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Stationary world lines and the vacuum excitation of noninertial detectors
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The stationary world lines, on which quantized field detectors in a vacuum have time-independent excitation

spectra, are discussed. They are characterized by the requirement that the geodetic interval between two points

depends only on the proper time interval. To construct these world lines a generalization of the Frenet equations to

Minkowski space is developed. The curvature invariants are found to be the proper acceleration and angular velocity

of the world line. The equations are solved for constant invariants and the solutions are shown to be the stationary

world lines. A classification into six types is made. The equivalence of the timelike Killing vector field orbits and the

stationary world lines is demonstrated. The classification scheme therefore extends to Killing orbits and stationary

coordinate systems in flat spacetime. Finally, the vacuum excitation spectra of detectors on a representative sample

of the stationary world lines are calculated.

I, INTRODUCTION

where C(E) is a function characterizing the
detector's sensitivity. The Wightman function
for a scalar field is'

(ol Q(x(r))(f&(x(~')) lo) =[2»'W(r, r')] ', (2)

where the geodetic interval is

W{r, r') =[x, (7) —x, (v'}][x'(r)—x' (r')] .

In terms of the proper time interval 8 =T —7', the
rate of excitation to the state with energy & is

Several years ago Unruh' showed that a scalar-
particle detector moving with constant linear
acceleration in the vacuum of flat spacetime will
be excited. The detector will behave as if in con-
tact with a bath of scalar particles with energies
in a Planck spectrumof temperature: acceleration/
2w. Similar results have been described for de-
tectors of electromagnetic radiation. ' Recently'
it has been shown that a detector in uniform cir-
cular motion will also be excited. The spectrum
differs from a Planck spectrum in a manner de-
pendent on the detector's angular velocity. It is
noteworthy that the spectrum is time independent
in all these cases; in general, this will not be
true. For example, if a detector was moving
with a very slowly increasing linear acceleration
one would expect the spectrum to be Planckian,
though with a slowly increasing temperature.

The probability for a detector moving along a
world line x'(r) to be found in an excited state of
energy F. at 7 =TQ is'

TQ TQ

I'(E) = C(E) dr dr,
w OQ OO

x &Ol e(x{»)e(x("))IO), (l)

dp(E) =2C(E) ds cos(Es)(0lp(x(&0))Q(x(&0+&)) lo) .

(4)

The detector is therefore effectively immersed
in a bath of scalar particles with energy spec-
trum

1
0

S(E, r)=2mp(E) ds cos(Es}

)c (0
l y (x {T))(j)(x(T +8)) l 0), (5)

where p(E) is the density of states.
The condition that (5) be time independent is

just the time independence of the Wightman func-
tion (2). This will be assured if, and only if,

W(T, r + s) = W(0, s) .

The spectrum is therefore time independent when

the geodetic interval between two points on the
detector's world line depends only on the proper
time interval between them.

The world lines which satisfy the requirements
above are called stationary. The geometric prop-
erties of these lines are independent of proper
time. In the next section the Frenet equations of
classical differential geometry are extended to
Minkowski space. The curvature invariants are
shown to be the proper acceleration and angular
velocity of a world line. The stationary world
lines are therefore solutions of the Frenet equa-
tions when the curvature invariants are constant.

In Sec. III the differential equation defining the
stationary world lines is solved. We are there-
fore able to exhibit the explicit form of these
world lines as functions of proper time. It is
shown that there are six classes of stationary
world lines. Within each class the world lines
are qualitatively the same. This classification
is shown to extend to the timelike Killing vector
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orbits and hence the stationary coordinate sys-
tems in flat spacetime. Finally, the excitation
spectra of detectors on several of the stationary
world lines are calculated. These spectra have
a bearing on the question of particle definition in
noninertial coordinates.

II. CURVATURE INVARIANTS AND THE I'"RENET
EQUATIONS

An arbitrary timelike world line in flat space
is generally described by four functions, x'(s),
specifying the coordinates of each point s on the
curve. This parameter may be taken to be the
arc length or proper time on the worM line. The
parametric representation is unsatisfactory in
two respects: (1) A world line is a geometric
object and should not require a coordinate-
dependent entity for its definition and (2} there
is an inherent redundancy in the parametric rep-
resentation since three functions suffice to deter-
mine the world line. The curvature invariants
as described below provide an intrinsic definition
of the world line not subject to these criticisms.

To begin, an orthonormal tetrad V", (s) is con-
structed at every point on the world line x"(s).
'The Latin index everymhere is a tetrad index.
The tetrad is formed from the derivatives of'

x"(s) with respect to proper time (represented
by one or more dots}. It is assumed that the first
four derivatives are linearly independent, the
results being practically unchanged when they are
not. Members of the tetrad must satisfy the
orthonormality condition

VP K OVAL (12)

These are the generalized Frenet equations.
K,~ is a coordinate-independent matrix whose
structure must be determined.

Differentiation of the orthonormality condition
(7) yields

and, in view of (12),

(14)

A basis vector V," is defined in terms of the first
a+1 derivatives of x'; therefore, V," will be a
linear combination of the first @+2 derivatives.
These a+2 derivatives are dependent only on the
basis vectors V~ where b ~a+1. It follows that
K„ is zero if b &a+1. This and (14) limit the
matrix to the form

' 0 —«(s) 0 0

«(s) 0 —7 (s) 0

0 r(s) 0 —u(s)

0 0 u(s) 0

The three functions of proper t~me are the in-
variants

4=V„V"=—V„V',

basis vectors may therefore be expanded in terms
of them:

V„Pq =g~, (7) (17)

where the metric has diagonal components
(1,-1,-1,-1) only.

By Gram-Schmidt orthogonalization of the
derivatives working upwards from the first, the
following expressions for the tetrad members are
found:

V" =x",

x
+1 I -4)1/2

(x xr)x4 (X xr}x4+(x xr)
[(x x )'+(x x™)(xsx~)'-(xx )'(xsxs)]"'

(10)

La Ls (19}

An infinitesimal transformation may be written
C gC+d~ C

a a a

where the elements of d&, are small and must
satisfy

(20)

v=V~ V3 = —V~ V3.

They are, respectively, the curvature, torsion,
and hypertorsion of the wor1.d line. Sign choices
are made for reasons brought out below.

To explore the physical significance of the in-
variants we examine the infinitesimal Lorentz
transformations of the tetrad at a point on the world
line. The transformations leave the metric in-
variant

d~.e
=- d~na- (21)

Overall signs on these vectors are fixed by the
orientation of the tetrad.

The tetrad V" is a basis for the vector space
at a point on the world line. Derivatives of the

The transformations are taken to be active; that
is, the transformed tetrad moves +e and is
rotated +8 relative to the untransformed tetrad.
Thus the infinitesimal generator is
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0 —dv~ —dV2 —dV3

-d8 d8

dv, d8„
-d83a d823

—d8

0

The change in the tetrad resulting from this
transformation is

V: = (d~.'/ds) V", .

(22)

(23)

V; =A" cosh(R„s)+B" sinh(R, s)

+C~ cos(R s)+D' sin(R s),
and the coefficients may be fixed by the initial
conditions

(v". ), ,= v.".
Solving (29) and (25)-(27) for A, B', C", and
D" at s =0 subject to the conditions (30) yields

(29)

(30)

Equations (23) are identical to the Frenet equa-
tions (12); therefore, the physical content of the
curvature invariants is found by comparison of
(15) and (22). The curvature is the proper ac-
celeration of the world line which is always par-
allel to V", . The torsion and hypertorsion are the
components of proper angular velocity in the
planes spanned by V, and V,", and V", and V, ,
respectively. The total proper angular velocity
is the vector sum of these two invariants.

III. STATIONARY MOTIONS

A ' =R '(R '+ K', 0, »7, 0), (31)

B"=R '(0, K(R '+K' —r')/R„O, »7u/R, ) & (32)

C" =R '(R, ' —K', 0, —Kr, 0), (33)

O' =R '(0, K(R,'- K'+r')/R, 0, Kru—/R ), (34)

with g~ -g 2++ 2

The stationary world lines separate naturally
into six classes according to the values of the
curvature invariants:

(i} K=v =u=0,

In this section the general expression for a
world line whose curvature invariants are con-
stant is found. These world lines will be called
stationary because their geometric properties
are independent of proper time. One also finds
that only observers on these world lines may
establish a coordinate system in which they are
at rest and the metric is stationary, Clearly,
the geodetic interval between two points on a
stationary world line can depend only on the proper
time interval, therefore they are the world lines
on which a detector's excitation is time indepen-
dent.

The Frenet equation (12) may be reduced to a
fourth-order linear equation in V," when the cur-
vature invariants are constant:

V,
' = (1, 0, 0, 0);

(ii) K=r =0,

Vo = (cosh»s, sinh»s, 0, 0};
(tit) I»I & IrI, u=O, p'=r'-K',

V,"= p '(r' —K'cosps& Kpsinps,

»1 —KT cosps& 0);

V,"=(1+—,
' K's', Ks, —,

' K's', 0).

(v) I»l+ I'I u=o,

V; =o '(K'coshos —v', Kosinhos,

Kr coshos —Kr, 0);

(vi) uW0 [Eqs. (29) and (31)-(34)].

(36)

(37)

(38)

(39)

V," —2a V," —O'V,' = 0, (24)

V' = (V" —K'V')/Kr, . (26)

P,' =[ Vo —(»'- 7') V",]/»7u . (27)

Equation (24} is homogeneous with constant
coefficients. The four roots of the characteristic
equation are+A, and +iR, where

R, =[(a'+b')'~'+a]' '.
The solution is therefore

(29}

where a= 2(K' —T —u ) and b = IKuI. The other
basis vectors are determined from V," by the
equations

V,"=V;/K, (25)

The stationary world lines are the integral
curves, or orbits, of the timelike Killing vector
fields in Minkowski space. That each of the world
lines is a Killing orbit may be seen explicitly by
comparison with its tangent vector. Because only
stationary world lines are invariant under proper
time translations, the converse can be proved by
showing that all Killing trajectories have this
property. A world line is invariant under proper
time translations if the tangent vectors at all
points s are related to the tangent vectors at s
+ ds by an infinitesimal I orentz transformation
which is independent of s. Comparison of Eqs.
(23) and (12) shows that world lines are invariant
under proper time translations if, and only if,
they are stationary. A Killing vector field (,
is defined by
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