be

$»(s, t) = —. dl(2l+1)P, (z»)[a, (l, s, )r, (s)a»(l, s )+a»(l, s, )r,(s)a, (l, s )],1
(4 9)

which gives the quasielastic part of (4.7) for s & s„
1 J

00

dt Q, (z»)$„(s, t) =a,(l, s, )~,(s) a„(l, s )+a„(l,s„}~,(s)a, (l, s ) . (4.10)

The integral in (4.9) will not make sense for s, & s& s, because a»(l, s ) acquires a factor exp(-ill/2) and

thus blows up exponentially as Iml-+~. This factor arises because Q, (z»} behaves essentially as
fz»+(z»'+1)' 0] ' ' and z» is imaginary for s, & s& sm. Nevertheless, a Watson-Sommerfeld representa-
tion of Q» may be stated in terms of a modified amplitude a»(l, s }, as is shown in Sec. V. The second
term in P2 of (4.2) does not put convergence of the integral in jeopardy, because for s& s, the exponents of
the thoro exponential factors have opposite signs.

Suppose that the definition af Q» is completed as in See. V. In analogy to (4.1}one may write

Q(s~ t) = Q»(s& t) + jba(t, s) +u(sy t) i

y(s, u) =x,(s, u)+ xz(u, s) +w(s, u),

where u and se are central spectral functions analogous to v&. Since X is symmetrical,

w(s, u) =an(u, s).

(4.11}

(4.12)

(4.13)

The elastic part of (4.8) will come from p, (s, t) and Xs(s, u), whereas the other terms in (4.11) and (4.12)

contribute to the overlap function Et, 'i(l, s). The correct elastic part as stated in (3.12) is achieved with

the foH.ow'ing choices:

$,(s, t) = 4. d l(2l + 1)P, (z,)~,(s) [d~+' (l, s, )atz'i(l, s ) +8~ (l, s, )d, i (I, s )],1
2'

}t,(s,u) = —. dl(2l+1)P, (-z,)r, (s)[a',"(l, s+)a',"(l,s )-a', '(l, s, )a', '(l, s )],

(4.14)

(4.15)

In (4.14), z, is to be determined as a function of s and t, whereas in (4.15) it is taken as a function of
s and u, in accord with the situation of (4.8). When (4.11), (4.12), (4.14), and (4.15) are substituted in

(4.8), a calculation analogous to that of Ref. 1, Eq. (2.30) ff. , yields the unitarity condition (3.12) for a~"'

with overlap function

E',"(l, s) =2, dt Q, (z,)[p„(t,s)+u(t, s)]
1

2' q3

du Q, (-z,)[y,(u, s)+w(s, u)].1
2mq~

3

The corresponding overlap function of a» is

(4.16)
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E»(l, s) = dt Q, (z»)[&2(t, s) +u(s, t )], s & s, .1
~qxq2 e,

(4.17)

Note that the formula (4.17) does not hold for s, & s& s,.

V. EXTENDED UNITARITY AND ROTATED FROISSART-GRIBOV PROJECTIONS

As was seen in the previous section, the Froissart-Gribov amplitude a»(l, s ) has exponential growth at
large Imt for s in the interval (s„s,) and for that reason is not suitable for partial-wave expansion of the
spectral function Q»(s, t) when s&s,. To seek a remedy, it is useful to examine the plane-wave form of
unitarity for A»(s, t)

z)„,(s„t„{s,d, «))=E„(s,t„(s«, «))+ ' f d(„-)«( ,s, t(s», «))«, „(s,t„(s,««, ))

(s.1)

Here n, (212) is a unit vector in the direction of the 2 (M) momentum in the center-of-momentum frame,
and the integrations are over the solid angle associated with intermediate momentum direction m. The
momentum transfers have been given channel labels; by (2.4) and (2.5),

t, (s, z) = 2q, '(z, —1), i = 1, 2

t12( t ) qlq2 12 ql q2

(s.2)

(5.3)

It is usually assumed in applications of S-matrix theory that "extended unitarity" holds. ' " In the
present example, extended unitarity means that (5.1) is replaced by the following when s, & s& s,:

A„,(s„2iq, q222, n, —q, '+ q, ') =E„(s,2iq, q2n, I, —q, '+q, ')

+ "' f dt)„-«, [s, , qq, '(««-()[«„(s, qtq, q «'«, -q, +q ),
(s.4)

where

(s.s)

1
dz P, (z)A»(s, 2iq, q, z —q, '+ q, ') . (5.6)

1
I

The overlap term E» is zero for s&(4m, )2. No-
tice that the procedure in passing from (5.1) to
(5.4) is not an analytic continuation in s; the mo-
mentum q, is replaced by its analytic continuation
iq„but the product A, (s+, ~ ) A»(s, ) is not an
analytic continuation of the corresponding function
from above threshold, and the, term involving
MM intermediate states has been simply dropped.

The branch of the square root chosen in (5.5) is
immaterial. If q, were replaced by —iq, instead
of by iq„ the same statement (5.4) would be ob-
tained, - as is seen by making the change of var-
iable nz - -n2. More generally, one can multiply
n, by a parameter ~ and do an analytic continua-
tion in & beginning at ~= 1, since each of the func-
tions A,», (s„t ), A»(s, t ), and E»(s, t ) is analy-
tic in t. At ~= 1, the partial-wave projection of
A»(s, t ) entails an integration along a complex
line in the t plane, rather than the usual integra-
tion on the real t axis,

By introduction of the Mandelstam represen-
tation (2.22) and reversal of integration order
in the usual manner, one sees that at physical l,
(5.6) is equal to the Froissart-Gribov amplitude
(3.5), continued from s-ie, s&s„ to s ie, s, -
&S&S:

1
g„($,s ) = 2 dz P, (z)A„(s, 2i q,q, z —q, '+ q, ')

1

xA„, (s, t),
l = 0, 2, 4, . . . . (5 .7)

Here q, is defined to be positive for s& s» with
its cut on (-~, s,), whereas q, is positive for
s&s, with cut (s„+~). Now Q, (z) has the rep-
resentation (Ref. 8, Sec. 3.7, Eq. 12)

tt, (z) —f d«[z+(z' —1)' 's«s)t«[ ' ' (q q)
0



Q (iz) s qq(() q).)/2

x du g+s +I
0

[a,,(l, s, }—a„(l, s )]/2i

=-a,(l, s, )r, (s)a»(l, s )+E„(l,s),

l = 0, 2, 4, . . . (5.12)

With real z, the integral. in (5.9) clearly cannot
counteract the first factor at l.arge Im/, so that

Q, (iz) has exponential growth at large Iml . The
partial wave a» inherits exponential growth from
Q, in (5.V).

The difficulty clearly has to do with the fact that
the partial-wave projection was in a complex di-
rection in the t plane. By continuing in the par-
ameter ~ defined above, and then taking the pro-
jection, one can avoid- the difficulty. Passing
from & = 1 to ~ = —i, one obtains a "rotated"
Froissart-Gribov amplitude corxespondin'g to
integration on the real t axis,

s„(),s )=-', f dsq, (s)d„(s, qq, q, s —q, '+q, ')
I

i

KQ~Q2 ~ I 2Q'~ g2

Not only is a» wel. l behaved at large Im/, xt j.s
also sufficient to express extended unitarity.
Since

I'„(l, s) = —,
' dz P, (z)E„(s,2q, q, z —q, '+ q, ') .

(5.13}
The equations (5.12) are equivalent to (5.4) and
constitute a statement of extended unitarity for

To derive a Watson-Sommerfield representation
of (t)„ for s & s.„note that the contribution of the
2~ intermediate state to A„, is

~(2(() (s f ) g (2l+ 1)P(q))
(

ql q2

~=a

xa, (l, s+)r, (s)a»(l, s ),
(5.14)

where P (() ))zis the even part of .P,(z). A Watson-
Sommerfeld transformation yieMs

2l+1~ (2)()( i ) dl (e)

xa, (l, s, )&,(s)a„(l, s ) . (5.15)

t 4v )'/' r
2l+ 1

(5.11)

The discontinuity of (5.15) over the t cut is the
required spectral function; it arises from the dis-
continuity of P, (—z) for z & 1,"

where the spherical harmonics &, are orthogon-
al on the unit sphere, Legendre expansion of
each amplitude in (5.4) with &= i yields—

[P, (-z, ) -P, (-z )]/2i=-sin. iP, (z) . (5.18)

The 1 esultlng formula ls

(5.17)j. 2 2

q„(s, l)=— (R d+)1)p), ' ' ),(), s, )s,(s)s„(l, s ), s, s ss s, .
2/2 Q2

An expression for the rotated overlap function E» of (5.13) may now be deduced from (5.10). For even
integer / the latter gives

[a„(l,s, ) -a„(l, s )]/2i — -- dt Q) ( ~ ' -~[())„(s,t}+(t),(l, s)+u(s, l)].
&Q'~A(2 I), 2g~ $2 j

(5.18)

The contribution of Q» to (5.18) for s s„evaluated by introducing (5.1V) and reversing the order of t and

/ integrations, is , +r,a„. Thus,

E„(l,s)= dt Q,
' — ' — [(t),(t, ) su+(s, t)], s, &s&s,.

XQ~ A/2 ~ 2Q~ i/2
(5.19}
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Of course, extended unitarity may be stated as
well in terms of the ordinary amplitude a», even
if the spectral function Q» cannot be expressed
simply in terms of a». For s& s„ the overlap
function associated with a„ is

F„(t,s)=- J) did, q' q' '
~~y(s, f)

7I'q1q2 2 2q1 q2 )

Q(s, t}=4. dl(2l+ 1)P,(z)r(s)a(l, s )a(l, s )
1

(6.4)

may be treated as a contour integral over an an-
alytic function. In view of (6.2) and (6.3), the
contour may be closed by an infinite semi-circle
in the right-hand half plane provided that"

—a, (l, s, )r,(s)a»(l, s ) . (5.20) [g + (z 2 1)1/2] 2 ) g ~ (g2 1)1/2 (6.5)

Unfortunately, E„cannot be given a simple form
analogous to expression (5.19) for F» when s
& s,. The mismatch between the argument of Q,
in (5.20) and that of P, in (5.17) rules out a cal-
culation of the sort that led from (5.18) to (5.19).

leads to the bound
I

[a(l, s, )[ & z([ I[+1) ' '[z,+(z ' —1)' ']

g, = I+s2/2q', Rel ) -q (6 2)

where a is independent of s and l. The presence
of the factor ([1[+1) '/', established by means of
partial integration [Ref. 2, Eq. (3.24) ff.], depends
on certain smoothness properties of A, (s, t). The
required smoothness has been established, in the
sense that an existence theorem for a solution of
the crossing-unitarity equations which implies
that smoothness has been proved. " As is well
known, the Legendre function I', is entire in / and
has the bound

~ P1(z)~ & z[z+(z' —1)' ']~', Rel&-2 . (6.3)

Since a(l, s2) is analytic in l for Rel & —e, the
elastic spectral function

VI. SUPPORT OF SPECTRAL FUNCTIONS

The support of each of the quhsielastic spectral
functions g„p„p», p„and }t2 is determined by the
behavior of its constituent partial waves as func-
tions of / at large Re/. That behavior in turn
depends directly on the range of forces, which is
to say on the masses of particles exchanged. The
computations of support via partial waves thus
have a clear physical interpretation, and in my
opinion are a good deal more understandable than
the corresponding computations based on the
Mandelstam plane-wave unitarity condition on
spectral functions '""

Let us first review the, computation of support
in the simplest case with one explicit channel;
cf. Ref. 1, Eqs. (2.20}-(2.26). The Froissart-
Gribov representation,

a(l, s)=, dt Q, (1+ t/2q2)A, (s, f), (6.1)
1

Since the integrand is analytic for Rel& -e,
gs, f ) is zero when (6.5) holds. When equality
holds in (5.5), a computation shows that

lE 2VE 0 1

which is to say that

s,' 16m's
'+ q' s -4m'

(6.6)

(6.7)

where s, = 4m'. Thus the support of p(s, f ) is the
region for which

16m's
s -4m' ' (6.8)

(see Fig. 1). The asymptotes of the boundary
curve, s=4m' and t=16m', are easily under-
stood. Since Q(s, f ) represents elastic "re-
scattering" in the s channel, mm-nm -mm, it must
vanish below threshol. d, s & 4m'. Since elastic
rescattering of pseudoscalar mesons requires
the exchange of at least four mesons, two for
each single scattering, Q(s, f ) must be zero for
f & (4m)'.

The exponential factor in (6.2) may be inter-
preted heuristically in terms of a quasiclassical
picture. The amplitude for scattering of a par-
ticle with momentum q and impact parameter b

by a Yukawa potential of range 1/2M should be
proportional to

2hf Q ~ 2kN /
y (6.9}

where l = bq is the angular momentum. At large
q, where it makes some sense to ascribe a clas-
sical trajectory to the particle,

ln[g + (z ' —1)' ']-2m/q . (6.10)

If the Yukawa potential arises from the exchange '

of two mesons with mass m each, then M = m and
(6.2) and (6.9) agree.

Returning to the coupled-channel problem, I
shall calculate the exponential factors analogous to
that of (6.2) and not mention the inverse power of
~

I [ which is invoked to secure convergence of the
integral over the line Rel= -e. Clearly,

~ l[
is a stronger rate of decrease than necessary.
Presumably, a sufficient rate of decrease will
emerge from a full analysis of the coupled-chan-
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FIG. l. . Support boundary of the quasielastic spectral function: (a) g(s, t) for nm mv, and corresponding diagram
showing states of lowest mass in s andt channels. Dashed lines are g mesons. (b) p (s t) =++(s t)++'( t) f
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lines are m(M) mesons and m2/~ =3.54. (c) +2(s,t) for xm MM, and corresponding diagram showing states of lowest
mass in s and t channels. Dashed (solid) lines are n(M) mesons and m2/mq =3.54. (d) $3(s,t) for nM-xM, and corre-
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=3.54. (e) g~(s,g) for 7tM xM, and corresponding diagram showing states of lowest mass in s and u channels. Dashed
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I a„(l,s, )l («[& +(f ' —1)' ']

120—

0 80—

( 2 2 + Sa)/2glga, 81 & 8( 82 .

In the case of a',", one needs se ara

a3 =b+C .(+)

(6.13)

(6;14)

(5ml+ m2} 40=
Then, according to (4.14) and (4.15n . , the ampli-

ina lone in (s i an „2(s,u) are, re-

0 I

0
I

20 40
(m)+ mp}

S

I

60 80
d(l, s) = b(l, s 5 l s, s ) + c(l, s, )c(l, s ), (6.15)

f(l, s) = b(l, 8 c l s, c(, s )+b(l, s )c(l, s, ) . (6.16)

The exponential bounds of ths o hese combinations are

I
l l

l I

I I

ld(l 8)l~«[~ +(g a 1) / ]-aRe

$2 = 1+ 81/2/2
(6.1V)

160

(e)

I f(1 8)I ( «[ g + (p 2 1)l/2] Rel

x [~ g a 1)1/2]-Rel

&4 = (s+ s,)/(s —s,) = -g (8 s3 3 & 3

(6.18)
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as follows. The results are

m/m u
presented graphically in Fi 1lgs. a -1(f), with

= 3.54.
, equal to the physical mas t'ss ra io mz e~

(1) P,(s, &)

The support of Q, is determined b th
term in (4.2) and the

y e first

same as that of
an e computation is exactl th

the illustration above. Thu
y e

boundary curve is
ve. us the

(g )2 20 ( ), 64m,
s-4m '

1
(6.19)

Q
0 10 P.O 2 30 40 50 60

(ITi) + ITI ) (2m )

S

(fj
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ls&(i, s,)l- «[& +(c '-1)"]
=418+4/2lf, 412, 2 (6.11)

nel equations. The followin bou
'

g nds are obtained
, (3.3), and (5.10):

(ii) $2(s, t)
For Q„both terms in 4. mFo 'n . ) must be considered,

' ce eir support boundaries intersect. The
two boundary equations are

[g +(g 2 1)l/2]2 g + (g 2 1)1/2
2 2 (6.20)

[ t + (g 1)1/2] g + (g 2 1)l/2

which are equivalent to

f = (2m, + 2m )'+ 16m '(m + m )'/(s —4m '8 —4ml'

(6.22)

Is»(i, s+)I («[&1 +(& '-1)1/21 ~' f = (4m, )'+ 64m, '/(s —4m, ') .
(6.23)

12 (Q» + 12 + sa)/2lllgay ' 8) 822 e (6.12)
(iii) g»(s, t)
For s& s, the susupport boundary of Q,a, deter-
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mined by the first term in (4.9) is

[l +(K ' —1)' 2)][K +(K ' —1)' ']
F~2'l (l, s) =0, (m, + m, ) '& s & (3m, +m, ) '.

(6.33)

which is to say

=z„+(z„'—1)'/', (6.24)
Finally, (5.18) and (6.29) show that

F„(I,s) =0, (2m, )'& s& (4m, )'. (6.34)

zg2= (q2 —q2 + f)/2 q~ q2. (6.2V)

Since a factor q, cancels in (6.26), and since
q, '= —q,', Eq. (6.26) actually defines the same
relation between f and s as is defined by (6.24).

(iv) $2(s, f)
According to (6.15) and (6.1V), the support of

Q2 is bounded by the curve

[g + (g
2 1)l/2] z + (g 2 1)1/2 (6.28)

which is equivalent to

( ), 64sm,
s —m +m, ' s —m, —m, '

1

(6.29)

(v) }t,(s, 22)

By (4.15), (6.16), and (6.18) the support bound-
ary of X, is given by

[ ~ + (C '- I)"'][C,+ (C '-I)"']= - g +(g ' - I)'"

(6.30)

which is equivalent to

16m, '(m, + m, )' (6.31)

In each of the cases (i)-(v), the asymptotes of the
boundary curves have a simple interpretation in
terms of the particle states in direct and crossed
channels, which is illustrated in the Feynman like
diagrams of Figs. 1(a)-1(f).

The supports of the overlap functions are de-
termined by those of the quasielastic spectral
functions. By (4.6) and (6.19), (6.22) and (6.23),
one sees that

( ), 32m, '(m, +m, )
s —4m'

1

The same formula (6.25) is obtained for s, &s& s,.
By (6.13) and (5.16) the boundary equation is

[~, (~,'-I)"][~„(E'-1)"']
=z + (g ' —IP/2 (6 26)

where

Imu(s, t) = -Imp „(s,f) . (V.1)

VII. THE CROSSING UNITARITY MAPPING

The above work specifies the form of spectral
functions required for crossing symmetry and
quasielastic unitarity. It remains to formulate a
system of integral equations by which crossing-
symmetric unitary amplitudes might be deter-
mined; i.e., an appropriate crossing-unitarity
mapping. "' A formulation based on the N/D meth-
od, analogous to that of Refs. 1 and 2, meets cer-
tain technical complications not present in the case
of one explicit channel. Since the problems in-
volved are not completely settled, I shall confine
myself here to a brief review of the main points.

(i} As has been seen above, crossing symmetry
requires inelastic effects beyond those associated
with states included explicitly in the direct chan-
nel. At the least, one must have the crossed two-
particle terms which through (4.6), (4.16), (4.1V),
(5.18}, and (5.19) give contributions to the overlap
functions. Hence a coupled-channel N/D scheme
with crossing symmetry requires that F(l, s) along
with the usual left-hand cut term B~ (t, s), be an

inputintheN/Dintegral equation. An appropriate
integral equation for the purpose, a revision of one
proposed earlier, "is described in Ref. 5. The
equation is nonlinear and marginally singular, so
that its application is a bit more complicated than
that of the corresponding single-channel equation.
On the other hand, the overlapping left-hand and
right-hand cuts of a2(l„s) present no difficulty; the
N/D method handles that situation quite automatic-
ally. The reason can be understood more easily in
the matrix N/D method without absorption, '2 but the
result is true as well in the presence of absorp-
tion. '

(ii) As is discussed in Ref. 5, F»(l, s) is not
real, in general, at real I; the matrix F(l, s) as a
whole is merely Hermitian. The spectral function
P» as given by (4.9) and (5.16) is not real in gen-
eral, whereas the other quasielastic spectral func-
tions are real by virtue of the property a, (l, s)
=a,*(l*,s*) of partial waves. Since the total spec-
tral function Q of (4.11}must be real, it follows
that u must be complex in such a way that

F,(l, s) F,(l, s), (2m, )2&s&(4m, )

Similarly, by (4.16), (6.25), and (6.31),

(6.32)
Hence F» as given in (4.17}and (5.19) has an imag-
inary part due to Imu. Unlike the other central
spectral functions, u is not an entirely arbitrary
input; only its real part may be chosen arbitrarily.
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In correspondence with (V.1}, at real I one has

ImE»(I, s) =-Im[s, (l, s, )r,(s)a„(l,s )]

of (V.4) is interpreted as

(V.5)

by virtue of the unitarity condition (2.10). As was
shown in Ref. 5, the fact that ImF» is given in
terms of elastic amplitudes has the consequence
that ReF and B~ determine the scattering amplitude
a(I, s); the problem of constructing amplitudes is
over-determined if B~ and both the real and imag-
inary parts of I are specified. Consequently, it
happens that when an amplitude a(l, s) is con.-
structed by the N/D equation of Ref. 5 with inputs
BI and Ey lt m10 have a left-hand cut part with the
input value B~, but an overlap matrix with a new
value F@E. It shouM be possible to adjust ImF by
an iterative procedure, in which ReF mould be held
constant, so as to make I' =I'. Since I' =F is re-
quired in a complete scheme for construction of
crossing-symmetric amplitudes, such an iteration
must be taken as part of the crossing-unitarity
mapping analogous to the mapping G of Eq. (1.9) in
Ref. 1.

(lil} Tile 1'otRted Frolssart —. Grlbov Rlllplltude

(t»(l, s), found to be necessary in the work of Sec.
V, does not fit very naturally into the N/D scheme.
It must nevertheless be involved in the crossing-
unitanty mapping, and one is therefore led to a
hybrid mapping in which the ordinary amplitudes
a(l, s) are treated by the N/D method, but 8»(l, s)
is not

(iv} A tentative form of the mapping, adapted to
the circumstances described in (i)-(iii), is set up
as follows. The basic nonlinear equation for de-
termination of amplitudes is construed as an equa-
tion for the triple of functions (B~,E, ax2}. Let us
write it as

(Bx, , E, a»}=6 (Bx„E,a») . (V.S)

Here a»(l, s ) is defined only on the interval
[s„s,] . The crossing-unitarity mapping G is de-
fined in three steps:

(1) Given (Bx„E), solve the N/D equation of Ref.
5 (an equation for ImD}, and from the sohltion con-
struct the matrix s ') (I, s) of partial-wave ampli-
tudes.

(2} Carry out further solutions of the N/D equa-
tion with inputs

(B„RSE+1ImE("), .. ., (B„RSE+ximE(')), ...,

mhere

imE(&) — Im(g(~ &) y g( &-&))

a, ) =s ) (I, s, ) being the amplitude matrix obtained
from the 0th solution of the equation. At complex
l, the designations "ReE" and "ImF" are not to be
taken literally; i ImF is understood as that part of
E srlslng fl'oxn Img(s, t), and tile right-hand side

(8} In the manner of Ref. 1, determine a new
triple (B~,E', a»}=G(B~,E, a») from the Frois-
sRx't-Gl'lbov formulas (3.1}, (3.2), (8.9), Rlld (5.10),
evaluating the spectral functions in terms of a»
and a, =s(,", the latter being the limit of the itera-
tion of step (2). In view of (V.l), Imu(s, f) is al-
ways to be replaced by -Img»(s, t)

(v) It is plausible that the operator G has a local-
ly unique fixed point in an appropriate Banach
space if the parameters on which it depends
(v„u2, Rex(, zu} are suitably restricted. A fixed-
point proof is possible in the case of a single ex-
plicit channel. " In the coupled-channel case a
proof w'ill be harder, one reason being that conver-
gence of the iteration in step (2) must be estab-
lished.

VIII. OUTLOOK FOR FURTHER VfORK

As has been seen, the partial-wave representa-
tion of coupled-channel spectral functions is neat
and comprehensible. On the other hand, the form-
ulation of the crossing-unitarity mapping offered
in Sec. VII is inelegant and not easily generalized
to the realistic case in which Regge poles enter the
right-hand half of the I plane. In Ref. 2, the N/D
method mas introduced expressly to handle such
poles. If it mere not for the disruption of the
scheme caused by the rotated amplitude a», the
coupled-channel N/D scheme would be similarly
effective in dealing with Regge poles.

The difficulty is centered on the problem of con-
tinuing the Froissart-Gribov representation (5.9)
of a'» from large to small values of Re/. As is
men known, Regge poles arise from the divergence
of the f integral: A. »,(s, t) behaves as t "('), be-
cause of the presence of g»(s', t) in its spectral
function. In the single-channel case, the remedy
mas to remrite the Froissart-Gribov representa-
tion as a partial-wave dispersion relation in the s
plane. The latter could be continued to small Ref,
since the offending Regge pole aypeared explicitly
in the elastic-unitarity term of the right-hand cut
contribution. The N/D method, replacing the par-
tial-wave dispersion relation, provided a practical
means of continuation. A similar approach for a»
fails, because its discontinuity over the right-hand
cut in the s plane is given in a form explicitly dis-
playing Regge poles [i.e., the form (5.11)] only for
s,& s& s,. For s & s2, the discontinuity is available
only in the form

[.-,.(I, ;)-...(I,. )]/2'
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Since the term g»(s, t) in P(s, f) behaves as t"t'&,
one is assured of convergence of (8.1}only at suf-
ficiently large Re/. lf a means of continuation of
(8.1) to small Rel could be found, then one might
use the approach of the inhomogeneous Hilbert
problem (generalized Omnes-Muskhelishvili meth-
od) o to find an analytic amplitude a» satisfying the
linear unitarity relation (5.11) for s,& s& s, and
having the (continued} discontinuity (8.1) for s & s2.
Similar problems occur in defining +y2 for s& s,

and small Re/ when there are Regge poles; see Eq.
(8.19).
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