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generalized moment method for eigenvalnes
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%e present a new technique for making accurate calculations of the energy eigenvalues of quantum systems whose
potential energy is a polynomial in the coordinate operator. This technique can be applied to arbitrary polynomial
potentials whether or not they conserve parity. The problem of an anharmonic oscillator in an external field is
studied as an example.

I. INTRODUCTION H
~
P) =E

~
P) (3)

Recently a new technique was presented for
making accurate calculations of the energy levels
of quantum-mechanical systems whose potential
energy is a polynomial in the coordinate operator. '
In the specific examples addressed in I, only po-
tentials which are even under parity were consid-
ered. However, in some applications, such as an
anharmonic oscillator in an external field or vari-
ational calculations in lattice field theories, ' it is
necessary to consider potentials involving odd
powers of the coordinate operator. In this note we
extend the moment method to such potentials.
The extension is not completely straightforward,
and we believe that it gives additional insight into
the moment method.

We start with the Hamiltonian

a=p +pc„x,
n=1

although the extension to potentials with higher
powers of x is straightforward. By making the
change of variables x -c, ~'(x -c,c,~' j4), this
Hamiltonian can be reduced to the form

~=p2+~+ ~~2+~4

aside from an additive and a multiplicative con-
stant. It is the Hamiltonian of Eq. (2) which we
study in detail. In Sec. II we present our calcula-
tional technique, and in Sec. III we discuss our re-
sults.

II. THE MOMENT METHOD

with H given by Eq. (2). To this end we introduce
the moments

where
~
Q) is a trial state at our disposal. For

concreteness we shall take

Q (x)= exp(=~ bx'),

but as is discussed in I, the exact functional
form of P(x) is not important.

Taking the matrix element of Eq. (3) with the
state g& ix", we obtain after an integration by parts

S„,4+ (B —b2)S„,2+AS„,

+ [(2n+ 1)b -E]S„-n(n —1)S„,= 0. (6)

Our strategy for solving the moment recursion
relations, Eq. (6), is as follows. We first obtain
an asymptotic expansion of the S„valid for n
larger than or equal to some fixed value N. We
then obtain the S„ for n&N by repeated application
of Eq. (6). A solution valid for all n is, of course,
possible only for certain discrete values of E,
namely the eigenvalues of Eq. (3).

To obtain the asymptotic expansion of S„for
large n, we try the ansatz

S„-exp[o'n ln(n)+ Pn+ yn~'+ bn~'

+ e ln(n)+ O(1jn)) .

We wish to find the eigenvalues of the Schroding-
er equation

Substituting into Eq. (6), we find six independent
solutions of the form

S„"=n"~e" " 'exp[-~n-&be"'" 'n~'+ &(3b'-B)e "'"'n~' —(&+ QAe"") ln(n)+O(l jn)], m=0, 1, . . . , 5.
(8)
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-X"—(X')'+ Ax+ Bx'+x'= E,
which yields for large txl

X(x)- -P, ~x ~'+-,'B ~x ~+O(i~)]. (10)

'thus, for large. values of n the integrand of the
right-hand side of Eq. (4) has two saddle points
along the real x axis at ~x

~

= n~'. The contribu-
tions of these saddle points correspond to the
asymptotic solutions S'„and S'„of Eq. (8), so the
desired S„ is a linear combination of these two
solutions.

Notice that for large n

S~/S„'- e"""' exp[& fin"'(1 —e'"" ')]

In order to uriderstand which of these solutions
is relevant, we return to Eq. (4), and notice that
for large n the integral defining Sn must be domi-
nated by large values of ~x~. We can obtain an
asymptotic expansion of the wave function P(x) by
writing $(x) = 8 . Upon substituting into the
Schrodinger equation we find

S =S'+o.S3.
n n n (13)

This explains why there is no loss in accuracy if
our solution for S'n contains an admixture of S'„or
vice versa.

The S„will satisfy the two equations

S,+ (B —b')S, +AS, + (5b -E)S,= 0,
S~+ (B —b2)S2+AS, + (3b —E)SO= 0

(14)

only for discrete values of E. Substituting Eq.
(13}into Eq. (14) and eliminating ci gives the ei-
genvalue equation

mD:tures of S„, m 4 0, 3.
Starting with the asymptotic expressions for S„'

and S'„ for n~ K, we obtain S'„g and S
y using Eq.

(6) with n=N+ 1. Continuing on down, we finally
obtain Sooand So from Eq. (6) with n= 2. At this
point all the moments are determined, but in gen-
eral neither the set S'„nor S'„will satisfy Eq. (6)
for either n= 1 or n= 0. We must take a linear
combination of these solutions which we write in
the form

for m t 0, 3 and

S3/So ( )n&A/3
n n (12)

F(&)=Q'(&)I"(&-) -Q'(&}P'(&)= 0,
where

(15)

So the desired solutions S'„and S'„are the suMom-
inant ones at large n. Our one requirement on the
trial function Q(x) is that it be chosen so that this
is the case. If the physic:al solution did contain
admixtures of S„, mt 0, 3, then our approach
would fail because we would not be able to deter-
mine how much S'n and S„' components were present
in S„at large n.

We are now prepared to calculate S„' and S.'. We
use the asymptotic expression of Eq. (8) for n~ N,
and then obtain S'„and S'„ for n&N by making re-
peated use of Eq. (6). Of course, in using the
asymptotic formula for n~ N, we are introducing
an error in the form of admixtures of the unwanted
solutions. From Eq. (11}we see that admixtures
of S„, m0, 3 can at most be of order
exp(=, bN~'), so by choosing N to be sufficiently
large they can be made negligible. If A is suffi-
ciently large our solution for S„may contain a
significant admixture of Sn or vice versa; however,
that is irrelevant as long as we obtain two linearly
independent solutions of Eq. (6) with negligible ad-

I

q (E)=S,+ (B —b2}S,"+AS)+ (3b E)SO, -(16)
P"(E)=S,"+ (B —b')S",+AS",+ (5b -E)S", .

We need only plot E(E}as a function of E and
search for its zeros which can be determined
with great accuracy using Newton's method.

Notice that for A. =0 we have from parity con-
servation that So= (-)"S„'.. As a result, n =+1, and

either the even or the odd moments vanish. This
fact was used in I where only potentials which are
even under parity were considered. One then had
only one nontrivial subdominant solution to the
difference equation, but a different eigenvalue
equation for the even- and odd-parity states. In
the present formulation, Eq. (15) is the eigenvalue
equation for all cases.

In practical calculations it is convenient to
work with ratios of moments. Defining

Rm Sm /Sm
n n+1 n

Eq. (6}can be rewritten in the form

R~~ i = n(n —1)(R„[(2n+1)b - +BR„, [A iR„+(~2Bb +R~SR~,4)]]) ~ (18)

From Eq (8) we see .that for large n

Rm sdseirm/3[1 —5e2 m/s&-i/s+ (+pa yB)&-2rim/s -PJs
( ass g5B+ & + yA&arm) -1+ 0(&-4/3)]3 9 n
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FIG. 1. The two lowest energy levels of the potential
V=A.x+ x4 as a function of A. .

FIG. 3. The function Jl (E), defined in Eq. O.5), for
the potential V=x —6x2+ x4.

If we normalize the moments so that S, =1, we
can recover the low-order moments from the re-
lation S„„=A„S"„.Then the energy eigenvalues
can be obtained from Eqs. (15) and (16).

III. NUMERICAL RESULTS

Examples of our calculations are shown in Figs.
1-4 and in 'Tables I-III.

In Fig. 1 we plot the energies of the ground state
and first excited state of the potential V(x) =Ax
+x' as functions of A. Energy eigenvalues for
specific values of A are given in Table I. The re-
sults are quite unexceptional. For A= 0 the poten-
tial has a single minimum at x = 0 and the two low-
est energy states are well separated. For small
A the energy eigenvalues vary as A', as one ex-
pects from perturbation theory.

In 'Table II we illustrate the rate of convergence
of our calculational scheme. The convergence is
clearly very rapid for small to moderate values of
A. However, for A larger than 15, we rapidly

lose accuracy. 'The difficulty can be read off
from Eq. (6). We see that for large n

S3/SO ( )y A/3 (20)

Thus in our solution for S'„we can expect an ad-
mixture of S'„of order N ', while in our solution
for S'„, we can expect an admixture of S'„of order
N" ' From E. qs. (15) and (16) we see that such ad-
mixtures will not effect the accuracy with which
we compute the energy eigenvalues so long as we
obtain two linearly independent solutions to the
difference equation, one of which has a finite
component of S'„and the other of which has a 'finite

component of S'„. The difficulty is that for A large
and positive (negative) S„' (8„') dominates both of
our solutions. As a result, Q'(E)P'(E) is almost
equal to Q'(E)P'(E) for all E, and we lose accura-
cy by taking their difference in Eq. (15).

Fortunately for A larger than or of order 15, we
can obtain in asymptotic expansion of the energy
eigenvalues by expanding the potential about its
minimum value x = —(A/4)~'. We find that the kth

eigenvalue is given by

5
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FIG. 2. The four lowest energy levels of the potential
V=A+ —6x + x4 as a function of A.

FIG. 4. The function E(E}for the potential V
=2x-6x +x .2 4
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TABLE I. Energy levels of the potential V=Ax+x4. TABLE III. Energy levels of the potential V=Ax —6x
+x4.

0
1
5

10
15

1.060 362 09
0.930 546 03

-1.547 077 68
-6.951 328 43

-13.747 006

3.799 673 01
3.781 896 25
2.835 738 65

-0.940 998 30
-6.627 207

0
1
5

10
15

-5.748 1905
-7.337 1958

-14.257 928 2
-23.749 394 7
-33.974 6

-5.706 792 5
-4.180 640 3
-7.070 244 4

-15.536 874 0
-24.980

E = —3(A/4)+'+ (2k+ 1)6~'(A/4)~'

+ 8 (2k'+ 2k+ 1)(A/4) "'

—c+ ~ ~c+ ~ (~42+ 4Amx 2)

= e+Alxo, l,

(22)

where xo, is the matrix element of the coordinate
operator between the ground state and the first
excited state at A= 0.

Figure 2 provides beautiful examples of the re-
pulsion of nearly degenerate energy levels in one-
dimensional quantum mechanics. The fact that

+ + XI &II (a+ at)slk&lm(k -I) '(A/4) ~~

+ O((A/4)-~') . (21)

Here a and a~ are the usual harmonic-oscillator
raising and lowering operators and a~a

I
k) = k k).

For A=15, Eq. (21) yields E,= -13.736, E,=
-6.620, each within O.j. percent of the "exact" re-
sults given in Table I.

In Fig. 2 we plot the four lowest eigenvalues of
the potential V=A@ —bx'+x' as a function of A.
Typical numerical results are given in Table III.
In this case, at A = 0, V has double minima at x
= + 3~', and the two lowest energy levels are al-'

most degenerate. For A less than two, E, and

E, appear to vary linearly with A. This is easily
understood from nearly degenerate perturbation
theory. If we denote the values of Eo and Ex a
=0 by e and a+ 4c, respectively, then, taking into
account only the mixing between these two states,
we find

E =a+ ,'ac--,'-(Se'+4A'x ')~'
0 2 2 01

E, and E, become so nearly equal can also be ex-
plained from almost degenerate perturbation
theory. For small A the wave functions for these
states are approximately

I
$,&= 2 ~'[I 0&+

I
1)] and

I
$2&= 2 ~'[I 2) —

I
3)]. Here

I
) are the eigenstates

of the Hamiltonian at A=0. The states ln) of
course have definite parity. The matrix element
which controls the mixing between these states is

(23)

ince & lxl 1&= &3lxl0), the mixing is very s~~ll
except when the states are almost exactly degen-
erate.

For large A the rate of convergence deterio-
rates just as in the case B=O, but one can once
again obtain an asymptotic expansion for the ener-
gy levels by expanding the potential about its
minimum.

In Figs. 3 and 4 we plot the function F(E) vs
E for two typical values of the parameters E(E).
can have poles as well as zeros, but in general
the poles are not so symmetrically spaced be-
tween the zeros as in Fig. 3. The poles in E(E)
cause no difficulty except when one of them is very
close to a zero. If one has written a computer
code which automatically searches for the zeros,
for example by Newton's method, a zero near a
pole can be easily missed. This problem can be
overcome simply by plotting F(E) as in Figs. 3
and 4.
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TABLE II. The ground-state energy of the potential V=Ax+x4 calculated for various values
of ¹ N is the value of g above which we use the asymptotic expansion for the moments 8„.

N 4 =10 A =15

50
100
500

1000

1.060 363
1.060 362 09
1.060 362 09
1.060 362 09

-1.547 8
-1.547 097
-1.547 077 67
-1.547 077 67

-7.08
-6.950
-6.951 328 43
-6.951 328 43

—12.4
-13.68
-13.747 006 9
—13.747 0104
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