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Relativistic wave efluations for antisymmetric tensor gauge fields
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Relativistic wave equations for totally skew-symmetric tensor gauge fields are regarded as generalized Maxwell
equations. The spin content is determined for both the massive and massless case. In particular, we find that an

antisymmetric tensor gauge field A „(xj represents a. cosmological constant when massless while in the massive case
it describes a spinless particle without violating the gauge invariance. This phenomenon is interpreted as a
generahzed Higgs mechanism.

I. INTRODUCTION

Antisymmetric tensor gauge fields appear in a
natural way in the study of dual resonance mod-
els, ' in the dynamical theory of relativistic
strings and membranes ~ in quantum gravity, '
and in various formulations of extended super-
gravity. " In'II)articular it was observed by sev-
eral authors ' "that an antisymmetric tensor
field subject to a gauge transformation 6A„„(x)
=O A(x) —8 A'(x), where A (x) is an arbitrary
vector gauge function, is suitable to describe a
spin-0 particle of zero rest mass. When a mass
term is present, the field A „(x) describes instead
a massive spin-1 particle obeying a relativistic
wave equation first derived by Takahashi and
Palmer. 9

Here we wish to discuss briefly some properties
of the obvious extensions of the field A„„(x),
namely a totally antisymmetric tensor gauge field
A, „,(x) subject to the gauge transformation

aA, „,(x) = ('), A„,(x) + a„A,„(x)+ &,A, „(x) (1.1)

with A, „(x)+A„(x)=0. In Sec. II we discuss the
simple properties of the tensor potential A, „,(x).
In the massless case it propagates no degrees of
freedom and the associated Maxwell tensor (2.1)
represents a "cosmological constant" disguised
as a gauge fieM. When a mass term is present,
A „(x)describes instead a massive spin-0 parti-
cle while preserving the invariance under the
gauge transformation (1.1). In Sec. III this prop-
erty is dynamically interpreted as a modified
Higgs mechanism not unlike the Schwinger mech-
anism in two-dimensional space-time. We sug-
gest that this mechanism provides a natural ex-
planation for the experimental absence of a Gold-
stone boson associated with the U(1) axial-vector
current in quantum chromodynamics (QCD) and

for the observed existence of a massive pseudo-
scalar meson in that same channel.

-=a„'a, (x) (2.2)

which, im eacNO, represents a constant back-
ground field on account of Maxwe1. l's equation

8,E„„„(x)=- 0- *F(x) = constant . (2.3)

Hence there is no radiation field associated with

A„„,(x) and therefore no propagation of physical
particles. What is then the significance of the
dual field strength *F? In general the constant
*F is not zero: There is a static effect represent-
ed by —,'(*E)'. Indeed; in terms of *E the field
contribution to the energy-momentum tensor is
simply

Tuu Lguv(eE)& (2.4)

Hence the tensor E „„(x)carries no momentum
but contributes to the background energy density.
In particular, in the presence of a gravitational.

II. THE GENERALIZED MAXWELL EQUATION

Consider the generalized Maxwell field strength

E.„,.(x) = ~.A„,.(x) —~„~...(x) + ~,~,.„(x)
—~.W.„,(x), (2. 1)

where A, „,(x) is a totally antisymmetric tensor
potential transforming according to Eq. (1.1).
Unlike the electromagnetic case, the Bianchi iden-
tity 8 E,„,„+cyclic permutations=0 imposes no
restrictions on E „„(x)and Eq. (2. 1) must be re-
garded as an independent definition. Moreover,
in this case the dual field strength is a total diver-
gence
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field the net result of T'"(x) is the addition of a
cosmological term to the right-hand side of the
Einstein equation. ' An application of this
interpretation was recently suggested in the con-
text of %=8 supergravity' theory where the cos-
mological constant arises through the use of the
gauge field A,„,(x} and is due to the spontaneous
breakdow'n of supersymmetry.

Of course, the interpretation of the constant
—,'(*F)' as a cosmological constant in no way re-
stricts the coupling of the gauge field A.,„,(x} to
gravity alone. For instance, in the bag formula-
tion of hadron dynamics one can consistently in-
troduce the so-called vacuum pressure term in
the Lagrangian of the quark-gt. uon system through
the use of the gauge field A,„,(x)." In this case
*F(x) contributes to the vacuum energy density of
the bag and the cosmological constant —,'(*F)' plays
the role of the bag constant B.

So far we have considered the massless case.
Turning to the massive field equation

8.F„„,.(x) -m'A„,.(x) =O (2.5)

we note that, with the definition (2. 1), Eq. (2.5)
is equivalent to the set of equations

an arbitrary coupling strength f,
8,F„„„,(x) =ye„„,(x) . (3.1)

The case in which J„„,(x) describes an extended
classical source was discussed elsewhere. '"
The explicit form or dimensionality of the tensor
current J„„(x)is immaterial at present but we
envisage a dynamical framework whereby the cur-
rent is conserved:

a„e,„„( ) =0= a„*Z„(x) 8,-*Z„(x),

+Z, (x) = —', e,„„&„„(x),
in consistency with the field equation (3.1) and
satisfies the "anomaly equation"

(3.2)

(3.3)

S„*Z.( ) =—', y~„„,.F.„,.(x) =f8„+A,(x}. (S.4}

( -f')8„*A.(x)=0. (s.5)

%hen these conditions are satisfied, the field
equation (3.1) combined with the anomaly equation
(3.4) leads immediately to the gauge-invariant
massive Klein-Gordon equation which we previous-
ly discussed:

(0-m )A „(x)=0,
a„A.„,(x) =O.

(2.8)

(2.7)

A simple realization of Eqs. (3.1), (3.2), and

(3.4) is given by the Lagrangian density

The condition (2.7} imposes three further con-
straints on the four independent components of
A, „,(x} leaving only one propagating degree of
freedom. We will argue that this transition from
a nonpropagating mode in the massless case to a
propagating single degree of freedom in the mas-
sive case can be interpreted as a Higgs-type
mechanism. In this connection we observe that
Eq. (2.5) is not invariant under the gauge trans-
formation (1.1). However, in terms of the dual
potential *A„(x) defined in Eq. (2.2), Eq. (2.5}
becomes

——,F.„„,(x)[ 8„A„„,(x) —8„A„,(x) + 8„A „„{x)

—B,A „„,(x)]

+f —,~,„„,A„„,(x)S,p(x) (s.8}

from which it follows

Z- —,'F„( )F„( ) -F.(x)S„p(x)+ ——,F„„„,(x)F'"" (x)
1 1

8 8 *A (x) —m *A, (x) =0

from which it follows

(a-m')8„*A„(x)=O

(2.8)

(2.9)

8 F (x) =~p(x)-=~8 e"""'A„„(x)

=f8„+A„(x) (s.7)

which is a gauge-invariant equation for the mas-
sive spinless field 3, *A„(x). B,F,„„,(x) = -fi~„„„,&,p(x), (3.8)

III. DYNAMICAL MASS AND THE
HIGGS MECHANISM

We can now give a dynamical interpretation to
the field equation (2.9) according to the following
scheme. Consider the coupling of the Maxwell
tensor F„„„(x)to a matter field described by a
totally antisymmetric tensor current J„„(x)with

with F„(x)= 3 „p{x)and F„„„{x)as given by Eq.
(2.1). It is immediately seen that the coupled
equations (3.7) and (3.8) lead again to Eq. (2.9)
showing that the spin-0 field 8, *A„(x)becomes
massive as a result of the p-A. mixing.

In principle the tensor current Z„„,(x) could be
expressed in terms of spinor variables as weB.
This interesting possibility is at present under
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a, *J.(x) =fZ'a„*A, (x) (3.iO)

and f is now a dimensionless coupling constant.
Hence, when *J,(x) is expressed in terms of fer-
mionic variables, the underlying dynamical frame-
work is defined either by Eqs. (3.1) and (3.9) or
by Eqs. (3.1) and (3.10). Of course, the result
of combining Eq. (3.1) with Eq. (3.10) is again
the gauge-invariant massive Eq. (2'. 9).

All we have said so far is a straightforward
(albeit unusual) generalization from two dimen-
sions where the ordinary vector potential A, (x)
plays the same role as the tensor potential A, „,(x)
in four dimensions. Indeed, in 1+1 dimensions
Eqs. (3.1)-(3.5) and the commutator (3.9) all re-
duce to the well-known relations of the Schwinger
model. As a matter of fact the Lagrangian sys-
tem (3.6) is a four-dimensional generalization of
the Schwinger model in the boson formulation

Z(2dim) =--,'a„p(x)a, p(x)+- —,F,„(x)

——,F „(B„A„—B„A )
t

+fi~„„A„(x)a„p(x) (s.ii)
and one readi'l, y checks that the Lagrangian system
(3.11) leads again to Eq. (2.9) in two space-time
dimensions. The reader will notice that in both
systems (3.6) and (3.11) the dimensional coupl. ing
constant f sets a mass scale in the model and
therefore it is hardly surprising that we get a
mass term in the physical spectrum. However,
what seems more significant to us is the fact that
in both cases the nonpropagating fields A„(x) and
A.,„,(x) give rise to a spin-0 particle while at the
same time the massless boson p(x) is eliminated
from the physical sector. This suggests the fol-
lowing Higgs-type mechanism for the gauge field

consideration. In this connection, however, it is
worth observing that the anomaly condition (3.4)
can be replaced by the more familiar requirement
that *J (x) satisfies the canonical equal-time com-
mutator

ff2[*J,(x), *J,(x')t=-ia, 6(x-x') at f=f . (S.9)

Here K is a standard regularization parameter
with dimensions of mass which is necessary to in-
terpret the spinor current in terms of the point-
separation technique with spacelike separation.
It has been shown by Takahashi" that the point-
separation technique can be consistently accom-
modated in the canonical formalism. Once the
currents are properly defined as point-separated
currents, the result of the form (3.9) of the can-
onical equal-time commutator is the following
form of the anomaly equation:

A, „(x): The system (3.8) not only is invariant
under the generalized gauge transformation (1.1)
but, in addition, possesses the familiar symmetry

p(x) —p(x) + const .
The associated conserved current is

(3.12)

j'.(x) = a,p(x) ——', e,„,.A„,.(x) (s. is)

which is gauge variant. Here p(x) plays the role
of a pseudoscalar Goldstone boson. On the other
hand, the gauge-invariant current

~J, =- J'„(x)= a,p(x) (s. i4)

F (x) F',.(x) =-SC'~.„,.F,„,.(x), (3.iS)

where as usual F,„„(x)=s„A„(x)+3 terms and
A„(x) is an antisymmetric Abelian gauge field
transforming as in Eq. (1.1) under non-Abelian
gauge transformations of the I potential. The
constant K in (3.15) has dimensions of mass so

has a nonvanishing divergence which, on account
of the equation of motion (3.7), is identical to the
anomaly equation (3.4). Because of the anomaly
there is a p-A„„, mixing and the Lagrangian must
be diagonalized before the physical spectrum is
obtained. As we have seen, the mould-be Gold-
stone boson is absorbed in the scalar mode of the
gauge field *A, (x) and one obtains a massive
spin-0 boson thus evading the Goldstone theorem.

The phenomena just described by the simple
Abelian model for A „(x) bear a close resem-
blance to the actual phenomena occuring in the
U(l) sector of QCD. This was recently observed
by Aurilia, Takahashi, and Townsend' and here
we briefly summarize the points which are re1.e-
vant for this paper. We refer specifically to the
following aspects of the U(1) problem: (i) the non-
existence of the U(1) Goldstone boson required by
the Ward-Takahashi identity in the chiral symmet-
ry limit and (ii) the observed existence of a mas-
sive pseudoscalar meson, the g', in that same U(1)
channel.

Since the g' is a spin-0 boson the usual Higgs
mechanism is not applicable in this case. On the
contrary the Higgs mechanism for the gauge field
A, „,(x) is perfectly suited to describe the situation
at hand. From the point of view advocated in this
paper, the Higgs mechanism can be traced back
to the single property that, unlike the electromag-
netic case, the anomaly terms ~,„F,„(x)= a„*A,(x)
(in two dimensions) and e„„„F„(x)= a„*A,(x)
(in four dimensions) are in both cases proportion-
al to the dual field strength of the "Maxwell ten-
sor. " Although the QCD anomaly term is nonlin-
ear in the Yang-Mills (YM) fields it can be written
in the form'~
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that the field A„, (x) also has dimensions of mass.
In view of the topological significance of the anom-
aly term {3.15) there are no degrees of freedom
associated with A„„,(x) in perturbation theory. It
is, however, an underlying assumption of the ef-
fective Lagrangian approach" to QCD that A„„,(x)
develops a one-particle pole to leading order in
the 1/N expansion and behaves therefore as a fun-
damental. field in the effective Lagrangian. Under
such circumstances the anomaly term in the ef-
fective Lagrangian is again linear in E„{x)and
the Higgs mechanism is activated in exactly the
same way as we have described in this paper.
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