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Probabilistic ideas in the theory of Fermi fields: Stochastic quantization of the Fermi oscillator
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We give a complete description of the Fermi oscillator in terms of ordinary, numerical-valued, Markov processes.
This description includes a path-integral formulation for the Hamiltonian semigroup and for the configurational
Schwinger functions and the explicit formulation and solution of the stochastic differential equations describing the
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system in the sense of Nelson’s stochastic mechanics.

L. INTRODUCTION

Probabilistic ideas and methods have proven to
be extremely fruitful in the quantum theory of rel-
ativistic Bose fields. The best proof of this state-
ment is, of course, the success of the approach to
Euclidean quantum field theory as classical statis-
tical mechanics in the rigorous construction of
models of interacting fields.!

The formulation of the quantum theory of Bose
fields in terms of local (Markov) probabilistic
fields has also offered the possibility of quite a
new approach to the study of physical properties
of realistic models by means of Monte Carlo nu-
merical experiments.?

The deep reasons for the success of the prob-
abilistic language have been studied at the founda-
tional level® and traced back to the possibility of
a probabilistic formulation of quantum mechanics
itself.*5

In this paper, using as a concrete example the
explicitly soluble Fermi oscillator, we show the
possibility of performing on a Fermi system the
three steps, by now familiar in the theory of Bose
fields, towards the complete translation of the
quantum-mechanical problem into probabilistic
language:

(a) Feynman-Kac representation for the Hamil-
tonian semigroup;

(b) path-integral representation of the configura-
tional Schwinger functions;

(c) stochastic quantization in the sense of Nelson.

We wish to stress that these three steps can be
performed in terms of ordinary, numerical-val-
ued, Markov processes, and simple ones, indeed,
with values in Z,={-1, 1}.

As in the Bose case, therefore, we realize the
connection of the quantum problem with a simple
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classical statistical-mechanics problem which,
among other things, is simply implementable in
numerical experiments.

In Sec. II we construct the Euclidean theory of
the Fermi oscillator, while in Sec. III we treat the
same system according to Nelson’s stochastic ap-
proach to quantum mechanics. Section IV contains
conclusions and outlook.

Il. THE FERMI OSCILLATOR: EUCLIDEAN THEORY

We define the Fermi oscillator by the equations
of motion

Q=P, P=_Q , (2.1)
and by the canonical anticommutation relations
{Q’P}=07 Q2=1: P2=1

for the Hermitian operators @,P.

This general two-level system can be seen from
several different points of view (as a Majorana-
Dirac field in one space-time dimension, or as
one normal mode of a Dirac field in any dimen-
sion, or alternatively as a spin-3 system), each
of which points to a distinct development of the
present approach.

From the point of view of the general framework
of Nelson’s stochastic mechanics, itis most stim-
ulating to adopt the perspective of having one and
the same classical system, defined by the equa-
tions of motion (2.1), for which in a space-time of
dimension 1 both Bose stochastic quantization® and
Fermi stochastic quantization (the one to be devel-
oped here) are consistent.

In this sense we are conducting a preliminary
exploration of the approach to stochastic quantiza-
tion that a spin-statistics theorem will force for
classical fields of half-integral spin in higher di-
mension.
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We adopt here the “@-space” representation of
the time-zero field algebra on the Hilbert space

je=L?(Z,,do)
(where Z,={-1,1}; [do=3%2],.,,) defined by the
action on any ¥ €3C:

@p)o)=0ay(0), (Py)lo)=ioy(-0).

The Hamiltonian of the system is, correspond-
ingly, given by

H)(0)=3[p(0) - P(~0)].

For future reference we observe that the most
general normalized solution of the Schrddinger
equation

‘a% ¥(t,0)=3[p(t, 0) = 3(¢, —0)] 2.2)

is given, within an inessential overall phase fac-
tor, by

¥(¢t,0)=cosa +0sina exp[—i(t -2,)],

where @ and ¢, are integration constants.

We concentrate here first of all on the Hamil-
tonian semigroup exp(-tH,), ¢ > 0 and observe that
it admits the Feynman-Kac r?presentaﬁon
J

(exp(= tH)V)(o) = f (1)),

where L, is the probability measure on the set
of paths € :¢ €[0, +w) ~ €(¢) € Z, determined by the
initial measure which assigns probability one to
€(0)=0 and by the transition probability density
from the configuration x at time ¢ to the configura-
tion x’ at time ¢’ = ¢ given by

P(t,x|t',x")=1+xx"e "D,

The very simple proof of this statement just re-
quires an explicit calculation showing that

(exp(—tHJY)o) =3 2o P(0, 0]t,0")p(o")
0’=21

and the observation that the P’s satisfy the char-
acteristic properties of the transition probabilities
for a Markov process with values in {-1, 1}.

Similar straightforward considerations show that
if Q=1 is the normalized ground-state wave func-
tion, for G, G,,...,G, arbitrary functions of the
time-zero configuration operator @, and for
L1yt « -« I, arbitrary positive numbers, the fol-
lowing Feynman-Kac formula holds:

«,, GO(Q)e-nHo G,(@)e 2o+ e-t,,HoGn(Q)SZO)= ]r; du(e)G(€(0))G,(e(2,)) > G, (e(t ++4+ +tn)) ,

where u is the measure on Q determined by the transition probabilities already considered and by the ini-
tial measure which assigns equal probability 3 to €(0)= 1.
In particular, the configurational Schwinger functions of the Fermi oscillator, initially defined for

5 SESeer st as

s(tv foyeoes tn) = (Qo: Qe 2t o Q o= (tst2)HoQ oo e e tntn-1Ho Q ‘Qo)

admit for every ¢,,¢,,...,t, the following representation as moments of the measure u:

S(ty,ee.,t)= Ldu(g)e(tl) <(t,,)={

Here the permutation

[1'.‘ zk]
il...iZk
is such that

£

1$t"2S e St‘z» -

It is interesting to observe that these correlation
functions are equal to those of a one-dimensional
Ising model, which thus turns out to be the classi-
cal statistical-mechanics system underlying the
Euclidean Fermi oscillator.

We conclude this section with the observation
that, according to the analysis carried through for
the Dirac field in Ref. 6, we have considered only

0 for » odd

e g tiPe i tigh e e o=l =tiy, ) forn=2%,

I
configurational Schwinger functions.

We wish to point out that, as in the theory of
Bose fields, the knowledge of just the configura-
tional Schwinger functions already gives a complete
specification of the quantum system.

One can indeed reconstruct 3¢ as the L? space on
the configurations of the time-zero Euclidean field,
and recover the Hamiltonian by requiring that for
b, '3

e 9= [ an©@GIG W)
Q
with j, ¥ =¥(e(#)); after which

Q(#) =t Q(0) et
P(8)=Q(8)=i[H,Q(1)].
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III. STOCHASTIC QUANTIZATION OF THE FERMI
OSCILLATOR

According to Nelson’s quantization procedure,
the classical equations of motion, viewed as sto-
chastic differential equations, to be solved in a
class of stochastic processes whose specification
amounts to the additional quantum hypothesis to be
added to the classical framework, leads to a
scheme mathematically equivalent to the one based
on the Schrddinger equation.

Inthis section we consider the classical equations
of motion (2.1), defining the classical harmon-
ic oscillator, as stochastic differential equations
in a sense to be specified below. We add the in-
formation that we are considering the two-level
Fermi oscillator instead of the ordinary Bose
quantum oscillator by suitably specifying the class
of stochastic processes in which solutions of (2.1)
are to be found. At this stage, as compared to
previous attempts to describe Fermi fields in
terms of c-number path integrals,’ the constraint
Q%=1 will play a major role.

In order to get oriented, we consider first of all
the stochastic process €(t) associated to the ground
state in the sense, discussed in Sec. II, that its
moments reproduce the configurational Schwinger
functions.

We observe that for this process the functions
pt(t,0)= Lim + At E(e(t+ at) —e(t)|e(t)=0),

At— O
where E( |e(t)=0) stands for conditional expecta-
tion given that €(¢)=0 are well defined and are ex-
plicitly given by

p(t,0)=%0.

Defining mean forward and backward derivatives
of the process €(t) by

(D*e) (1) =p*(t, €(t))
we observe that
3(D*-+Dp*)= €.

Namely, the stochastic process €(t) associated
to the ground state in the sense of Sec. II satisfies
the classical equations of motion in the sense of
the following problem A:

Find the Markov processes q(t) with values in Z,

Jor which the mean forward and backward deviva-
tives ‘

th Ept
ave defined and satisfy
(D +Dp*)=—q.

Most of this section will be devoted to the study
of this problem and of its relation to the quantum

mechanics of the Fermi oscillator.

We start our discussion by defining a few nota-
tional conventions which will be useful in the fol-
lowing.

Every function F on Z, is a linear combination
of the characters X,(0)=1, X,(0)=0. By F,and F,
we indicate the corresponding coefficients, name-
ly, we set

F(o)=F,+0F,.
We define the operator V by the position
VF=F,
and observe that the following integration-by-parts
formula holds:

fchVGE fch*FG, vt=(0=-v).

Next we study what conditions the hypothesis of
existence of the mean forward and backward deriv-
atives imposes on a Markov process ¢(t) with val-
ues in Z,.

We first of all define the density

p(t,0)=py(t) +op, (£)

associated to the process ¢(t) by the prescription
that for every F(t,0) the expectation of F(¢,q(¢))
be given by

E(F(t,q ()= [ doplt, 0)F (1,0).

The conditions of normalization and positivity of
p require

P0=1, (31)
Cl<p(t)<1. (3.2)

The observation that

P(t,olt+ At,-0)
At

p*(t,0)= lim -0

At~ 0t

and the positivity of the traisition probabilities
require that

pi(8)s0. (3.3)
Similarly
pi(t)=o0. (3.4)

For every function F (¢, 0) differentiable in ¢ the
mean stochastic derivatives with respect to { are
easily shown to be

(D*F)(t,0)= lim = AtE(F(txat,q(t+at)
At —> 0%
—F(t,q(t)|q(t)=0)

=2 F(t,0) +p*(2,0) (WP (1).

As for any such F and G, it must be
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t% E(F(t,q)G (t,q ()= E(F (t,q ())(D*G)(¢,q (1)) + E(DF)(t,q ()G (¢,4(2)))

we draw the conclusion that for any G(¢, o) the fol-
lowing relation must hold between p and p*:

]
GEtB =p*pVG + (0~ V)pGp.
In particular, for G=1

9
ot

=(0-v)(p7p)
or, equivalently,
P1=P5+p1b7 -
For G=0 we obtain, instead,
9 -
o§ =pp*+(oc=Vv)opp)

or, equivalently,
pr=po+p1pi +0ol(p1+P7) +p (PG +p7)] .

These statements are easily summarized in
terms of the functions

prap” P —p
p(tya)__é—y bp(txo)— 2

into the conclusion that the continuity equation

[71:1’0*'91?1 (3.5)
and the constraint equations

P1+pPo=0, (3.6)

6Po+p16p1=0 (3.7)
must hold.

The other condition appearing in problem 4,
namely, that the equation

%(D*P_ +D-p+) = =g
must hold, leads to the differential equation

ZLvb b -0p VEp =0
or, equivalently,

5po0py=Po+bob; s (3.8)
3, =14p,%+p,. , (3.9)

Having reformulated problem A into conditions
(3.1)-(3.9), we observe now that conditions (3.5),
(3.7), and (3.8) imply

ﬁl(t)= —Pl(t)

and therefore completely determine p; within two
integration constants as

pl(i)=C cos(t—1,),

where C e [-1, 1] because of the inequalities (3.2).
Equations (3.5) and (3.6) in turn determine p,
and p, in terms of p, as

___h(2)
pO(t)nl—p“(t)z ’

- "Pl(t) f)x(t)
p.(t)= l—pl(_t.)—z .

Equation (3.9) then determines 6p, as
1=p,(8)2 =5 (t)z]uz
5 - [ Py Py
p.(8)=£(2) 1—p,(1)?
while Eq. (3.7) gives

(01 = p, ()% = p, ()22
1 —Pl(t)z ’

where £(¢#)=+1 is to be determined in such a way
that (3.3) and (3.4) hold.

A particular solution of problem A is thus de-
termined for each choice of the integration con-
stants C and 7.

For each such solution ¢(¢)

E(q(t))=p,(t)=C cos(t —7,)
while, defining

Spo(t)=—£(1) 22

D*+D~
D="——,
E((Dg)(t))=% 2 p(t,0)p(t,0)
=Po(t)+p1(t)171(t)

=i)1(t)= -C Sin(t —To) .

These equations relate the integration constants
C and 7, to the initial values of the “mean position”
and the “mean velocity” of the process.

For comparison, observe that for the solution of
the Schrodinger equation determined by the integra-
tion constants @ and i,

¥(¢t,0)=cose + o sina exp[-i(t - 2,)]
it is

@(2), Qp(t))=sin2c cos(t ~t,),

@(2), Py(t))= —sin2a sin(t - ;).

Therefore, to such a solution ¢ of the Schroding-
er equation we can unambiguously associate a sol-
ution g, of the stochastic equations of motion by
requiring that, for every ¢,

E(q,())= @), Q@) .

This condition uniquely determines the integration



constants in g, to be

C=sin2a,

Notice that it is also
E((Dq ) (t)=@(2),Py(t)).

In particular we can determine the stochastic pro-
cess associated in the previous sense to the ground
state (@=0).

For such a process, we immediately check that

p(t,o)=1
and
p*(t,0)=-0.
In particular the transition probability density
per unit time satisfies

lim P(t,olt+At,—c) _

1.
At ot at

From the last condition the transition probability
densities are explicitly obtained by exponentiation
as

P(t,o|t',0')=1+00"e " t'>¢,

Namely, as already observed for Bose fields,
the stochastic process associated to the ground
state in the sense of Nelson’s stochastic mechanics
coincides with the Euclidean process of Sec. II

IV. CONCLUSION

We wish to comment here on the general con-
ceptual framework emerging from the previous
considerations. :

Suppose we are given a quantum system whose
observables at fixed time form an algebra ®. In
the Heisenberg picture these observables evolve
according to the dynamical group generated by -the
Hamiltonian H. Under very general hypotheses a
complete description of the system will be given
by the knowledge of the vacuum expectation values
of some observables (fields) at generic times.

We are exploring a possible alternative descrip-

23 PROBABILISTIC IDEAS IN THEORY OF FERMI... 1751

tion of the same quantum system in purely prob-
abilistic language, such as offered by Nelson’s
stochastic mechanics.

Suppose that a maximal Abelian subalgebra @ of
@ and the Hamiltonian A generate ®. Represent
the Hilbert space of the states of the system as
the L? space on the spectrum of @, L?(@). Suppose
furthermore that the Hamiltonian semigroup
exp(~tH) is positivity preserving on L%(@®). One
can then introduce a Markov process with values
in the spectrum of @, whose expectation values at
any time reproduce the vacuum expectation values
of the elements of @ at that time, and which
evolves in such a way that exp(—¢H) is the kernel
of the transition probabilities.

A complete description of the quantum system is
in this stochastic process, in the sense that from
its knowledge one can reconstruct @, H and there-
fore®.

For systems with a well-defined classical analog
Nelson’s stochastic mechanics offers a nonambig-
uous procedure to construct such a stochastic pro-
cess and therefore the complete quantum-mechani-
cal structure, starting from the classical equa-
tions of motion and from a definite probabilistic
hypothesis about the sense in which such equations
are to be viewed as stochastic differential equa-
tions.

What we have shown here is that all the previous
steps can be performed on the Fermi oscillator
and that the constraint @*=1 on the solutions of the
stochastic differential equations of motion (which,
unlike the classical equations of motion do not be-
come trivial under this constraint) forces Fermi
statistics on the excitations of the corresponding
quantum system.
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