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Absence of induced interaction terms in the Federbush model
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In a perturbative calculation we show that no new quadrilinear counterterms are necessary to define the Federbush
model if one imposes gauge symmetry of the first kind and asymptotic y' invariance. A subtraction scheme

satisfying these conditions is constructed and renormalization-group properties of the Green s functions are
analyzed.

I. INTRODUCTION

Historically, the Federbush model was proposed
in 1961 as a prototype of a solvable field-theoreti-
cal model involving massive spinors. ' It is a two-
dimensional model with a Lagrangian density given
by

III we construct renormalized Green's functions
and derive Ward identities for the axial-vector
currents explicitly satisfying the requirements of
Sec. II. Finally, in Sec. IV, we discuss renor-
malization-group aspects related to the approach
used.

II. ASYMPTOTIC y INVARIANCE
AND CANCELLATION OF DIVERGENCES

where the indices j =1,2 denote the fermion field
type.

The original formulation was made more rigor-
ous after the work of Wightman in 1963.' More
recently there has been some controversy about
the perturbative characterization of the model. ' '
The basic question is that, as graphs with four ex-
ternal fermion lines are superficially logarithmi-
cally divergent, counterterms having forms dif-
ferent from those already present in (1.1) re.g.
(P,g, )(g,g,)] could be necessary in order to define
finite Green's functions. However, if, owing to
some asymptotic symmetry, there is a cancella-
tion of the divergences of the various graphs in-
volved then counterterms are not necessary. The
existence of such cancellations, up to second or-
der ing, has been shown in Hefs. 4 and 5.

In this paper we will show that in any order of
perturbation the renormalization problem for the
Lagrangian (1.1) is perfectly compatible with the
asymptotic symmetries of the model. If asymptot-
ic p' invariance is imposed then the only quadrilin-
ear counterterms necessary are those needed to
make both vector currents conserved.

Furthermore, we will construct a modified
Bogolubov-P arasiuk-Hepp- Z immermann (BPHZ)
subtraction scheme preserving such symmetry and

show that the resulting Green's functions obey a
renormalization-group equation of the usual form.
'The paper is organized as follows. In Sec. II we
prove that no new quadrilinear counterterms are
necessary if the vector currents are conserved
and asymptotic y' invariance is imposed. In Sec.

iJ

In this section we want to show how current con-
servation and asymptotic z' invariance can be used
to explain the mechanism of the cancellation of
some of the divergences of graphs with four ex-
ternal legs, constructed using the Lagrangian
(1.1). As mentioned before, graphs with four ex-
ternal fermion lines are logarithmically divergent.
If we adopt the graphical notation of Fig. 1, these
graphs can be classified into two groups, I and II,
according to whether they can or cannot be sepa-
rated into disjoint pieces by cutting only one wavy
line. In the first case the graphs have the struc-
ture of a product with the factors corresponding
either to a contribution to the proper Green's
function of one of the formal currents g,y~g, or
g,y" g„with two external fermion lines, or to a
contribution to the two-point function of the cur-
rents. As these factors are (logarithmically) di-
vergent we add counterterms or, equivalently,
make subtractions such that the expression ob-
tained has the same structure as before but with
the factors now identified with some contribution

FIG. 1. Feynman rules: the continuous line repre-
sents the fermion propagator of type j, the wavy line
represents the "propagator" c1' ".
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to the corresponding renormalized Green's func-
tions.

We suppose that this renormalization program,
which must be carried out starting in lowest order
in g, is such that these current Green's functions
satisfy Ward identities of the usual form, showing
current conservation and asymptotic y' invariance.
Since the formally breaking terms of y' invari-
ance occurring in the Lagrangian (1.1) are soft, we
think that these requirements can be naturally
met. In the next section we will construct explic-
itly a subtraction scheme satisfying these require-
ments.

Now consider graphs with four external fermion
lines that cannot be separated into disjoint pieces
by cutting only one wavy line. In a given order of

g these graphs will contain subgraphs of the fol-
lowing type:

(i) Subgraphs with two external fermion lines.
- These graphs have been made finite by the addition
of the corresponding bilinear counterterms.

(ii) Subgrsph~ with four external fermion lines,
belonging to group I. Owing to our previous dis-
cussion, the divergences of these subgraphs are
canceled with the contributions of the added coun-
terterms.

(iii) Subgraphs with four external fermion lines
belonging to group II. These subgraphs have al-
ready appeared in lower order. The application of
our result below leads to the conclusion that they
do not need counterterms.

Taking these observations into account, we are
going to show now that, in the order considered,
no more quadrilinear counterterms are necessary.
To prove this fact note that a generic graph of the

type II has the structure shown in Fig. 2. In that
figure the vertex V corresponds to the full renor-
malized current vertex with at most two external
wavy lines. Let q be the momentum through the
indicated wavy line. We use the identity

(2.1)

and transfer the q~ and q™~factors from the line to
the vertex V and apply current conservation and
asymptotic y' invariance, respectively. We will
obtain graphs that have the same form as before
but with V replaced by a soft vertex (in the case of
the rotational of the vector current) besides the

usual contributions (Fig. 3) that come from the
fact that we are considering proper time-ordered
functions. Since the original graphs were only
logarithmically divergent, , it is therefore clear
that the result is ultraviolet finite.

The above discussion shows that the only sources
of quadrilinear counterterms are the graphs of
type I. As will be argued in Sec. ID these counter-
terms correspond to the vertices (g,y" P,)(g,y~P, ),
(4,y„4.)(4,y' 4.), »d (4,y" g, )(4,y„y'0, )

The discussion also shows what one should do to
construct a graph-by-graph subtraction scheme
satisfying the above requirements: the subtrac-
tions for proper graphs with four external lines
must be done at the value zero of the masses M,
and M,. Possible infrared divergences of the sub-
traction terms can be eliminated if, in these
terms, one replaces e "by c"q'/(p' —p').

III. GREEN'S FUNCTION AND THE SUBTRACTION
SCHEME

d(y) =2-s'N„-A„—B„, (3.2)

where N» =No. of external fermion lines of y, B„
=No. of external wavy lines of y, and A„=No. of
vertices of type a, and a, in y. Without the inser-

The observations made at the end of the previous
section lead us to define the following effective
Lagrangian density for the Federbush model:

2

—,'g,.y~e„,. —M, , ,

+g &.Pg(l, y" ti) Q.y"4.H

+a,N, (g,g, )+a@',(g,g,) =L,+L„, , (3.1)

I ...=g&,+g(4,y'g, )(7t,y "0,)]

+ ,&,(4,4, ) + Q, (0,4,) .
The finite counterterms a, and a, were added in

order to fix the physical mass of the fields g, and

g, at the values M, and M„respectively.
We adopt the graphical notation of Fig. 1. For

subtraction purposes a graph will be called proper
if it cannot be separated into disjoint pieces by
cutting only one line (either a fermion or a wavy
line). By power counting the degree of superficial
divergence of a proper graph is given by

FIG. 2. General structure for the four-point function.
FIG. 3. Here the indicated wavy line has a momentum

factor q "/q or q "/q .
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FIG. 5. Proper functions of two currents.

FIG. 4. Generic graph for the vertex function of the
current with two external fermion lines.

~v
—s +SE(g +s )

(3.3)

tion of the counterterms (i.e., A„=O) the graphs to
be subtracted are then the following:

(1) Fermion self-energy graphs, &(y) = l.
(2) Vertex functions of the currents with two ex-

ternal fermion lines (see Fig. 4), 5(y) =0.
(3) Proper functions of two currents (Fig. 5),

~(~) =0.
(4) Four-point proper functions, 6{y)=0.
Let I~ be the unsubtracted Feynman integrand

associated with the graph G. In order to construct
the subtracted Feynman integrand we first substi-
tute I~ by Ig which is obtained from I~ by replacing
the &""factor associated with a wavy line in which
flows the momentum q by

The renormalized integrand associated with I~ is
then given by the forest formula

(-T""'~(~))i,(II), (3.4)
URER y

where the sum is over all G forests [i.e., families
of proper, nonoverlapping subgraphs of G, having
d(y} ~ 0] and where T" '"' is a generalized Taylor
operator defined as follows:

(a) r~"' is the Taylor operator of order d(y) =0
in the external momenta P" of y and in M" at p" =0
and M" = p. if y is the graph of Fig. 6:
&„'I„(P",M") =I„(0,p) if y= Fig. 6.

(h) For the remaining graphs T""' is a Taylor
operator of order d(y} in P", LIP„M", at p" = 0, 3P,
=~2=0 and, besides, in the last subtraction of
T""' s" is replaced by p, . Explicitly, in these
cases we have

(i) r,'I„{p",AP„M",, s") =I„(0,0, 0, p. ) for logarithmically divergent graphs,

(ii) T„'I„(P",M~~, AP~, s")=I„(0,0, 0, s~)+p"„„I„
~P v p&=0 Q&=0 g&= p,9

( 8 9
+M,"~ „I„,~+M", ~ I„ I for linearly divergent graphs.

go=0, u"=o,s"=g) a ' p&=O, M"=O s"=g

8„ is a substitution operator writing the variables
of X~y in terms of those of y; SG does the addi-
tional job of setting s =0 and of replacing p, either
by M, or M, according to the type of current in
Fig. 6.

Notice that at s = 0 the "propagator" of the wavy
line is e„„q'(q'+icy') so that, in all places where
generalized Taylor operators did not act, this be-
comes simply & „as &-0. Therefore, subtrac-
tions for graphs of type 2 and 3 in the list after
(3.2) will correspond to guadrilinear counterterms
in the fermion fields.

We remark that the proposed subtraction scheme
does not create infrared divergences. Some of the
subtractions are done at s" = 0 and M" = 0 but the
last subtractions, which if done at s' =0 and M'=0
would lead to infrared divergences, are actually
done at s'= p, . The special treatment given to the
graph of Fig. 6 comes from the fact that, in this
case, there is no internal wavy line to provide a

natural infrared cutoff.
The scheme so constructed is a simple modifi-

cation of those employed in Refs. 6 and 7 and both
ultraviolet and infrared finiteness can be proven
using similar arguments of those references. For
completeness, a sketch of a proof of the infrared
convergence is given in the Appendix.

In the same way as done in Sec. II we can prove
that the global subtractions for the proper four-
point graphs [case (4) in the list after (3.2)] are
actually redundant. To verify this we write the

. i....l L....J.....

FIG. 6. In this graph the fermion mass is not mod-
ified by the action of the subtraction operator.
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contribution of order n as

Z&'&= +(i-~; )Ã, , (3.6)

in Fig. 8. Using Lorentz covariance and I'T in-
variance the only possible forms of the counter-
terms are then

where the sum is over all proper four-point
graphs and R~ is defined by the forest formulai")
but without the subtractions associated with the
graph G, . We will show that+, ~0~ B~ =0. To this
end let us assume that this result has already
been proven up to order n —1. Using this fact we
see that R~ only contains subtractions for sub-
graphs of the types (1), (2), and (3) in the list
after Eti. (3.2). Note that G, has the structure
shown in Fig. V. As before, we apply the identity

( )q'+ iraq'
(3.6}

to the line indicated linking V, to V,. %e obtain a
sum of graphs where + in V2 is substituted by
2My' or appears, in a factorized form, the contri-
bution of a graph which vanishes at P~ =M~, = 0.
In both cases the application of the las] subtraction
operator gives zero.

Similarly, one can also show that the overall
subtractions for logarithmically divergent graphs
containing a closed fermion loop with more than
two vertices are also redundant. This kind of
argument can be employed to determine formally
the type of the quadrilinear counterterms associ-
ated with the subtraction procedure. From the
above discussion these counterterms can come
only from the overall subtractions (more precise-
ly, from the product of the global subtractions
associated with each proper part) for the graphs

d(y)=2--,'N„.-u„-II„- P (2-6,). (3.7}

The axial-vector currents N„(g,y"y'g, ) satisfy
Nard identities which can be derived in the usual
way. %'ith the notation

Ny N2

4, (x,}y(y, ) |I,(z,}g,(ce,)

we have, for example,

(i) (4,y"4g)(4,y„r'0,)
if the square box in Fig. 8 with two external wavy
lines contains an even number of subgraphs of the
type of Fig. 6, and

(ii) (7,y" 4,)(7,y„0,) and (4,y„4.)(4.y„0,)

if the square box contains an odd number of sub-
graphs of the type of Fig. 6.

Another interesting property concerns graphs
that have two closed fermion loops linked by at
least one wavy line. In this case the graph will
not contribute. This can be seen by the same
reasoning as above. We simply use (3.6) to one of
the lines linking the two closed loops and apply
current conservation.

Green's functions containing normal products
N, (8,}, 5, ~2, where 6, =(operator dimension of
8+number of mass parameters in 8,), are defined
by (3.4}, but using

8( TN(g, y~ y'p, )(x) X)= i(T{Ngp, (-i' -M, )y'p, ](x) +Ng p,y'(iP-M, )g,](x)'+ 2N, (M),y'p, )(X)]X)

Ng

=2i(TN, (M,(,y'$, )( )Xx) —2ia, (TN, (g,y'$, )(x)X) g[&(x--x,)y,', + 5(x y, )ysr](TX-) .
(3.6)

Observing that the only difference between N( Mgy'g, ) and MN, (p,y'g, ) comes from the subtraction for
the graph of Fig. 9, we can write

2iN, (M,g,y'g, ) = 2iM,N, (g,y'Q, ) + as"N, (g,y" P,),
(3.9)

a =-g/v.

/
I I

FIG. 7. The bubble represents possible contributions
to the wavy line "propagator" (the two fermion lines at
V2 do not give further contributions to the propagator).

FIG. 8. Quadrilinear counterterms can be generated
by the global subtractions for each proper part of this
graph.
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7"~ T

FIG. 9. Only contribution to the anoma}y of the axial-
vector current. FIG. 10. Ferrnion loop with a mass insertion.

Now, by using

s"(TN, (y, y, g,)( )X) =g [5(x —~,) —5( —z, )](TX}
g-"1

and (3.9) in (3.8) we obtain
N2

S~( TN( ll,(y y'$~)(x) X) = 2i (I,—a, )(TN, (ll(,y'(l(, )(x}X)+ a g [5(x —w&) —5(x —z&)](TX}
/=1

Ng

5 -xi y„'+6 x —yi y" TX

(3.10)

(3.11)

IV. THE RENORMALIZATION-GROUP EQUATION

The Green's functions defined in the previous
section satisfy a renormalization-group equation
which can be derived by using the following differ-
ential vertex operations' (DVO's}:

4,~
=i d'xN, (gq(t(J), &,q =i Jl d~xN2(M~/~())(x),

(4 1)

d xN [e„„(g,y" $,)(g y"g )] (x) .

The operators ~„and ~,, are not independent.
Their only difference is due to the subtractions
for the subgraphs of Fig. 10. However, a
straightforward calculation shows that the sum of
these subtractions is actually zero, and we have

p(N~N ) g z (NN2)
i &i &i (4.2}

In (4.2) and hereafter I'"& ~2' denotes the one-
particle-irreducible (1PI) vertex function (i.e.,
those corresponding to graphs that cannot be sep-
arated into disjoint pieces by cutting only one
fermion line) of N, fields of type 1 and N, fields
of type 2.

Using (4.1) and (4.2} we can derive, in the usual.
way, the relations

N, I'~~ ""= [~ —(i(d - a-)~, . + gn. ]I'~ "", (4.3)

Note the mild form (proportional to the divergence
of the vector current of the g, field) of the anoma-
lous term. If, instead of the proposed scheme, we
had employed the usual BPHZ procedure, ' we
would get a hard breaking of the axial-vector cur-
rent's conservation.

I-

Besides (4.3) and (4.4) we also have

g p(Ny s N2)

(g g + 5 g g (B(,N2) +yg T(E1.(((2)
i li i 2i 3

i=1

(4.5)

where ~, , 5„and y are power series in the cou-
pling constant g. E(luation (4.5) is obtained by
noting that (slag)1'"& "2' receives contributions
only of the subtraction terms and by noting the
following:

(i) Renormalization parts corresponding to con-
tributions from the proper function of two cur-
rents do not contribute. This follows because the
graph of Fig. 6 does not depend on p, and graphs
of this type. of higher order wil1. have closed fer-
mion loops linked by at least one wavy line and,
as argued before, they identically vanish.

(ii) The subtractions for proper graphs with
four external fermion lines cancel among them-
selves.

Thus the only contributions for sl'/sl(, come
from subtractions for the vertex and fermion's
self-energy graphs. Concerning the self-energy
graphs, observe that they do not give contribu-
tions to DVO's of the type fd'xN, (gy'g) or
fd'xN, (gy" y'8" (I()(x). To see this consider, for
example, possible contributions to fd'x N, (gy'g)(x)
coming from graphs of the type shown in Fig. 11

(4.4) FIG. 11. A contribution to the fermion self-energy.
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(in this case the diagram must be of odd order in
g). These arise from the subtraction term

+ c—N, 7, X-,7, ~l'&-~'~. & = 0.8 8

The proof of (4.6) is standard. ' We follow the
usual argument: by substituting (4.3), (4.4), and
(4.5) in (4.6) and by equating to zero the coef-
ficient of each DVO we get

(4.6)

pX, +c +(M, -a,)v~=0,8Q~

Bg

8 8
M—-- Ig

Now if s/sM acts on the propagators outside the
fermion loop we obtain zero (as result of vector
and axial-vector-current conservation applied to
any of the vertices in the loop). On the other
hand, if s/BM is applied in the lines of the fermion
loop the result is also zero since now the loop
will have an odd number of y matrices and the
trace gives zero (graphs of this type with inser-
tion of mass counterterms will not contribute by
the same argument).

That JN(&I&r" r's „&f&)d'x does not give a contribu-
tion to si'/ai&, can be seen most easily by choos-
ing the routing of the external momentum so that
it does not Qow throughout the lines of the fermion
loop and applying the same reasoning as before.

Using (4.3), (4.4), and (4.5) we can write the
renormalization-group equation as

two equations in (4.V), respectively. As the de-
terminant of the coefficients in (4.9) is different
from zero, then necessarily C, =C, =o.

The renormalization-group equation (4.6) shows
that, although our scheme employs an auxiliary
mass p, the value taken by p is irrelevant in the
sense that changes in this parameter can be ab-
sorbed in coupling-constant and wave-function
renormalizations.
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AIPENDIX

deg„Rr (C) + 2a & 0, (A1)

where deg„B denotes the lower degree in u of R:
Rr(C) = (1-~~ra'&)Y„, (A2)

In this appendix we will give a sketch of the
proof of the infrared convergence of the subtracted
Feynman amplitudes. We follow the notation of
Ref. 6 adapted to the present situation. Let u„.. .,
u, , e„.. . , », be an arbitrary basis of L, (I"), ' the
space of linear forms in p and k of a connected
graph I', with (s/t&k) (u, v) 40. Furthermore, let
C be a I' forest which is complete with respect to
8, the subspace of I.(I') spanned by u». . ., u, .
Then we will show that

pA.2+ o '+ (M, a,)r -02,
9g

7~ —Oy

p5 —v =0

y, r+ v+gv, + v,) =0.

(4.7)

with

Y, (C) =IV~ Pr. ..,f„Y, (C),

r(C) = rlr& ~ "r.
(AS)

(A4)

(r». . ., r„f = set of maximal elements of C con-
tained in y and

The last three equations can be used to deter-
mine 7„v„and o'. To show that the first two
equations are then identically satisfied we use the
fact that

I-'&P& &r.(&)g&, r(C)~[s,
fr„=

otherwise.

(A5)

I'" o&~g =0 and I'"'2&~g =0
P=Af y /=4 2

so that
Since &y differs from a Taylor operator only by
the last subtraction (see Sec. III), i.e.,

-+ ——27~ I' (2 0&
&d(y) &d(y) -1 + &

y y (A6)

(p + &z
——27 I'"'" = 08 9

and therefore

C&&»1"' '"
~~=~ +C&-I' "~»&=~,

=0

C,A„r""~„„,+C~„l'~"&~„„=O,

(4.8)

(4.9)

where C, and C, are the left-hand side of the first

(a) If v+r& Y&WO then

deg„v &~&&Y& ~deg „r»r —d(r) if r ~~ 8,
deg„vr~&&Y& ~ de'g„Yr if yNS,

degas

p~&7 y Fy degup»& ~y
d(y)

(AV)

(A8)

(A9)

the lemmas of Ref. 6 are somehow modified. We
have the following.
Lemma 1:
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(b) deg„q&y(1-~", ")F,» deg. ,y~yF,

+ maxfd(y), 03 if yNS .
Lemma 2:

deg„&y~y Y&
& d(y ) ™(y} if y II S,

deg„Fy & —M(y) if @AS .
(A10)

(A11)

Now, if for some a we have y„IIS, then we use

+ 7'~& )I
'Y~

where&, & =& & '= Taylor operator of order
d(y} —1 in py and My at p» = 0, M~ = 0 and v', » =

last subtraction terms, i.e., &0E(py, M }= E(0,p)
if y is the graph of Fig. 6,7'20E(p ~, My, Sy) = E(0, 0, p)
otherwise,

Lemma 3: Let X be a maximal element of C prop-
erly contained in y C l". Then the following inequal-
ities hold:

(a} It ~'„~"&F,~O then

deg„Sp~~~ ~F„& -M(X), (A12}

deg. ,ysyS, ~'~ "F~&d( }-M(&) if ALIIS. (A13)

{b) deg„,y„yS,(1-~',~"l)F, ma fd(~), 0) -M(X)

Using the above lemma we can verify that if I IIS
then

deg„F„&—M(I'), I'
II S .

However, these estimates are not strong enough
to prove the result (Al). With this aim we proceed
as follows:

(i) If I"NS we have

deg„F„=- deg„Ir-+ Q deg„( f(y )I„). (A16)

As T, '&' is a Taylor operator then

deg„~,Y &deg„~y~yF -d(y„)

+1&-M(y„) if y„IIS. (Als)

Substituting (A18) and (A19) into (A16) we obtain

deg„Fr& -M(i'), I'(S.
If none of the y„ lies along S (i.e. , if y„(S for all
o. ) then we apply repeatedly (A8) until we find
some XC:y„, A. II S where the reasoning above can
be applied.

(ii) lf T'II S we use the same argument as in
(Al'I) to obtain

(A20)

deg„v'„'"'F„& -M(1') if I'IIS.

Equations (A16), (A20), and (A21) furnish im-
mediately the result (Al).

(A21)

In the last inequality lemma 2 was used.
Concerning v, observe that T,Y = T'F, where

=F I,, „2 only contains Taylor operators.
Using I, lemmas 2 and 3 will be replaced by
lemma 2 of Ref. 6 (in the adaptation of the con-
vergence proof of Ref. 6 to our case, the graph
y, of that reference must be replaced by our
graph of Fig. 6). In particular we will have
deg„,y.„y„7, &d(y. ) M(y-.)y. IIS « t at

deg„~,Y~ =deg„T,F

-deg.,y.„y.'F, -d(y. ) & -M(y. ) .
(A19)
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