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Soliton mass corrections and explicit models in two dimensions
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We show how to evaluate the first-order soliton mass correction in two-dimensional scalar theories and show it to
be finite. We give a formula for the correction which generalizes those previously obtained in special cases. %'e also
investigate two classes of models for which an exact stability analysis is possible. One of these classes has the feature
that it permits solitons of arbitrarily small classical mass, even for weak coupling.

I. INTRODUCTION

For Lagrangians of the form

&=a&,4s'4 - V(4),

where Q is a scalar field, conditions necessary for
the existence of solitary wave solutions (solitons)
are well known. " V(@), which is non-negative,
must have at least two zeros; the time-independent
soliton will interpolate smoothly and monotonically
between adjacent zeros of V. Each of these zeros
will support meson sectors which, unlike the' sec-
tors of the Q» and sine-Gordon models, need not
be rel.ated, i.e., there need not be an internal sym-
metry transforming one vacuum to the adjacent
vacuum. In general such distinct meson sectors
will be characterized by mesons of different mas-
ses. The simplest such example is perhaps a P'
model' in which V possesses three minima, al-
though the phenomenon of unequal masses is a gen-
eral one. Previous considerations'~ have applied
only to the situation of equal meson masses and
must be extended to apply in general, particularly
for the calculation of the soliton mass correction
434.

In this paper we address ourselves to the prob-
lem of carrying out the necessary extensions for
the general case, and display a general formula
for AM. We then apply this analysis to two classes
of models which are distinguished by their amen-
ability to analytic techniques, to the extent that one
can investigate exactly their stability properties.
In the quantum theory this corresponds to a pre-
cise description to first order of soliton-meson
interactions. Together with the sine-Gordon the-
ory, the two classes which we describe exhaust
the scalar models for which such an exact descrip-
tion is possible. We feel it is important in the
understanding of sol.itons to have a range of such
models available for study; for example, the mo-
del of Sec. V shows that even in weakly coupled
theories it is possible to have solitons of l.ow
mass.

The quantum theory of the models under consid-
eration displays the feature that the classical sol-
itary wave does not necessarily correspond to a
quantum particle. The existence of the quantum
soliton depends on the quantum vacuum states be-
ing degenerate, and although this is guaranteed by
symmetry for the Q' and sine-Gordon models
there is no corresponding guarantee for models
lacking such symmetries. In general, quantum
effects will break the classical degeneracy of the
lowest-energy solutions and the classical solitary
wave will not have a stable quantum soliton count-
erpart; rather, the solution describes the decay
of the false vacuum, rendered unstable by barrier
penetration, into the ground state of lowest energy
as Coleman~ has described. In this case there is
no reason to expect a well-defined mass for the
soliton at the quantum level and indeed we find
there exists an arbitrariness in the first-order
mass correction 634. However, one can restore
the vacuum degeneracy at the quantum level by
the addition of suitable finite counterterms to the
Lagrangian. This corresponds to selecting a par-
ticular value for the mass p. which is used to nor-
mal order V(Q), and we show that precisely for
this choice of p. the ambiguity in AM disappears.
The classical solution can therefore again be in-
terpreted as representing a quantum particle.

In the calculation of ddt one expects that after
subtraction of the vacuum energy and renormaliza-
tion ~will be finite and indeed this occurs for
models previously studied. The vacuum- energy
subtraction requires one in general to take account
of the two distinct vacuums and, briefly, this can
be done in the following way. ' ' We perturb about
the classical solution @,(x) in the form

P(x, t) = P.(x)+q(x, f),
where q can be written

g(x, f) =e'"~'q, (x) .

q„(x) are eigenfunctions of the Schrodinger oper-
ator K:

1771 1981 The American Physica1 Society



M. A. I OHK AN D D. M. O' BRIEN

Kq, (x) = &u„'g, (x),
dK-=-, +U(x),
dx

(2)

U, = lim U(x)

and let

U, (x) =U„xo 0

=U, x&0.

These asymptotic values are in fact the squared
meson masses of the two adjacent meson sectors
and in general will be different. The vacuum en-

ergy will be ~Q&u'„, where (&u',)' is an eigenvalue
of the Schrodinger operator E,:

K, =-—,+ U, (x) .
dx2

The mass correction becomes —,'Q„(e,—uP) which
we can write, even when the infrared cutoff is re-
moved, as

U(x) = V"(Q,(x)) .
The potential U(x) determines meson-sol. iton scat-
tering properties, with reflection and transmission
allowed in general as well as the possibility of
bound states. The discussion given for &f&' applies
generally. '

If the classical energy (mass) E, is O(A, '), where
~ is the coupling constant, then the first-order
mass correction will be O(AO) and is given by hM
= —,'Q&u» i.e. , half the sum of zero-point oscil-
lations about the soliton (infrared and ultraviolet
cutoffs are assumed). This correction diverges
quadratically but subtraction of the vacuum ener-
gy should render this divergence logarithmic,
and the addition of renormalization counterterms
should then produce a finite answer. The vacuum

energy is calculated by considering the situation in
which the soliton is removed, i.e. , P, (x) and in

particular U(x) take only their asymptotic values.
Let U, be the asymptotic values of U(x):

case in which U(x) is ref lectionless and U. = U,
using a method of box regularization which unfor-
tunately is not appropriate in general. ' The ex-
pression (4) has also been computed' with only the
restriction U = U, but the general formula below
for U, c U involves an additional term. Proofs-of
the assertions that follow are given separately. '

We can assume that U, ~ U . Let ~ be an eigen-
value of K and define the wave numbers

k, = (A. —U,)' (5)

t e-fA x

q(x)-
~+x r e~~+" as x +

(6)

e'~-"-r e "-" as x--~,
q(x)-

g,e"+" as x-+~.
The properties of r, and t, are summarized Lll the
following lemma'.

(i) r, and f, are holomorphic functions of X in a
strip containing the real axis, cut along (-~, U, j,
except possibly for poles in the lower half plane.
For X in this region the following identities hold:

x (X)x (X)+ f (X)f (X) =1,k (A.)

~,(x)r, (x) + ' t, (X)t,(&) = 1,k, (X)

f,(A)k, (A) =t (A)k (X},

k (A)y, (X)t,(X) = -k (X)t' (&)t (&) .

(ii} r, and t, are infinitely differentiable on

(U, U.) and

E will have a finite number of discrete eigenvalues
A.„.. . , A.„and the continuum begins at ~ = U, i.e.,
0 =0. We can define reflection and transmission
coefficients r„t„which are functions of A. , from
the asymptotic solutions of the Schrddinger equa-
tion Kq = Xg:

—,'Tr(/K- KK, ) . (4)

(There still remains an ultraviolet cutoff in order
to handle the expected logarithmic divergence. )
This expression, in which K and K, are given by
Eqs. (2) and (3), is completely general for scalar
field theories with the Lagrangian (1). lim r, (k, ) = 1, lim t, (k, ) = 0 . (10)

(iii) If y, and f, are regarded as functions of k„
then they are hol.omorphic in a neighborhood of
4, = 0. Furthermore,

II. MASS CORRECTION

We can write down a formula for the expression
(4) in terms of the asymptotic scattering data. '
Such an expression has been worked out' for the

For technical reasons we need to assume that
U(x) falls off exponentially to the values U, at large
~x ~; this will indeed be the case for meson masses

which are nonzero. Let 6 be a function of compact
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support, then a trace formula can be given' for
Tr[G(K) —G(K, )J. We apply this formula to the
square-root function (with cutoff} to obtain or

e-jk L/2 + (k )eik I/2 P

Tr(QK- gK, ) = —,
'

1

1 ~ d+ . dX~ ln
4vi ~ dX yo)

+ 1 " d (t)
4' p dA, ( g j

Here z' is the reflection coefficient appropriate to
the potential U, and is given by

ix, —k

inc, +k (12)

in which co~'=k '+ U satisfies U & v„' & U, . As
the soliton is removed from the box we can follow
the countable continuum modes, which are uni-
formly shifted relative to the vacuum values, to
obtain a relation of the form

where g, = ik, =-(U, —A)"' is real for U & X& U. .
For U, = U one recovers the formula due to Fad-
deev and Korepin. ' We see that the arguments of
both logarithms are unitary and so the mass cor-
rection depends only on the phase change undergone
during meson-soliton scattering, as determined by

Kg =~g.
We can reach some understanding of the new

term in Eq. (11) in the following way. Although the
box regularization method of Dashen, Hasslacher,
and Neveu' is not appropriate in general, it does
work for potentials which have either no transmis-
sion or no reflection (the latter occurs for sine-
Gordon and Q4 theory). We place the soliton in a
large box of length I. with periodic boundary con-
ditions and consider the sum

k L+5(k ) =2wn,

where 5=-i lm. and n is an integer. Similarly
for the vacuum,

koL, +50(k ) =27/n„

and by identifying the modes n =n„we obtain for
y in Eq. (14)

(xy= ~- 5'=-i'nl

After an integration by parts in Eq. (15) we arrive
at the term

for large &. This asymptotic form may be derived
by converting the Schrodinger equation to an in-
tegral equation, which is then solved by iteration.
This provides an asymptotic development of the
wave function q in inverse powers of ~' ', leading
to Eq. (1V). Now substitute X=k' so that for large
~, k is the wave number and the integrand in Eq.
(11) becomes, for large k,

k d ( I i' I
4' dk k 2ik ) 47/k

where

(18)

4mi ~ dA.

which appears in Eq. (11). This is the contribution
to ~ of the reflected plane waves of energy 0
&k & (U, —U )"'. The remaining terms in Eq.
(11)are identical to those derived by Faddeev and
Korepin. '

Now let us examine the behavior of the integral
in Eq. (11) for large X. This can be done with the
help of the asymptotic development'

00

t -1 —
2

[U(x) —U, (x)Jdx+0(& ')

(14} Ux -Uox dx ~

~ QO

(19)

where k' refers to the vacuum wave number. The
mass correction is then'

&U+-v &~~2

dk y(k ) (k'+U)"'. (15)
77

Q

Incoming plane waves with energies in the range
U & 4o~' & U, are reflected completely from the
barrier U(x}- U, at large x, that is, the wave func-
tion dies off exponentially and can be neglected for
the box length L sufficiently large, for large x.
Periodic boundary conditions then imply [from Eq.

l d'
V(4)=:exP

2 d, V(y):, (2P)

where t is the loop integral (with suitable cutoff
A)

dkl=
2&

(21)

The mass correction therefore diverges logar-
ithmically, but we have yet to add renormalization
counterterms. The Lagrangian (1) will be renor-
malized by a normal ordering of the self-interac-
tion V(Q). We use the formula
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l
dx &"(Q,(x)) = —

2
dx U(x),

and from this we must subtract the counterterm
which contributes to the vacuum energy, namely

I
dx V(x).

2 0

The total correction of O(X') by the counterterms
to the soliton mass is therefore

I EI
dx[V(x) —V {x)j=-—

2 ' 2 ' (22)

and p. is a mass parameter. We find that the
counterterm of 0(&), to be added to 2, is ~lV"(@).
This contributes to the soliton mass

(25)j. Secondly, in our choice of reference poten-
tial U, (x) we have placed the step discontinuity at
x =0, the "center" of the soliton. In fact, ~M
does depend on the point x = g at which we position
the step. Let U, (x) = Uo(x- a), then the mass cor-
rection aM, calculated with this reference poten-
tial differs from ~ by the finite amount

hM —6M, = 2Tr(MK, —vK~)

l
dx(U, —Uo)(x) .

Here E, is the SchrMinger operator with potential

U, (x) and has transmission and reflection coef-
ficients t, , x,' with the properties

which we see is infrared convergent. At high en-
ergies (large k) the integrand of this contribution
1S

&a 2ik g—=e
t' e-2i (k'+-k )a

g a

I
4nk ' (28)

+ . d~g~ ln~ =-
~

I't )
4wi ~ dA. f

which cancels the logarithmic divergence of Kq.
(ll), as shown in Eq. {18). We have demonstrated
therefore that under very general conditions the
first-order cor'rection to the soliton mass is fin-
ite, and is given explicitly by

1 ~' d+. d~~.~ ln
~

=—
4 d~ I r

Using Eq. (11) we find

a aU cf k+hM —6M, = (U, —U ) — '
)~1

aU dk lg
477 (k '+ U )"' 2

where the integrations are to be cut off at A. =k,'
+ U, = A. There is no ambiguity when U, = U, for
then AM- ~hi, =0. However, in general there
seems to be no unique way to choose x =a as the
center of the soliton, but we can in fact remove
the ambiguity by choosing E such that AM- AM,
=0. We have then

l
dx(U —Uo) (x),

m OO

(24) U dk
4v 2v(V. —V ), (n:+U.)"2

where t, l are given in Egs. (12) and (21).
Two further comments must be made about this

formula. Firstly, the divergent loop integral / in Eq.
(21) depends on a mass parameter p, , with respect
to which V(Q) is normal ordered, and nM then al-
so depends on p, . We can always vary p, by adding
finite amounts to /, which will not affect the high-
energy behavior and therefore the renormalizabil-
ity of the theory. The relation between loop inte-
grals with different p is given by the re-normal-
ordering formula

1 " dk
(P'+ ')"' 2v (ha+I')'

0 P 0

For U WU there is no natural single choice for- a
normal-ordering mass p, . We will deduce a con-
venient form for f, i.e., a value of p, below [Eq.

U dk

2v(V, -V) . (I '+V)"' (25)

This corresponds to the loop integral (21) with a
mass p,

2 given by

ln p' = 1+ (U, ln U, —U lnU ) .
+

We observe that this expression is symmetric in
U, and U, and for U, -U is equal to 2+lnU . For
the case U, 4U we adopt this value of p.' as the
normal. -ordering mass, and there is then no am-
biguity in the calculation of AM, which is given by

Eq. (24) with / defined by Eq. (25).
This resolution of the ambiguity in AM is dis-

cussed in the Introduction and is connected with the
degeneracy of the quantum vacuums. In order to
investigate this let us calculate the first-order en-
ergy difference per unit volume of the adjacent
vacuums. We place the system in a box of length
I and the vacuum energy is +(u', as before. The
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difference in energies of the adjacent vacuums is
then

L/ 3

dx(U —U,),
-L/2

where we have included counterterms. The energy
difference per unit volume is finite and equal to

du (b '+U)"'
2 p

-2', dk. ":""2:-'-
The value of / for which this energy difference is
zero is precisely that given by Eq. (25). We see
therefore that by choosing a suitable normal order-
ing mass, or equivalently, by adding to the I.ag-
rangian the correct finite counterterms proportion-
al to V"(Q), we can restore vacuum degeneracy
and simultaneously remove the ambiguity in AM.

For the explicit models described below, the
scattering coefficients can be computed in closed
form and 4M displayed as an explicit integral.
However, except for a few models such as (t&' or
sine-Gordon, these integrals seem to require nu-

merical evaluation.

HI. EXPLICIT MODELS

Many soliton models pose computational diffi-
culties in that exact or perturbative solutions can-
not be given in closed form. For the scalar the-
ories under consideration we would like to study
the models for which the potential V(Q) and the
soliton solution (I)),(x} can be explicitly displayed,
and for which the small disturbance equation (2)
can be solved in terms of elementary or special
functions. In such models one has a chance of cal-
culating analytically the quantum corrections, in-
cluding the description of bound states and evalu-
ation of mass corrections mentioned above. In ad-
dition, it turns out that one ca~ a.l~o aive explicitly
the Fourier transform Q, (P) of (t),(x), which is the
matrix element of the quantum field between one-
soliton states. '

Given a Schrodinger operator
d'

K= —d, + U(x},dx

a necessary condition that A be appropriate to a
soliton model is that U(x) = V"((t&,(x)) be smooth
and finite everywhere, with finite limits U, . The
spectrum of K must also be bounded below, and
the eigenvector of the lowest eigenvalue must cor-
respond to the zero-frequency mode' and be equal
to d(t),/dx. From such an eigenvector one obtains
(II),(x) by integration. Then the potential is given by

(26)

We wish to display V as an explicit function of (t&,

which requires one to explicitly invert Q, = (P,(x}
to obtain x =f(Q,) as a function of (t), . V((p) must
be at least a continuous function of Q, and be
bounded below for all (t).

The SchrOdinger equations sot.uble in terms of
known functions are also those soluble by the fac-
torization method and are listed in Morse and
Feshbach (Ref. 7, p. 789). The only .suitable po-
tentials are found to be of the form

U(x) =a+bcosh 'x+ctanhx,

U(x) =a+cosh 'x(b+c sinhx)

(27)

(28)

for various constants a, b, c.
The potential (27) is studied in detail in Morse

and Feshbach. ' The eigenvectors (P, correspond-
ing to the lowest eigenvalues are (up to normal-
ization)

(t), = (coshx)'e '"
for (27), and for (28)

(t), = (coshx) exp(P tan ' sinhx),

(29)

(30)

V(4) = o(0'(0'- v'}' (31)

where n, P, v are new parameters.
(iii) o(=-1 in Eq. (30). This gives a model also

containing a dimensionless parameter, and we can
write V((t)) as

V(Q) = —,
' c('(t&' cos'(P inXQ'), (32)

where c(, P, X are new parameters.
We consider the potentials (31) and (32) separ-

ately below. However, let us first mention the
Fourier transform Q,(p) of Q, (x). The one-soliton
matrix element is given by'

((' ~e
l
p) fd~-&((((' ()*](=.(~). -(33)

Interesting features of this matrix element are the
positions of poles, and any symmetry properties
under the interchange of P and p'. For U. = U,
i.e., for sol. itons interpolating between meson sec-
tors of equal mass p, , (t),(p) has poles at p =i pn
for integers n (Ref. 8). For U, xU the position of
the poles is not obvious in general, but can be cal-
culated directly for the potential (31) above We.

where n. , P are constants related to a, b, c. Setting
(t), =dQgdx, we need to integrate Eqs. (29) and (30)
and explicitly invert to obtain x= f((P,). We can do
this in the following cases.

(i) o(=-1, P=O in either Eqs. (29) or (30). This
will give us the sine-Gordon model.

(ii) p=-a —2 in Eq. (29). This gives a model
containing an arbitrary dimensionless parameter
and is a generalization of (P'. We will write the
potential as
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can calculate Q,(p) as follows: if P, interpolates
between vacuum values v„v„ i.e., v, ~ Q, (x) ~ v„
then

Next, let us examine the small-disturbance equa-
tion -q" + U(x)q = comp. We find

U(x) P2+ 1 P' —1 i/, Px

= (v, +v, )w6(P) + —P,'(P),

where we have regarded &f&,(x) as a, generalized
function. By shifting Q, suitably we could choose
v, +v, =O. No te that since y,'(x) 0 f» Ix I

the Fourier transform of @,'(x) is convergent inte-
gral.

(2P+ l)(P+ 1)
4 cosh~(p, Px/2)

' (38)

We observe that U = p' t U, =P'p, ' in general, so
.that we have the sltuatxon of unequal meson masses
alluded to in the Introduction. The Schrodinger
equation with the potential (38) is extensively dis-
cussed in Morse and Feshbaeh (Ref. 7, p. 1651).
Their notation corresponds with ours as follows:

lv. «~}= Ai'-&)'
For P =1 this potential is the well-known P4 po-

tential with the kink solution. For P =2 we have a
potential with three minima previously investi-

gated. ' For P an odd integer 2n —1, V is a poly-
nomial of degree 4n, with only two minima, at Q
=0 and P=v. For P an eveninteger 2n, Vis an
even polynomial of degree 4n+2 with three mini-
ma, at Q =0 and Q =av. There seems to be no rea-
son why P should not take nonintegral values, al-
though Q might have to be replaced by I Q I, e.g. ,
for P= —,'. In any case we need P~ -1, and for P
=0 and P =-1 the potential degenerates to that for
a free massive field.

We study the soliton interpolating between Q =0
and P=v. Mesons built on these vacuums have
mass

3(P+ 1)(P+2)
P(2P+ 1)

P+ 5 4uP

2P+ 1 p~P

(39)

Rtif I
3p

p+2

The solutions can be expressed in terms of hyper-
geometric functions and are listed in Ref. 7. We
will be content to note the reflection and trans-
mission coefficients as defined in Eqs. (6) and (7).

For co' & p,
' there is always one discrete level

aP =0, with eigenvector Q,', but for 0&P&M2there
is another discrete level with eigenvalue

[V"(0)]"' = i/, = v'2nv',

[VN(v)]1/2 —
Pi/

(35) (4- P'). (40)

(36)

respectively. Only for P = 1 (Q') are these masses
equal. The one-soliton solution j5, is easily «-
cu1ated:

—v(1 +e BQx} 1/0

/1+ tanh(Ppx/2)) '"
=vl(

e 0.-8 )8 ila
(P - I+tanhz),

cosh@ (41)

This level represents a meson-soliton bound state
and possesses excitation levels. The correspond-
ing wave function is

The classical mass is

$2npv "
2(P+2) (37)

where z = p,px/2.
For p' ~ u' ~ pap' incoming plane waves are re-

flected with the coefficient of reflection [as defined
by Eq. (7)] given by

2ik
ll z, ik P+1 I(z. ik 2P+1)

» ~P
2ik ) (~, ik P+1 (x, ik 2P+1& '

~P i &~P uP P &pP ~P

(42)

where k =(~' —p,')"', z.=(p, 'P'- &u')" '. Physic-
ally this means that mass- p. mesons in this energy
range are completely reflected by the soliton.

For aP ~ p'P' we ean have both reflection and

transmission. The coefficient t is given by
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(
ak ik, 2P+I&( t' ik ik, P+1

& ~P ~P P & i uP vP P

( ik. f 2i

i. pP& I, uPi
(43)

where k, = (sP —p.'P')"'. Evidently incoming mes-
ons can be reflected or transmitted from the sol-
iton; transmitted mesons acquire a different
mass, appropriate to the sector they occupy.

We can now calculate the first-order soliton-
mass correction by substituting into Eq. (24).
The value of I, as defined by Eq. (19), is

~(P+1)(2P+1)
FIG. 1. The potential V=. Q cos2(plnft) ) plotted for p

= 2. The distance between minima grows exponentially,
and the heights of the maxima gxow quadratically.

and x, t are given above. We have not attempted
to evaluate the integrals in Eq. (24), although this
is possible for special values such as /=1. .

Finally, l.et us mention the Fourier transform
of Q„ the matrix element discussed in Sec. Ill.
From Eq. (34) we obtain

@,(P) =-6(~)+—e', (~)

ivl" (I/P + iP/P p) I'(1 —iP/P p)
~1(1/P)

(44)

For P= 1 we recover the &f&' matrix element, pro-
portional to [sinh(vP/p)] '. In general, we have
poles at

P= -zpPn

(45)

p =ippn+i p, , n=0, 1, . . . .

&0. However, the potential makes sense for some
imaginary values of P, for example P= i/2, -when
we obtain a P~ potential. e, which we take to be
positive, is a mass parameter. The coupling con-
stant X, also positive, is defined according to
V(X, P) = (I/A. )V(1, ~X&f ) and can be seal. ed out clas-
sically. We observe that P is not analytic at X=0.

In the quantum theory we can build meson states
on any of the vacuums shown in (46) and the mes-
ons all have mass p=2o'. P, independent of n, . How-
ever, it is not clear whether one can build a mean-
ingful quantum theory on the minimum at Q =0,
where V" (Q) is discontinuous. A natural approach
would be to take the limit n--~ of the theory
based on the vacuum v„ in Eq. (46).

There are solitons interpolating between adjac-
ent vacuums and these are obtained by integration
of (Q')' = 2 V(P). We obtain

1 (al
eep~ —- tee 'cine ex)~A, i2P

Unl, ike P', there is no evident symmetry under the
exchange p -p.

1 (i+sinhp, x "'~
I i —sinh px

(48)

y. p(y) = (e2/2)$2 cos2(P 1nX$2)

A graph of this potential is shown for a typical
value of P in Fig. 1. There are an infinite number
of minima at

The various solutions appear as the different
branches of the tan ' function. The classical
mass of the solution interpolating between the vac-
uums g„.and

1 7T l

Q=v„= —exp (2n —1)—
4P

2x(P'+ 1) 2P
(49)

4 2 2
(4'i)

The parameter P is dimensionless and we take P

where m=0, +1, . . . . There is al.so a minimum
at $=0, i.e. , the limit n--~, where V and V'

(but not V") are continuous. The potential can al-
so be written

The exponential dependence on n shows that how-
ever weak the coupling X we can have solitons of
arbitrarily small classical mass by taking n large
and negative. Of course, quantum effects will
contribute corrections of order p, , the meson
mass, but evidently it is possible to have solitons
of low mass even in weakly coupled theories. In
the limit n--~, when the sol.iton degenerates to
be built entirely on the vacuum @=0, the classical
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mass of 0(& ') disappears altogether so that the
lowest-order mass [of O(Ao)] appears as a quantum
correction.

Next, let us study perturbations around the sol-
iton by solving -/i" + U(x)q = uPg. We find

denote the branches of (52) with exponents ail'2/p

at s = ~. We may take then

—
( 4is)" i2/ P(I s-1)1-j/42

x E(a, a —c+1, a —b +I;s '),
U(x) 2 sUlh jlx (1 —Bj5 )

2p cosh'l/, x 4/2 cosh' px
(50) q =(-4is)'2/ "(1—s ')' "42

& E(5, f/ —c + 1, f/ —a + 1;s '),
This potential is independent of n, i.e., of the par-
ticular vacuum or soliton chosen. The shape of
U(x) for a typical value of P is shown in Fig. 2.
The Schrodinger equation has three singularities,
at z = sinh px = +i and z = , and these singularities,
are all regular, showing that the equation can be
reduced to the hypergeometric equation. We can
calculate the exponents at the singul. ar points and
express the solution in terms of Riemann's P func-
tion. ' We find

e as g~ —Oy-4is-
-e~" as x-. +~,

and so we obtain the plane-wave solutions

(54)

e"'" as x
Tl elf kxptffkl P

(55)

where a=2+i12/l/. , f/=2 —ik/l/. , c =2+i/2p, and we
have included phase factors for convenience. For
large ~x~ we have

i 1 i gg——+—
2 4P 2 4P p.

where k = (0) —p ) ~ 8 = slnhl/X. By standard
manipulations' this can be converted to

ik
g=pl(

zk 1 i 1 i
+ ewe

2 4P 2 4P

(51)
Here we must take care with the branches of

( 4is)-"""; we specify that the branch cut lies
along the positive real axis in the complex s plane
so that for Im(s}&0 we set -s =e'"s.

As x varies from -~ to +~, s = 2(l —i sinh px}
moves in the complex s pl.ane parall. el to the im-
aginary axis down Re(s) =-,', i.e., between the two
singular points at s =0, s =1. To find the scatter-
ing and reflection coefficients we must analytically
continue g, along this path. During this analytic
continuation we will find

where s = —,
'

(1 —i sinhpx). The solutions we seek
are branches of this P function and are hypergeome-
tric functions.

First we study the scattering solutions. Let g,

for coefficients P„q,. We use the identity

E(a, a —c+1,a —5+1, s ')

I'(a —b + 1)I"(1 —c)(-s)'
I'(a —c + 1)I'(1 —f/)

x E(a —c+1, b —c+1,2 —c; s), (55)

valid for ~arg(-s '}~& w. This places the cut as
before along the positive real axis. The contour
for s, as g varies, can be deformed into a simple
clockwise loop about the origin. Analytic continu-
ation around this path leads to the replacement

( s)a ( s)a&-2&ia

(. s)a-0+1 (
s)a"c+1s"2ti 'ta-0+1)

(5V)

The Schrodinger potential p(x) = 1
+ (cosbx) [3 (sinhx)/2p+ (Sp —1)/4p ] plotted for the
value p=~ (with unit mass scale). The potential falls
off exponentially to its asymptotic values P, =U =1.

in Eg. (56). Now we reexpress the hypergeometric
functions in terms of the branches at infinity,
thereby completing the analytic continuation. We
obtain
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E(a, a —c+ 1,a —b+1;s ')-E(a, a —c+1,a —&+I;s ')e "n/" "~)b(k)

+E(b, b —c+1,b —a+1; s ')(-s)' ~e ' ' '/ '2"" 'a(k), (58)

where

a(k)—
~ ~ ~

zu & S sa ~ 1 0—+ I
i
r —+ —+ — — I' —+ ——

p, j 2 p. 2P 2 p,

sinh(v/2P)
cosh(7/k/)/, )

i }

(59)

In addition, we need to analytically continue the
coefficients of the hypergeometric function in Eq.
(53) for )), around the same contour. We find

( 4is-) ')/" (1 —s ')' )/4))

e (n/28-2nn/n)( Qe)-i)!/ n(1 s-l)l-i/@8. (60)

r
There is only one solution K = p. , which of course
is the zero mode co'=0. The wave function, found

by substituting 4 =-i p, into the expression for
)), [Eq. (58)], is

s-)/ 2- )/4))( s I')-)/2+)/'))) (66)

which is in fact dQ, /Cx. We conclude that meson-sol-
iton bound states cannot form for any finite value
of P.

This completes our analysis of the meson-soliton
interactions. We can now evaluate the first-order
sol.iton mass correction 6j/t, by substitution into

Eq. (24):

—t/. (1 —8P')
8vP'

Combining all, terms we obtain

)),-)).e """b(k)+))e"' '"a(k) . (61) 47), (k'+ )).'}"'
t

a 2p'

By comparing with the asymptotic solutions in Eq.
(55) we dedh)ce that there are scattering solutions

g with the behavior
~

~

e flax for
))(x)-

a(k)e""+b(k)e "" for x-+~,
(62)

where a(k), b(k) are defined in Eqs. (59). Note
that a(k) and b(k) satisfy the unitarity relations

comparing with the reflection and transmission
coefficients defined in Eqs. (6) and (7), together
with the relations (8)-(10) we find that

a--I/t, b=~/t, (63)

t -1— --+0(k },

(1 8P )I= l U x p, dh= p. ——-----—
~ OO

Bound states could occur for v~ & p, ', i.e., for
4 imaginary. The solution with asymptotic behav-
ior shown in Eq. (62) will be square integrabl. e for
k =-iv, x real and a ~ 0, only if a(z) =0. Hence

(64)

p —+-
ti( '} 1 g i ) 1 g i

]
—+I~r -+—+ — ~r -+——

E)u ) 2 )/ 2P ~ 2 V 2P&

enabling us to obtain in turn t, t, =t, x and )n,
rt /t . As a. ch-eck we can verify the asymptotic

expansion for t given in Eq. (I't) and find as re-
quired

(67)

where we have carried out an integration by parts
and substituted for I from Eq. (64). We have not
attempted to evaluate analytically this integral,
which we know to be convergent, although it could

be done for special values of P such as P =~.
Finally we mention the Fourier transform of Q, .

Let us choose the branch of Q, that interpolates
between v„and v„„. Then

p, (p) = (v„+v„„)vb(p) + —Q,'(P)

and

&e [on-1)/4/)+ 0/2n)& t ip
- y y —,1+—,2;2 .

p '
t), pfA sinh())p/)/, ) 2p

(69)

As expected' there are poles at p =i p,n for n any

integer. However, there are no evident symmetry
properties under the exchange p ——p.

VI. CONCLUSION

We have extended the general theory of solitons
in two-dimensional scalar models to include the
possibil. ity that adjacent vacuums might be unre-
lated, i.e. , there will be no internal. symmetry
connecting the two vacuums and the corresponding
meson masses might be different. Such an exten-
sion is not completely straightforward in the quan-

tum theory, for one must subtract correctly the



M. A. LOHK A5 D D. M. O' BRIEN

vacuum energies arising from unrelated vacuums
and the soliton mass correction must be modified
accordingly. In the absence of multisoliton solu-
tions we have discussed only the single intrinsic
sol.iton property, its mass. However, quantum
corrections involve a stability analysis of the sol.-
iton, which can be interpreted in terms of sol.iton-
meson interactions. Vfe have listed all the model. s
in which such a stability analysis can be given ex-
actly, enabling one to describe precisely to first
order the sol, iton-meson interactions. It is easy
to list all such models because the small-disturb-
ance equation for scalar theories is the one-dimen-
sional Schrodinger equation, for which all. exactly

soluble potential. s are known. It is straightforward
to work backwards and derive the corresponding
field theoretic potential V(Q); here we have been
interested only in the potential. s which can be given
explicitly.

Models involving nonlinear structures are usual. ly
difficult to study by analytic techniques and so it
seems particularly useful to have at hand such a
range of models on which to test conjectures. In
higher dimensions, where gauge fields are in-
volved, the nonlinearities and consequent difficult-
ies are much more severe and any knowledge
gained from two-dimensional. models is likely to
be of use.
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