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Anomaly in the nonlocal qnantnm charge of the CP" ' model
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We calculate the quantized nonlocal charge of the CP" ' model in the framework of renormalized 1/n
perturbation theory and prove that it is not conserved.

I. INTRODUCTION

II. DEFINITION OF THE MODEL

The CP" ' model is defined by the Lagrangian

with

{2.1a)

and the eonstra, int

zz =s/~y, (2.1h)

mhere z is a. complex g-component field z
= (z„.. . , z„). If the index i does not appear, it
-is summed over.

This model is known to possess instant solu-
tions, to be asymptotically free, and to possess a
1/n expansion. ' In the framework of the I/n ex-
pansion, the model describes partons and its
S matrix does not factorize, in spite of the classi-

Classically the CP" ' model is known to possess
an infinite number. of conservation laws and to be
classically integrable. ' At the quantum level, one
would naively expect the same behavior as in the
O(n) nonlinear o' and Gross-Neveu' models, in
which the amplitude of pair production is sup-
pressed as a consequence of the infinite number
of conservation laws. In the 1/n expansion, how-
ever, this model allows pair production, and the
S matrix does not belong to class II of Ref. 4.
In this paper, we show that in spite of some hints
from the coupling-constant perturbation theory
at high energy, ' the infrared phase, governed by
the 1/n expansion, has anomalies in the conserva-
tion of the quantum nonlocal charge, vitiating the
usual constra, ints on the S matrix elements. The
model and some of its basic properties are re-
viewed in Sec. II. In Sec. III we discuss the short-
distance behavior of the product of two currents,
a necessary step for the construction of the quan-
tum analog of the cia.ssical nonlocal charge. Sub-
sequently, we shorn that, owing to the presence of
anomalous terms, this quantum (nonlocal) charge
is no longer conserved.

Using (2.2) it is easily verified that the nonlocal
charge

T

0 = J' 4'idy2~b' X2)io(—t Xgiio(t X2)

J~ dpi, (t, y)

is conserved.
In the Cp" ' model, the current j&' is given by

jp Z~ 8
p Zg + 2ApZ)Zg o

"4j

(2.3)

(2.4)

At the quantum level the charge (2.3) is not well
defined, since it involves a product of currents
at the same point. The (nonintegrabie) singularity
of this product must be analyzed in order to ob-
tain a renormalized charge. For the O{n) non-
linear cr model this was done in Ref. 8 where
it was shown that finiteness and conservation
of the charge can be achieved by simply ad-
justing the coefficient of the second term in (2.3).

Conservation of this charge has far-reaching
consequences for the theory. " Because of its
nonlocal character, the dynamics mill be much
constrained. In terms of asymptotic fields,
LGscher showed that m the O(p1) nonllllear (I mod-
el it forbids pair production. Furthermore,
this charge is only compatible with a nontrivial
S matrix. However, in that case, renormaliza-
tion is trivial because of the reduced number of
composite operators compatible with the sym-
metry and dimension, which are the current j„
itself and its derivative 8&j„,whereas in the CP" '
case, we have many other composite operators
for the Wilson expansion, e.g., z,Z~E„„(where

will show that in fact, one of these terms gives
rise to an anoma, ly, destroying conservation of

cal integrability of the model. It has recently
been shown that for a model to be classically
integrable it is necessary and sufficient' to be
defined on a symmetric space. In this case there
is an internal-symmetry current j&' whose conser-
vation is equivalent to the equations of motion
and which satisfies

2
(2.2)
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the would-be charge. We will use the 1/n ex-
pansion so that the possible instanton contribu-
tions will not be taken into account. Nevertheless„
we expect such contributions to be small, thereby
preserving the main argument.

III. FEYNMAN RULES AND WILSON EXPANSION
IN LOGIEST ORDER

j„"(xb".b) -j'."b)ip'(x&

or, more precisely in the singular terms (as c
tends to zero) of

(3.1)

j~~(x+ e)j~~(x - c) —j'„'(x- e) jp"(x+ e) . (3.2)

For the product (8.2), we have a sum. of the fol-
lowing terms:

(3.3a)-sqz, (x+ e)z~(x+ e)z, (x - z)s „zq(x -e),
s„z,(x+ c)z,(x+ e) 8 „z~(x-z) z, (x -e),

z,-(x+ e)s„z,(x+ e)z, (x —e) s „z,(x —e),
-z, (x+ e) s„Z,(x+ e)e„z,(x - e)z, (x —e),
2A„(x+ e}z,(x+ e)z, (x+ e)z, (x —e) s„z,(x -e),

(S.Se)

(3.3b)

-2A„(x+ e)z, (x+ c}z„(x+e}s„z~(x—e)z, (x-e),
(S.Sf)

2z, (x+ e)a„z~(x+ e)A„(x-e)z, (x —e)z, (x- e),
(8 Sg)

—2s„z,(x+ e) z„(x+e)A„(x —e) z, (x —c)z~(x —e},
(3.3h}

The 1/n expansion of the model was treated in
great detail by d'Adda et n/. ' The expansion has
only two free parameters: the perturbation
parameter 1/n and the mass m of the z, fields.
The parameter f is completely absorbed into this
mass and in the A„ field. We could still write
A„ in terms of f and the z, fields as in (2.1a) but
there is no advantage in doing so: If we consider
the regulated theory, then, as the cutoff is re-
moved, Za&z diverges and f goes to zero, so that
only the product fz 8&z is well defined. In what
follows we will use the Feynman rules given in
Ref. 6, to which the reader is referred for more
details. All calculations will be performed in the
Euclidean region.

%'e are interested in the short-distance behavior
of the product

4Ap (z + t)z)(x+ E)zg(x+ E)A„(x —E)zg(x —6) zg(x —f) ~

(3.3i)

minus the symmetric terms (s.t.) obtained from
those above by making the substitutions e- -&,
p~P,

By power counting, the Green's functions which
diverge in the e -0 limit will have either two or
four external z lines and zero, one, or two exter-
nalA lines. A term with two z's and one a (the
Lagrarge multiplier field which enforces the con-
straint zz = constant —see Ref. 6} external line
is forbidden, in this expansion, by parity and time-
reversal symmetry. Furthermore, possible diver-
gences of graphs with more than four external z lines
actually cancel among themselves, as a consequence
of the constraint (2;1b). Thus, to first order in 1/n,
the divergent piece receives contributions only from
the proper parts of the following Green's func-
tiolls:

&OI T z„z,(j„(x+e)j„(x e) --j„(x-e)j„(x+e)}IO&,

(3.4)

&O~Tz„zzA&( j&(x+ e)j„(x—e) j„(x——e)j&(x+ e)) [0&,

(3.5)

(0~ T z~z 6Ay Aq( jp(x+ e)j„(x—e)

-j„(x-~)j„(x+~))IO&, (3 6}

(0~ T z~z zz qZ~( j&(x+ c}j„(x—e} j„(x—e)j—&(x+ e))~0&,

(3.7}

(O~Tz zsz„z, A~(j„( xe+)j„(x-~)

-j„(x ~)j„(x+~))~0&, (8.6)

&O~rz„z,z„z.A„A, (j„(x+~)j„( —~}

—j„(x—6)jp(x + E)) )0& ~ (8 9}

We are going to consider only the case i &j so
that the z, and Zz fields in the product of the cur-
rents are always contracted with some of the
external fields. The graphical structure of the
first three terms is shown in Fig. 1. As we will
see, the divergent parts of these graphs combine
(as they should} to form gauge-invariant objects.
The calculation will be done to lowest order [so
that only (3.4) and (3.5) contribute], and we begin
by considering contributions from the Green's
function (8.4). In this case, only (8.3a)-(S.Sd)
contribute, and we have

—e„z,(x+ e)z, (x+ e)z, (x —e) s„z~(x —e)

s„z,(x+ e)-:zz(x+ e)z,(x-e}:s„z~(x-e)-spz, (x+ ~)e„z~(x —e}&0~Tz,(x+ e)z, ( ex))0&. (8.10)
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The last term corresponds to part of graph (a} of Fig. 1. Now

(O~Tz~(x+ «)z, (x —«)~0) = —Ko(2«m).
2~

Ko is a modified Bessel function of zeroth order

zm l '" m'z' Z2m2
K (ztn)=- — 1+ ———

~

ln — -y+ (1-y)—
2 2& 4

(3.11)

(3.12)

where y is the Euler-Mascheroni constant, y = 0.5VV'7. . . . In order to simplify the notation, we will indi-
cate the second (non-Wick-ordered} term in (3.10) by

Div(-B„z,(x+ «)z, (x+ «)z, (x —«) B„g,(x —«)) .
We have then

(3.13)

Div (—8
p z )(» + «) g g (» + «)z g, (x —«) 8 „gi (x —«' )) = 8 g ) (x)8 „gi (x)K (3.14)

where we made a Taylor expansion around x and dropped terms which go to zero with e. Analogously,

Div(B„z,(x+ «) z, (x+ «)B„z,(x -«)Z, (x-«)}= Bpg, (x+ «) g, (x -«)n 8

8&

n 8
Dlv(gg(x+ «)Bpz (x+ «)g (x —«')B„zg(x —«)) = —gg(x+ «)B„z((x—«) p K

Bc
a'

Div(-z, (x+ «) B„z,(x+ «) B„z„(x—«)Z, (x-«)) =
6 z, (x+ «)g, (x —«).— „-—„K,.

(3.15)

(3.16)

(3.17)

Performing a further Taylor expansion of the operators, we obtain for graphs (3.3a)-(3.3d) of Fig. 1

(3.3a) = Ko(spz) B„z~ -B„g)B~z~),2%'

(3.3b) = 8+08~g(g) + —BpB„z)z~Ko ——Bpg(B„z;Ko+ —BpB 8gqz~B 8BK, ——Bpz)88g, B„8SK, —(s.t.),
n n n n n

— n n n n n(3.3c) = —BpKoz)B„zy ——. Bqg, B„gqKO+ 4 z) 8„8„z~KO——8 sg) B„g~BqBgK, + =z,B„BBzqBpBBK, —(s t.),
n n n

(3 3'd) Bpzgzys+0+ zPpzyBpKD+ S 8 szggPpB pBBKg p

K,(m«) = —,K,(m«).
8

Graph (b) can be handled in the same way; we have only contributions from (S.Se) and (3.3f):

(3.3e) = —[2K, (A„z, B„z~)—z, g, A„B„K,+ (-B„z,A„g, -B„A„z,z~+z, A„B„g,)K,2'

+ ~(Z)ApB sg~

-Bing)Aqz~

88 Aqzqg-q)8„8 8K,] —(s t ), . .
(3.3f) = [2K,( A—„B„z,g~) --z, a~A„B„K,+(z,B„A„Z,+z, B~g~A„B„z,A„z,)K-,2g

+ ~(g ~ 8 BA„g~+ g)8 Bz~A„B8z)A„g~) 8„88K,]—(s,t.) .

The calculation for graph (c) is more involved.
We formally have

(01 T(jp(x+ «)j.(» —«) j.(x «)i p(x+ -«))A 8(—1) I0&

= (0
~
TN,(j,(x)j„(x)-j„(x)j„(x))A 8 (y) ~0)

+ ft„„,(x, y, «}, (3.18)

w'here the symbol N, denotes the normal product

defined by Zimmermann, "making the minimum
number of subtractions necessary to render the
formal product of currents at the same point
well defined. R„„B(x,y, «) are these subtraction
terms which will diverge as e -0. Now the first
term does not contribute to the operator expansion,
since zz = 0 in our subtraction procedure. Class-

/

ically, if zz = a = constant, we have the following
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(o) (h) fc) (4) (e)

suit. This statement can be explicitly verified
in a lowest-order calculation. The divergent
part of the second term in (8.18) is

Div[(3. Sa) +A2]=0, (3.21a)

Div[(3. Sb) +A, ]= --,'s„s,x,s „z,(x)z,(x)A,(x)

+ —,'s, s,a, s„z,(x)z,(x)A,(x),

(3.21b)
FIG. 1. Lowest-order graphs contributing to the

short-distance expansion of the product of the currents.

equality:

2(j2j.-j.j~) = s(a.j,-a,j.)- (8.19)

In a subtraction scheme preserving this equality,
we should have

2«l ~~(j.j.-j.j.» I o&

= a(0~T(sj&-sz j„)X[0)+ 6 terms, (8.20)

and therefore, for a =,0, we have the desired re-

Div[(3. 3c) +A2]= ,'S,S,—E,z, (x) S„z~( x) A, (x)

——,'S„s,&,s„z,(x)z, (x)A,(x),

(3.21c)

»v[(8. Sc) + A, ]=—,'z,.(x)z,(x)s„A,(x) s „s~,
—-'2z, (x)Z,(x)S„A,(x)S,S,Z, .

(3.21d)

Graphs (d), (e), and (f) a.re easily shown to vanish
by symmetry. Now we collect all terms and ob-
tain

~v

27 2E,

+ ——+-', inm2~2~(a a -S & )+-n fy 5
vp vp vp vp 2p

0%

~~e'8& 8 j,
2/2

I

(8.22)

or

~ ~v ~v ~v —
22 ~2 ~2,2 (,2)2

). ( )
.

( ). ( + )
l4v p + pp v + vp s y 4 v p

m2e2&
+ —"~'~+-,'1 ~(a a -a a )+ ~,"' — "',~'

p 4 4 ) vv vv va vp

%I

~~v6nQ 5~nfg~ ~»f-
2E2 262 (2)2

(3.23)

IV. DEFINITION OF THE QUANTUM NONLOCAL
CHARGE

where

As remarked above, due to the singular nature
of the product of the currents at the same point,
some care must be exercised in constructing the
quantum analog of nonlocal charge (2.3). Sim-
ilarly to Ref. 8, we define the quantum version of
the nonlocal charge as

Q = lim Q, ,
f)~ P

ql g

t~&-~2t~(s
dyl'@2~bi 32)j0 ( yl)j0 ( 32)

dyj,"(t,y),8 4

where the dependence of a on the cutoff 5 is such
as to cancel the aforementioned divergences.
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Because of the linearly divergent term in Eq.
(3.23), it is easy to see that this coefficient must
be equal to

n, (e'-'m)

in order to have a well-defined charge Q. fn

(4.1) a factor 1/n was introduced in order to
guarantee the existence of the limit n —~. This
charge is the onl. y candidate for the quantum non-
local charge corresponding to (2.3).

However, this charge is no longer time inde-
pendent. This is verified as follows: Current
conservation and partial integration give

dy
'f& t y+g +~& g y g ~kg t y

fk t
~ 00

+ —ln g I!2 g,"(t, y) ),
where

e'-'m
2

(4.2)

As 5 goes to zero we use the operator expansion (3.23) to ohtain

bi (t y+t)+i&'(f, y ~)1j."(t,y) j."(&,y—)lg'(t, y+ ~)+qf (f, y —c)]

2m.
y+-,'in )(a~, -a&,)+ad, +4~,.Z,F„, (4. 3)

and we have

dQ"
dg & g

i J 10zan dy. (4 4)

V. CONCLUSION

As is well known, the CP"-' model, in the frame-
work of the 1/n expansion, does allow production
of pairs. This can now be traced back to an
anomaly in the quantum nonlocal charge, in con-
trast to the case of the 0(n) nonlinear cr model,
in which Luscher quantized the analogous nonl. ocal
charge and this turned out to be conserved. We
presume that this connection between pair pro-
duction and the existence of quantum nonlocal
conservation laws has a more general nature.
Thus, in view of the proposed S matrices for the
Gross-Neveu' and chiral Gross-Neveu" models,
we expect that the corresponding nonlocal conser-
vation laws do survive quantization.

The supersymmetric extension of the CP" '
model has already been studied" and proved to
factorize. '3 As will be shown in a forthcoming
paper, in principle this can be traced back to a
cancellation of the anomalies studied here with
an Adler-type anomaly coming from the coupling

I

of the chiral Gross-Neveu model to the CP
model. In other words, the source of the com-
plementary anomaly is the coupling of the fer-
mion fields to the A„ field and not, as one could
naively suspect, the chiral. Gross-Neveu model
by itself. As argued before, the latter must not
have any anomalies.

We would l.ike to recall that an alternative ex-
planation for the absence of pair production in the
nonlinear 0 model" is provided by Pohlmeyer's
local conservation laws. " In Ref. 16 the quantum
behavior of the local charges was analyzed for a
number of models. For the CP"-' model in par-
ticular, it seems that these conservation laws
are plagued by anomalies, in accordance with our
result above.
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