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Number of Feynman diagrams in arbitrary order of perturbation theory
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Recurrence relations are established to determine the number of Feynman diagrams in arbitrary order of
perturbation theory for four expansions: (i) the Green's function g expanded in the noninteracting Green's function
Q') and the bare interaction V, (ii) the proper self-energy Z expanded in 8(' and V, (iii) Zexpanded in g and V,
and (iv) g expanded in g and the particle-particle (hole-hole) ladder sum I'. In each case, the number of diagrams
has the asymptotic behavior const && (2n + 1)!!for large n.

In a series of papers, Trainor and co-workers
have used the methods of group theory to investi-
gate the expansions (in the interaction and the
bare propagator) of the one-particle" and many-
particle' Green's functions; they found not only
the number of diagrams in each order but also
an effective enumeration procedure for them.
Their motivation was to investigate the analytic
problem of obtaining an upper bound on the nth-
order contribution to the above expansions.

The present article deals only with the counting
of the diagrams; the results of Refs. 1 and 2 are
extended to more sophisticated expansions. The
method used, however, is that of functional de-
rivatives, 4 and the results, where they overlap

with those of Refs. 1 and 2, are simpler. A very
simple recurrence relation is found for the num-
ber .of nth-order diagrams in the expansion of the
proper self-energy in the full Green's function
and the bare interaction. The relation is then used
to generate recurrence relations for the three
other expansions considered here. Finally, the
recurrence relations are used to determine as-
ymptotic expressions for the number of diagrams
in each expansion. The treatment is not self-con-
tained, however, for appeal is made to a result
of Ref. 2 to evaluate a constant appearing in one
of these asymptotic expressions.

The Hamiltonian under consideration is the non-
rclat ivistic

Ho= Q d'~, it( (F„s,) 2
—V, ' (t(r„s,)

r -', Q Q d'r, fd res(r„s, )(('*(F,„s)(r(T s„.(' , )t„s(r„(„)isl( „s). s
S1

(t(~(r, s) and (I((F, s) are the field operators, in the
Schrodinger representation, of a particle of spin
projection s at point P. The interaction potential
V is assumed to be symmetric [V(F„s,;I'„s,)
—V(r~~ s~~ F~s S~)].

The expansion of the proper self-energy Z in the
Green's function 9 and the bare interaction V is
considered in the Appendix; there it is shown that
M„, the number of nth-order (in V) diagrams,
satisfies the recurrence relation

n-2

M =(2„1)M„,+(n 1) g M M„, n-4
~2

with M, =2, M2=2, and M, =10. From this result,
it follows that the. ratio M„/M„, has the asymptotic
expansion

M„/M„, - 2n+ I+4N-'+ 2IN-'+145'-'+ O (~-') .

I

pansion for M„:

M„- p, (2n+ 1)!![1- 2n ' ——,
' n-' —'-,'n-'+ O(n-')], (4)

where p, is independent of n. An analytical result
for p. cannot be obtained by the above method; a
numerical calculation gives p, =0.1353, in agree-
ment with the analytical result I( = e ' obtained be-
low.

The expansion of the previous paragraph certain-
ly fails when the bare interaction is "large" [for
example, when V(r) has a hard core]. In such
eases, it is necessary to expand in the effective
interaction I' which is the sum of the particle-
particle (hole-hole) ladder diagrams as in Fig. 1.
I et N„be the nuNber of diagrams in this expansion
of Z (in 9 and I"); note that I" is expanded in 9
rather than 9"'. Define generating functions by

In turn, the latter result gives an asymptotic ex-
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+ V'

To relate the coefficients I & to the coefficientsM„
one uses the expression

n 2n

n=l
(15}

FIG. l. Integral equation for the function I vrhieh
sums the particle-particle (hole-hole) ladder diagrams.

0 N yN

n=l
(8)

or, equivalently,

(8)

These results give the asymptotic expression

N, -e ''M [1+-'n '+'-' '+O(n ')].
Q2

An alternative procedure is to work from the re-
currence relation, valid for n& 4,

tf~2

N„=(2n —1)N„,+2(n —1)N„,+ Q (-1)"" 'N

+ (u —1) Q N (N„+N„,),

where y= go/(1 —m); the expansions are asymptotic
because of the factorial growth of M„and N„and
converge only for go=0 and y=0. Equating the
generating functions gives the following relation
between M„and N„:

fl

( 1)nm

recall that each nth-order diagram in Z contains
2n —1 propagators. Kith the definition

gn g I(n)um

(that is, I'"' is the coefficient of u in the expansion
of the nth power of g), one finds

n

= gM I~2~~~ for u~ 1. (17)

From the definition of I'"', one has

I"'=E for m ~ 0.
foal 95 (18)

The following recurrence relation is easily estab-
lished:

(19)

Table I provides numerical values of En, L~, M&,
and N„ for n=1 to S; the values of E~ agree with
those for the same quantity ¹e(n)of Ihrig, Rosen-
steel, Chow, and Trainor. ' These values were
calculated as follows: Eq. (2}was used to deter-
mine M, to M9, starting from M, = 2,M2 = 2,M, = 10;
N, was then obtained from Eq. (7}; finally, I „and
Kn were obtained from Fqs. (14), (17), {18), and
(19).

Asymptotic formulas for E& and I& are easily ob-
tained from the above results and

which follows from Eqs. (2), (7), and (8).
The recurrence relation of Fq. {2) can also be

used to determine the number of diagrams in the
expansions of the Green's function 8 and the prop-
er self-energy Z in the bare interaction V and the
bare propagator 9"'. Let K, and I-& denote the
number of diagrams in these expansions for 9 and
Z, respectively; define the generating functions
g and Oby

+ higher-order terms.

One finds

L e'pn(2n+ 1)!,![1+O(n ')],

X„-L„[l+ O(n-')] .

(20)

(21)

(22)

g- 1+g &„u",
nM

TABLE I. Values of K„, 6„, I„, and +„for e = 1 to 9.

0- L„u".
n=l

Then, from Dyson's equation, one has

g= 1/(1 —o)

and therefore, with K0=1,

EC„=g X„I, for n ~ 1.

(12)

(14)

1 2 2 2 2
2 10 6 2 0
3 74 42 10 8
4 706 414 82 56
5 8 162 5 058 898 624
6 110410 72 486 12 018 8 256
7 1 708 394 1 182 762 187 626 127488
8 29 752 066 21 573 054 3 323 682 2 233 920
9 576037442 434358018 65607682 43657280
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At this point, one can make use of Theorem 5.4
of Ihrig, Hosensteel, Chow, and Trainor': if E„
= P(n)(2n+1)!! then P(n)-1 as n-~. The value of
p. is thereby determined to be

(23)

It is perhaps worth remarking that each of the
four expansions has the asymptotic behavior const
x (2n+1)!!,despite the considerable renormali-
zation undertaken in going from the expansion of
9 in 9"'and Vto the expansion of Z in 9 and I'.
The convergence of these expansions is in doubt,
whatever the size of the interaction.

92 (t)~z(l); finally, the T, operator orders the field
operators so that the & arguments increase to the
left, and multiplies the result by (-1)~, where I'
is the number of interchanges of fermion field op-
erators.

The functional derivative of the Green's function
with respect to the external potential S' is given by

569(l, 2)
(3)

= + [9(1,2)9(3, 3') —9,(l, 3; 2, 3')],
(A 6)

where the upper (lower) sign is for bosons (fermi-
ons) and 9, is the two-particle Green's function

This research was supported by the Natural Sci-
ences and Engineering Research Council of Can-
ada.

T [fr(ph, 0)T,[(t)E(1
Tr[fj(P!f,O)]

(A 7)
APPENDIX: DERIVATION OF EQUATION (2}

The approach used here is that of the functional-
derivative method of condensed-rnatter physics
as discussed in Chap. 5 of Kadanoff and Baym. 4

The diagrams generated by this method apply,
however, to any Hamiltonian of the form of Eq. (1).
Imaginary times are used to exploit the formal
equivalence between the time-development oper-
ator exp(-iHt/5) and the statistical operator
exp(- pH). The Hamiltonian is H(r, ) =H, +H, (&,),
where H, is given by Eq. (1) and

H, (r, ) = g dsy;(t)t(F„s, )W(1)(t)(r„s,), (A 1)
Sy

where W(1) = W(r„s„&,) is an external potential
and ~x = st& is a real variable.

In the grand canonical ensemble, the quantity of
interest is K(7', ) =H(7, ) —!&Nwhere !&, is the chemi-
cal potential and N is the number operator. The
Green's function is defined as'

where

Zr(r, ~,)

-Tr(fr(P@, O)r,[j (1)A@2)]]
Tr [fr()Ph, 0)]

(A2)

T

=1+/ ( If)" df, f-df„K(f,) E(f„)
nM TQ

(A3)

j,gl) = fr-'(~„O)q(r„s, )fr(~„O), (A4)

(tel) = fr-'(~„O)(t (r„s,)V(~„O) . (A6)

Note that fr is not unitary and hence that $'r(1)

is a time-development operator and the subscript
X means that the operators are in the Heisenberg-
type representation,

[which follows from the equation of motion of
9(1,2)] to yield

(A8)

9(1,2) =9"&(1,2)

+ Jt d3
J

d4 9"'(1,4)[-h 'v(4, 3)]

x +9(4, 2)9(3, 3 )+ h69(4, 2)

where t&(1, 2) = V(r„s,; r„s,)6(~2 —7,) and

dn . = g d'y„dv„. (A 10)
444 4

Sn 0

Application of the operator h6/6Wto Dyson's equa, —

tion,

9(1,2)=9"'(l, 2)+ J d3 d49(0)(1, 4)Z(4, 3)9(3,2),

(A 11)

yields an integral equation whose solution is

= 9(l, 3')9(3, 2)
h6(2 1,2

MZ(4, 6)+ d4 d581, 4 ' 9 5, 2

(A12)

Equations (A9), (All), and (A12) combine to give
the final result

Equation (A6) combines with the result

9(1,2)

' (9l, f) 2J4f4344'(91, 4)lf 'ff(4 3)9 (4 3'2, 3')
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FIG. 2. {a) Diagrammatic representation of Eq.
(413). {b) Diagrammatic representation of Eq. {A12),
after multiplication by I-h"~e {4,3)J and integration
(summation) over the variables (%3, v'3 s3).

Z(1, 2}= + 5(1,2) J~d3 Q(3, 3')[-g 'v(1,.3)]

+ g(1, 2 )[-g-'&(1,2)]

+ d3 i d49(1, 3) ' [-g 'g(1, 4)],aux(3, 2)

(A 13}

which is Eq, (5-25b) of Kadanoff and Baym. '
Equation (A13) is given in diagrammatic form in

Fig. 2(a); Eq. (A12), after multiplication by the
operator f d3[-g 'e(4, 3}], is shown in Fig. 2(b).
Iteration of these equations yields the. expansion of
Z in 9 and V; note that only connected diagrams
appear.

Let Z, be the sum of the nth-order diagrams (of
which there are M„) and Z„=Z„.,+Z„„+;clear-
ly M, =M, = 2. A fter generation of the diagrams
for Z„„ there will remain M„, diagrams contain-
ing (n —2) V lines and a dashed line working on Z,
plus M, diagrams containing (n —3) V lines and
a dashed line working on Z» and so on, down to
M, diagrams containing one V line and a dashed
line working on Z'„„plus one diagram with a
dashed line working on Z„,. Since each nth-order
diagram has 2n —1 9 lines, the number of diagrams
in Nth order is (for n ~ 3)

~ „(2m —1)+M, (2' - 3) . (A14)

Then M, = IO and a rearrangement of the sumyields
Eq. (2).
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