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The stationary world lines, on which quantized field detectors in a vacuum have time-independent excitation
spectra, are discussed. They are characterized by the requirement that the geodetic interval between two points
depends only on the proper time interval. To construct these world lines a generalization of the Frenet equations to
Minkowski space is developed. The curvature invariants are found to be the proper acceleration and angular velocity
of the world line. The equations are solved for constant invariants and the solutions are shown to be the stationary
world lines. A classification into six types is made. The equivalence of the timelike Killing vector field orbits and the
stationary world lines is demonstrated. The classification scheme therefore extends to Killing orbits and stationary
coordinate systems in flat spacetime. Finally, the vacuum excitation spectra of detectors on a representative sample

of the stationary world lines are calculated.

I. INTRODUCTION

Several years ago Unruh® showed that a scalar-
particle detector moving with constant linear
acceleration in the vacuum of flat spacetime will
be excited. The detector will behave as if in con-
tact with a bath of scalar particles with energies
in a Planck spectrum of temperature: acceleration/
27, Similar results have been described for de-
tectors of electromagnetic radiation.? Recently®
it has been shown that a detector in uniform cir-
cular motion will also be excited. The spectrum
differs from a Planck spectrum in a manner de-
pendent on the detector’s angular velocity. It is
noteworthy that the spectrum is time independent
in all these cases; in general, this will not be
true. For example, if a detector was moving
with a very slowly increasing linear acceleration
one would expect the spectrum to be Planckian,
though with a slowly increasing temperature.

The probability for a detector moving along a
world line x*(7) to be found in an excited state of
energy E at T=71, is*

To TO
pE)=c@®) [“ar [“arr e
x (0] (x(NPx (' N| 0y, (1)

where C(E) is a function characterizing the
detector’s sensitivity. The Wightman function
for a scalar field is®

(0] ¢ (x (TNplx () [0y =[20°W (7, 7)), @)
where the geodetic interval is

W(r, 1) =[x, (1) = x, @)][x* () = x* (/)] . 3)

In terms of the proper time interval s =7 — 7/, the
rate of excitation to the state with energy E is

dP(E)
dT,

= 2C(E)fods cos(EsX0|p(x (T )(x (To+s)[0) .
@)

The detector is therefore effectively immersed
in a bath of scalar particles with energy spec-
trum

0
S(E,T)=2mp(E) ‘f ds cos(Es)
x (0] (x(TNox(T+sN|0), 6)

where p(E) is the density of states.

The condition that (5) be time independent is
just the time independence of the Wightman func-
tion (2). This will be assured if, and only if,

W(r,7+s)=W(0,s). (6)

The spectrum is therefore time independent when
the geodetic interval between two points on the
detector’s world line depends only on the proper
time interval between them.

The world lines which satisfy the requirements
above are called stationary. The geometric prop-
erties of these lines are independent of proper
time. In the next section the Frenet equations of
classical differential geometry are extended to
Minkowski space. The curvature invariants are
shown to be the proper acceleration and angular
velocity of a world line. The stationary world
lines are therefore solutions of the Frenet equa-
tions when the curvature invariants are constant.

In Sec. III the differential equation defining the
stationary world lines is solved. We are there-
fore able to exhibit the explicit form of these
world lines as functions of proper time. It is
shown that there are six classes of stationary
world lines. Within each class the world lines
are qualitatively the same. This classification
is shown to extend to the timelike Killing vector
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orbits and hence the stationary coordinate sys-
tems in flat spacetime. Finally, the excitation
spectra of detectors on several of the stationary
world lines are calculated. These spectra have
a bearing on the question of particle definition in
noninertial coordinates.

1I. CURVATURE INVARIANTS AND THE FRENET
EQUATIONS

An arbitrary timelike world line in flat space
is generally described by four functions, x*(s),
specifying the coordinates of each point s on the
curve. This parameter may be taken to be the
arc length or proper time on the world line. The
parametric representation is unsatisfactory in
two respects: (1) A world line is a geometric
object and should not require a coordinate-
dependent entity for its definition and (2) there
is an inherent redundancy in the parametric rep-
resentation since three functions suffice to deter-
mine the world line. The curvature invariants
as described below provide an intrinsic definition
of the world line not subject to these criticisms.

To begin, an orthonormal tetrad V%(s) is con-
structed at every point on the world line x* (s).
The Latin index everywhere is a tetrad index.
The tetrad is formed from the derivatives of
x*(s) with respect to proper time (represented
by one or more dots). It is assumed that the first
four derivatives are linearly independent, the
results being practically unchanged when they are
not. Members of the tetrad must satisfy the
orthonormality condition

Vau V‘; = T'ab ’ (7)

where the metric has diagonal components
(1,-1,-1,-1) only.

By Gram-Schmidt orthogonalization of the
derivatives working upwards from the first, the
following expressions for the tetrad members are
found:

Vg =1", ®)
po
vi= [Eeo e ©)
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10)
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Overall signs on these vectors are fixed by the
orientation of the tetrad.

The tetrad V; is a basis for the vector space
at a point on the world line. Derivatives of the

basis vectors may therefore be expanded in terms
of them:

VE=KLryh (12)

These are the generalized Frenet equations.
K, is a coordinate-independent matrix whose
structure must be determined.

Differentiation of the orthonormality condition
(7) yields

f/au V: + Vuu f/: =0’ (13)
and, in view of (12),
K,=-K,,. (14)

A basis vector V! is defined in terms of the first
a+1 derivatives of x*; therefore, V“ will be a
linear combination of the first a +2 derlvatlves
These a +2 derivatives are dependent only on the
basis vectors V}, where b<a+1. It follows that
K, is zero if b>a+1. This and (14) limit the
matrix to the form .

0 —«x(s) O 0
|0 ~1(s) 0 )
¢ 0 7(6s) 0 -—vu(s)|’
0 0 v(s) 0

The three functions of proper time are the in- -
variants

K=V0u I;f=_ i’ou V‘; ’ (16)
T=Vlu i]; == f/lu V; ’ (17)
U=me";=—f7mV';. (18)

They are, respectively, the curvature, torsion,
and hypertorsion of the world line. Sign choices
are made for reasons brought out below.

To explore the physical significance of the in-
variants we examine the infinitesimal Lorentz
transformations of the tetrad at a point on the world
line. The transformations leave the metric in-
variant

Ny =L, Ly gy - (19)
An infinitesimal transformation may be written
°=5,°+de,°, (20)

where the elements of de,® are small and must
satisfy

de,=-de,,. (21)

The transformations are taken to be active; that
is, the transformed tetrad moves +v and is
rotated +6 relative to the untransformed tetrad.
Thus the infinitesimal generator is
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0 -dv, -dv, -dv,

e dv, 0 -do,, dby
= . 22
« dv, dby, 0 — 0, (22)
dvy -dy dy, 0

The change in the tetrad resulting from this
transformation is

V= (del/ds)VE. 23)

Equations (23) are identical to the Frenet equa-
tions (12); therefore, the physical content of the
curvature invariants is found by comparison of
(15) and (22). The curvature is the proper ac-
celeration of the world line which is always par-
allel to V¥§. The torsion and hypertorsion are the
components of proper angular velocity in the
planes spanned by V} and V;, and V, and V},
respectively. The total proper angular velocity
is the vector sum of these two invariants.

III. STATIONARY MOTIONS

In this section the general expression for a
world line whose curvature invariants are con-
stant is found. These world lines will be called
stationary because their geometric properties
are independent of proper time. One also finds
that only observers on these world lines may
establish a coordinate system in which they are
at rest and the metric is stationary. Clearly,
the geodetic interval between two points on a
stationary world line can depend only on the proper
time interval, therefore they are the world lines
on which a detector’s excitation is time indepen-
dent.

The Frenet equation (12) may be reduced to a
fourth-order linear equation in Vi when the cur-
vature invariants are constant:

VE_2aVE _b2VE =0, (24)

where a=3(x®~ 72— v?) and b= |kv|. The other
basis vectors are determined from V§ by the
equations

VE=VE /K, (25)
Vi = (Vs —k?Ve)/kT,- (26)
VE=[ V- (k%= 72) VE] /v . 27

Equation (24) is homogeneous with constant
coefficients. The four roots of the characteristic
equation are +R, and +iR_, where

R*=[(a2+b2)1/2:ta]1/2_ (28)

The solution is therefore

V4 =A* cosh(R, s)+B" sinh(R, s)

+C* cos(R_s)+D" sin(R_s), (29)

and the coefficients may be fixed by the initial
conditions

(V: )s=o= 65 . (30)

Solving (29) and (25)-(27) for A*, B*, C*, and
D* at s =0 subject to the conditions (30) yields

A* =R™%(R_%+«%0,kT,0), (31)
B* =R"%(0,k(R2+k2~T%)/R,,0,kTU/R)), (32)
C* =R™2(R,%-«?2,0, — kT, 0), (33)

D* =R™2(0,k(R,2- k*+7%)/R_, 0, - kTv/R)), (34)

with R®=R 2+R 2.

The stationary world lines separate naturally
into six classes according to the values of the
curvature invariants:

(i) k=T=v=0,

(35)
V‘;:(I,0,0’O);
ii =7=0
(i1) « X (36)
vt = (coshks, sinhks, 0, 0);
@) [e]<|7], v=0, p=ri_s?,
(o -2(2 2 . (37)
Vo =p 2(t% - k*cosps, kpsinps ,
KT — KT cosps, 0);
(iv) |«|=]|7], v=0, (38)
VE=(1+3 k%2 ks, 3K%20);
() |x|>|7], v=0, o®=kZ-12,
(39)

V% =0 "2(k% coshos — T2, ko sinhos ,
kT coshos — k7, 0);
(vi) v#0 [Eqgs. (29) and (31)-(34)].

The stationary world lines are the integral
curves, or orbits, of the timelike Killing vector
fields in Minkowski space. That each of the world
lines is a Killing orbit may be seen explicitly by
comparison with its tangent vector. Because only
stationary world lines are invariant under proper
time translations, the converse can be proved by
showing that all Killing trajectories have this
property. A world line is invariant under proper
time translations if the tangent vectors at all
points s are related to the tangent vectors at s
+ds by an infinitesimal Lorentz transformation
which is independent of s. Comparison of Egs.
(23) and (12) shows that world lines are invariant
under proper time translations if, and only if,
they are stationary. A Killing vector field £,
is defined by
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s+ E54=0. (40)

The proper time derivative of £ along its tra-
jectories is the infinitesimal Lorentz transfor-
mation

Er=t" 88, (41)

Applying (40) repeatedly one can show that the
proper time derivative of £° ; is zero along any
trajectory.

IV. SPECTRA

_Combining Egs. (2), (3), (5), and (6) and noting
that

p(E)=E?*/27%, (42)

the excitation spectrum of a detector on a sta-
tionary world line is

S(E)= fﬂi f " i {[x, (5) - %, 0)]

~0

X [x*(s) = x*(0)]} 'ds . (43)

In this section the results of Sec. III and (43) are
used to calculate excitation spectra for detectors
on world lines of types (i) through (v). The world
lines are exhibited and described in a convenient
Lorentz frame.

(i) The inertial detector, in its rest frame, fol-
lows the world line

x*(s)=(s,0,0,0). (44)
Its excitation spectrum is
S(E)=E®/4an?, (45)

which corresponds to a ground-state energy per
mode of E/2. This term appears in the other
cases with another spectrum superimposed. It
will be subtracted out in the results below.

(ii) This is linear motion with constant proper
acceleration k. In the rest frame of the detector
at s =0 the world line is hyperbolic

x*(s)=k"*(sinhks, coshks, 0, 0) . (46)

It is convenient to express the spectrum in terms
of a dimensionless energy €, =E/k. The spectrum

€ 3

© S(e)= W""E"Tl)

(47)
is Planckian with temperature «/27 and is shown
in Fig. 1.

(iii) The detector moves in a circle of radius
k/p? with constant velocity /7. The world line
is a helix .

x*(s)=p 3(rps, k cosps, k sinps, 0). (48)
Equation (43) cannot be integrated analytically in
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FIG. 1. Spectra for detectors on world lines with
T=v=0 (lower curve) and k=7, v=0 (upper curve).

this case. The results of a numerical integration
are shown in Fig. 2. A dimensionless energy
€,=E/p is used. The curves are drawn for various
values of k/p. When k/p=0, the spectrum is flat
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FIG. 2. Spectra for detectors on world lines with
I7I1>1k] andv=0. k/p=0,0.25,0.5,...,1.75,2.0
from the lower to the upper curve, respectively.



23 STATIONARY WORLD LINES AND THE VACUUM... 1713

40 ARARARRRES RERRN LR R RA RS AN RN RER RS RRRR RRRE)

35

T =TT

30

T

25

T
ada

add Ly

TT T

Energy Density/ o*

PRI

TTT T T T

A

Y (TR IR CNUTI PR RNI R A ANV AU I FRUTIRTRTINTINY

0 1.0 20 30 4.0 50

€o

FIG. 3. Spectra for detectors on world lines with
[k I>I7] and v=0. 7/0=0,0.25,0.5,...,1.75,2.0
from the lower to the upper curve, respectively.

because the detector is inertial. In the limit
k/p>1 the spectrum tends toward the analytic
result in (iv) below.

(iv) This peculiar cusped motion has spatial
projection

y=35V2 kx3/2, (49)

The world line is, however, not only smooth but
self-similar. In the detector’s rest frame at
s =0, the motion is
x4 (s)=(s + L k2% 5 ks?, L k%%, 0). (50)

The spectrum may be calculated exactly and using
the dimensionless energy €, is
€r?
813
This spectrum is plotted in Fig. 1.

(v) This is an unbounded detector motion along
the catenary

x=kcosh(y /7). (62)

S(e,) = e B (51)

The world line is
x* (s) = 0 "%(k sinhos, k coshos, Tos, 0). (53)

The spectrum cannot be found analytically. Num-
erical results are shown in Fig. 3 with the spec-
trum given as a function of €,=E/0. For 7/0=0,
the spectrum becomes Planckian as would be
expected. As 7/0 gets large, the spectrum tends

toward the spectrum found in (iv).
(vi) In the general case the world line may be
written as

A A
Cxt(s)= (T sinh(R,s), ——R—cosh(R+s),

KT
RAR.

cos(R_s) sin(R_s)) , (54)

KT
> RAR_
where A%=3(R®+k2+72+v?). This is a super-
position of the constant linearly accelerated motion
and uniform circular motion. The spatial path

of a detector on this world line is helicoid with

a pitch that decreases to zero at s =0 and in-
creases thereafter. The spectra form a two-
parameter set of curves and have not been cal-
culated.

V. CONCLUSION

In this paper the stationary world lines in flat
spacetime have been described and the vacuum
excitation of detectors on these world lines cal-
culated. These results have immediate application
in the study of the coordinate dependence of quan-
tum field theory in flat spacetime.® Because the
stationary world lines are trajectories of time-
like Killing vector fields, a stationary coordinate
system adapted to each world line may be con-
structed. In this system the world line is a co-
ordinate line and proper time is proportional to
coordinate time. The spectrum of vacuum fluc-
tuations as measured by observers at rest in the
stationary coordinate systems are the spectra
calculated in Sec. IV. The existence of the Killing
vector field allows a consistent quantum field the-
ory to be developed in these systems. The clas-
sification afforded by the curvature invariants
shows that there are six essentially different
stationary coordinate systems. Only three are
well known: Minkowski, Rindler, and rotating
coordinates. General statements concerning quan-
tum field theory (particularly particle and vacuum
definitions) in the flat-space stationary coordinate
systems are made possible by the examination of
the remaining three systems.
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