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The interferometers now being developed to detect gravitational waves work by measuring the relative positions of
widely separated masses. Two fundamental sources of quantum-mechanical noise determine the sensitivity of such
an interferometer: (i) fluctuations in number of output photons (photon-counting error) and (ii) fluctuations in
radiation pressure on the masses (radiation-pressure error). Because of the low power of available continuous-wave
lasers, the sensitivity of currently planned interferometers will be limited by photon-counting error. This paper
presents an analysis of the two types of quantum-mechanical noise, and it proposes a new technique—the “squeezed-
state” technique—that allows one to decrease the photon-counting error while increasing the radiation-pressure
error, or vice versa. The key requirement of the squeezed-state technique is that the state of the light entering the
interferometer’s normally unused input port must be not the vacuum, as in a standard interferometer, but rather a
“squeezed state”—a state whose uncertainties in the two quadrature phases are unequal. Squeezed states can be
generated by a variety of nonlinear optical processes, including degenerate parametric amplification.

I. INTRODUCTION

The task of detecting gravitational radiation
is driving dramatic improvements in a variety
of technologies for detecting very weak forces.!
These improvements are forcing a careful exami-
nation of quantum-mechanical limits on the ac-
curacy with which one can monitor the state of
a macroscopic body on which a weak force acts.?
One promising technology uses an interferometer
to monitor the relative positions of widely sepa-
rated masses. This paper analyzes the quantum-
mechanical limits on the performance of inter-
ferometers, and it introduces a new technique
that might lead to improvements in their sensi-
tivity.

The prototypal interferometer for gravitational-
wave detection is a two-arm, multireflection
Michelson system, powered by a laser (see Fig.
3 below). The intensity in either of the interfero-
meter’s output ports provides information about
the difference z =z, - 2, between the end mirrors’
positions relative to the beam splitter, and
changes in z reveal the passing of a gravitational
wave. The first interferometer for gravitational-
wave detection was built and operated at the
Hughes Research Laboratories in Malibu, Califor-
nia, in the early 1970’s (Ref. 3); this first effort
was small-scale and had modest sensitivity. Now
several groups around the world are developing
interferometers of greatly improved sensitivity 2™
A long-range goal is to construct large-scale in-
terferometers, with baselines 7~1 km, in order
to achieve a strain sensitivity 4z/I~1072 for
frequencies from about 30 Hz to 10 kHz. This
sensitivity goal is based on estimates for the
strength of gravitational waves that pass the

Earth reasonably often.!

It has been known for some time that quantum
mechanics limits the accuracy with which an
interferometer can measure z—or, indeed, the
accuracy with which any position-sensing device
can determine the position of a free mass.2 57
In a measurement of duration 7, the probable
error in the interferometer’s determination of
z can be no smaller than the “standard quantum
limit”:

(A2)gqy, =27 /m)*'? (1.1)

where m is the mass of each end mirror [(8z)q;,
~6X 1078 ¢m for m~10° g, T~2X 10" sec]. The
validity of the standard quantum limit is unques-
tionable, resting as it does solely on the Heisen-
berg uncertainty principle applied to the quantum-
mechanical evolution of a free mass.

The standard quantum limit for an interfero-
meter can also be obtained from a more detailed
argument® 7° that balances two sources of error:
(i) the error in determining z due to fluctuations
in the number of output photons (photon-counting
error) and (ii) the perturbation of z during a
measurement produced by fluctuating radiation-
pressure forces on the end mirrors (radiation-
pressure error). As the input laser power P
increases, the photon-counting error decreases,
while the radiation-pressure error increases.
Minimizing the total error with respect to P
yields a minimum error of order the standard
quantum limit and an optimum .input power®*

Py~ 3(me? /) (1/wr)(1/6%) (1.2)

at which the minimum error can be achieved.
Here w is the angular frequency of the light, and
b is the number of bounces at each end mirror.
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At the optimum power the photon-counting and
radiation-pressure errors are equal.

The original argument® leading to the opti-
mum power (1.2) attributed the radiation-pres-
sure fluctuations that perturb z to fluctuations
in input power. Some later versions of the
argument were unclear about the source of
the relevant radiation-pressure fluctuations.’?
As a result, the argument had always been under
suspicion, ® because fluctuations in input power
should divide equally at the beam splitter and,
therefore, should have no effect on z. This sus-
picion led to a “lively but unpublished contro-
versy”® over the existence of a radiation-pressure
force that affects z and, consequently, over the
existence of an optimum laser power.

In a recent paper I resolved this controversy.'!
There I pointed out that the relevant radiation-
pressure force has nothing to do with input power
fluctuations; instead, it can be attributed to
vacuum (zero-point) fluctuations in the electro-
magnetic field, which enter the interferometer
from the unused input port (direction of dashed
arrow in Fig. 3 below). When superposed on
the input laser light, these fluctuations produce
a fluctuating force that perturbs z. (An alter-
native and equivalent point of view attributes
the relevant radiation-pressure fluctuations to
random scattering of the input photons at the
beam splitter.!®!') In the same paper I claimed
that these vacuum fluctuations (not input power
fluctuations) are also responsible for the un-
avoidable fluctuations in number of output photons.

A reasonable set of values for the interfero-
meter’s parameters, which I shall use as a fidu-
cial set throughout this paper, is m~10° g, 7
~2%10% sec, w~4%10" radsec™ (wavelength
x~5000 A), and b~200. For these values P,
is approximately 8 X 103 W —a power far higher
than powers of present continuous-wave lasers.
The low available input power means that the
interferometers now planned for use as gravi-
tational-wave detectors will be limited not by
the standard quantum limit, but rather by 1/VN
photon-counting statistics. In this paper I ad-
dress this problem by introducing a new tech-
nique, which in prineiple allows an interfero-
meter to achieve the quantum-limited position
sensitivity (1.1) for input powers far less than
P,.
Perhaps suprisingly, this new technique does
not require modifying the input laser light; in-
stead, it requires modifying the light entering
the normally unused input port. Specifically,
the unused port must see not the vacuum (ground)
state of the electromagnetic field, but rather
a “squeezed state”—a state whose fluctuations

in one quadrature phase are less than zero-
point fluctuations (or the fluctuations in any co-
herent state), and whose fluctuations in the
other phase are greater than zero-point fluc-
tuations. This technique works because one

of the two phases is responsible for the fluctua-
tions in number of output photons, while the
other is responsible for the radiation-pressure
fluctuations that perturb z. Thus, by “squeezing
the vacuum” before it can enter the normally
unused input port, one can reduce the photon-
counting error (i.e., beat 1/VN photon-counting
statistics) at the expense of increasing the radi-
ation-pressure error, or vice versa.

In practice, this squeezed-state technique is
not likely to allow gravitational-wave interfero-
meters to operate at the standard quantum limit.
However, it might allow a given underpowered
interferometer to achieve a somewhat better
sensitivity, without changes in its input power
or any of its other parameters. Unfortunately,
the usefulness of the squeezed-state technique is
likely to be severely limited by the losses in real
mirrors, which destroy the crucial feature of the
technique—the reduced noise in one of the two
quadrature phases. The technique can be useful
only in interferometers whose performance is
not limited by losses in the mirrors.

This paper extends and refines the analysis
given in Ref. 11, and it introduces the new
squeezed-state technique. Section II gives a
detailed analysis of the quantum-mechanical
noise in an interferometer, with emphasis on
the theoretical capabilities of the squeezed-state
technique. Section IIA presents some formal
considerations that facilitate handling various
states of the electromagnetic field, including
squeezed states. Section II B begins by presenting
an idealized model of an interferometer and an
outline of the procedures used in the subsequent
analysis, and it then proceeds to that analysis.
Specifically, the radiation-pressure fluctuations,
the output fluctuations in number of photons, the
optimum sensitivity, and the optimum power are
analyzed for an interferometer that has either
vacuum or a squeezed state incident on the nor-
mally unused input port. Along the way the in-
tensity-correlation properties of the light in the
two arms of the interferometer are investigated.
Section Il focuses on more practical matters,
with emphasis on application of the squeezed-
state technique to real interferometers, which
are limited by photon-counting statistics. Sec-
tion III reviews a method for generating squeezed
states using an optical degenerate parametric
amplifier, it investigates the limitations imposed
by mirror losses, and it proposes a method for



23 QUANTUM-MECHANICAL NOISE IN AN INTERFEROMETER 1695

doing the photon counting that can realize the
potential reduction in photon-counting error even
with inefficient photodetectors. Section IV com-
ments briefly on the results and their relevance
to gravitational-wave detection.

II. ANALYSIS OF QUANTUM-MECHANICAL
NOISE IN AN INTERFEROMETER

A. Formal considerations

Before turning to a detailed analysis of an in-
terferometer, it is useful to review some proper-
ties of various special states of a harmonic oscil-
lator. These states play a crucial role in the
subsequent analysis.

Consider a single mode of the electromagnetic
field with angular frequency w, and let @ and a'
be its annihilation and creation operators ([a,
a']=1). Then the operator for the number of
photons in the mode is

N=a'a, (2.1)

and a dimensionless complex-amplitude operator
for the mode is

X, +iX,=a. (2.2)

The Hermitian operators X, and X, (real and
imaginary parts of the complex amplitude) give
dimensionless amplitudes for the mode’s two
quadrature phases. The commutation relation

for a and a' implies a corresponding commutation
relation for X, and X,: [X,,X,]=i/2. The resulting
uncertainty principle is AX,A0X, > §.

The complex amplitude of a single mode is a
constant of the motion—i.e., it is constant in
the Heisenberg picture. Thus, in Eq. (2.2), X,
and X, are Heisenberg-picture operators, whereas
a is a Heisenberg-picture operator evaluated
at a particular time (or, equivalently, a Schro-
dinger-picture operator). There is a phase am-
biguity in the relation between the complex ampli-
tude and the annihilation operator; this phase
ambiguity corresponds to the freedom to make
rotations in the complex-amplitude plane (or
to freedom in the choice of fiducial time in the
relation between X, +iX, and a).

A particularly useful set of states for the elec-
tromagnetic field is the set of coherent states
introduced by Glauber.!*> These states are most
easily generated using the unitary displacement
operator'?:

D(a)=exp(aat - a*a)=e"'*1*/2g0alg=%a = (9 3)

where o is an arbitrary complex number. Note
that D'(a)=D"(a)=D(~a). The most useful prop-
erty of the displacement operator is the way it
transforms « and a':

DY(a)aD(a)=a+a ,

(2.4)
DYa)a'D(a)=a'+a*.
By displacing the vacuum (ground) state |0),
one obtains the cokerent state |a):
Ia)ED(a)]O):e_ldlz/geaafl0>. (2.5)

The expectation values and variances of X,,X,,
and N in a coherent state are given by

(X1+iX2)=oz, AX1=AX2=—12- ’
(2.6)
Wy=lal?,

The coherent state |a@) has mean complex ampli-
tude a, and it is a minimum-uncertainty (Gauss-
ian) state for X, and X,, with equal uncertainties
in the two quadrature phases. A coherent state

is conveniently represented by an “error circle”
in a complex-amplitude plane whose axes are

X, and X, [ see Fig. 1(a)]. The center of the error
circle lies at (X, +iX,)=0o, and the radius AX,
=AX,=3% accounts for the uncertainties in X, and
X,.
Squeezed states constitute another useful set
of states. They are conveniently generated by
using the unitary squeeze operator3s;

S(¢)=exp[3c*a? -38(a'?], ¢=7e'?, 2.7

where ¢ is an arbitrary complex number. The
squeeze operator was introduced by Stoler,®

and the name was coined by Hollenhorst.'* Note
that S(¢)=S"(¢)=S(~¢). The most useful unitary
transformation properties of the squeeze operator
are

$*(¢)aS(¢) =acoshr — a’e sinhr
$'(¢)a's(¢)=a' coshr — ae™# sinhr , (2.8)
SHENY, +iY,)S(Q) =Y, e "+iY,e7,

AN=lal.

where
Y, +iY,=(X, +iX )e"10/2 (2.9)
Xp Xz
rodius=—é— Y2
B X
\\
N A Y
a P!
\/--~\er/2
X, "k X,
- \
- \
\
\
\
\
\
(a) (b)

FIG. 1. (a) Error circle in complex-amplitude plane
for coherent state |a). (b) Error ellipse in complex-
amplitude plane for squeezed state |a,re®) (»>0).
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is a rotated complex amplitude. The squeeze
operator attenuates one component of the (ro-
tated) complex amplitude, and it amplifies the
other component. The degree of attenuation
and amplification is determined by » =|¢|, which
therefore will be called the squeeze factor.

The squeezed state |a,t) is obtained by first
squeezing the vacuum and then displacing it:

[a,8)=D(a)S(&)|0).

Note that |@,0)=|a). The most important ex-
pectation values and variances for a squeezed
state are

X, +iX,) =(¥Y, +i¥Y yei® 2= ,
aY,=te, aY,=}e,
(Ny=|a|?+ sink?r ,

(AN)? =|a coshr — a*e# sinhr|?

(2.10)

(2.11)

+ 2 cosh?y sinh®» .

The squeezed state |a,¢) has the same expected
complex amplitude as the corresponding coherent
state [@), and it is a minimum-uncertainty (Gauss-
ian) state for ¥, and Y,. The difference lies in
its unequal uncertainties for ¥, and ¥,. In the
complex-amplitude plane, the coherent-state
error circle has been “squeezed” into an “error
ellipse” of the same area [see Fig. 1(b)]. The
principal axes of the ellipse lie along the Y, and
Y, axes, and the principal radii are AY, and AY,.
Squeezed states were introduced by Stoler,3*®
who called them “minimum-uncertainty packets.”
They have since been considered by Lu'**? (“new
coherent states”), by Yuen'®!® (“two-photon co-
herent states”), and by Hollenhorst'® (“wave-
packet states”). Yuen, in particular, has exam-
ined in detail the properties of squeezed states.'®
The reduced uncertainty in one quadrature phase
of a squeezed state is obviously attractive for
optical communications purposes; in a recent
series of papers,?°™?? Yuen and his collaborators
have considered this application of squeezed states
and have given detailed analyses of several photo-
detection techniques applied to squeezed states.
Squeezed states have also found application
in the theory of mechanically resonant gravi-
tational-wave detectors. A detector of this type'
is a macroscopic mechanical system (usually a
massive cylinder of aluminum); a gravitational
wave betrays its presence by changing the com-
plex amplitude of oscillation of some mode of
the mechanical system (usually the fundamental
mode). A fundamental theoretical problem has
been how to monitor the mode of interest in a
way that allows detection of gravitational waves
so weak that they change the complex amplitude

of that mode by less than the width of a coherent
state. This problem has become known as the
“quantum nondemolition” problem, and solutions
to it are known as quantum nondemolition measure-
ment techniques. The quantum nondemolition
problem and its solutions have been analyzed
extensively (see Ref. 2 and references cited
therein). It should not be surprising that squeezed
states, with their reduced uncertainty in one com-
ponent of the complex amplitude, play a key role
in one quantum nondemolition technique, the
“pback-action-evading” method of making quantum
nondemolition measurements.? In the back-action-
evading method one designs a measuring device
that monitors only one component of the relevant.
mode’s complex amplitude; this device automatic-
ally forces that mode into a state similar to a
squeezed state.

To better visualize the properties of coherent
and squeezed states, it is perhaps useful to con-
sider the time dependences of the expectation
value and variance of a field quantity, such as
the electric field E(¢). These time dependences
are easily read off the complex-amplitude plots
in Fig. 1; a complex-amplitude plane whose axes
are E and E must rotate with angular velocity
w relative to the (X,,X,) phase plane, in order
to produce a sinusoidal oscillation of the expec-
tation value of E. For a coherent state the ro-
tation of the error circle leads to a constant value
for the variance of the electric field [see Fig. 2
(a)]. For a squeezed state, however, the rotation
of the error ellipse leads to a variance that oscil-
lates with frequency 2w. This situation is depicted
in Fig. 2 for two cases: the case where the co-
herent excitation of the mode appears in the quad-
rature phase that has reduced noise [Fig. 2(b)]
and the case where the coherent excitation appears
in the quadrature phase that has increased noise
[Fig. 2(c)].

B. Detailed analysis of an interferometer

1. Model interferometer and outline of analysis

A typical interferometer for gravitational-wave
detection is a multireflection Michelson system
of the sort sketched in Fig. 3 (Refs. 4-6,8). An
idealized version of such an interferometer works
as follows. Light enters the interferometer from
a laser, is split at a lossless, 50-50 beam split-
ter, bounces back and forth many times between
perfectly reflecting mirrors in the nearly equal-
length arms, and finally is recombined at the
beam splitter. The number of bounces at each
end mirror is denoted by b. The end mirrors
are attached to large masses, each of mass m.
The beam splitter and the inner mirrors are
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FIG. 2. Graphs of electric field versus time for three
states of the electromagnetic field. In each graph the
dark line is the expectation value of the electric field,
and the shaded region represents the uncertainty in the
electric field. To the right of each graph is the corre-
sponding “error box” in the complex-amplitude plane.
(a) Coherent state |a) (o real). This state exhibits
neither bunching nor antibunching (g{#’=1). (b) Squeezed
state [a@,7) (a real) with »>0. This state exhibits anti-
bunching (g’ <1) as long as 0<»<%1n(8a?). (c)
Squeezed state |a,r) (« real) with »<0. This state ex-
hibits bunching.

rigidly attached to one another and to a mass

M. For simplicity I assume M > m, so that the
radiation-pressure-induced motion of the beam
splitter can be ignored and the beam splitter can
be regarded as at rest. Each arm of the inter-
ferometer has a fiducial length 7, and the dis-
placements of the end mirrors from their fiducial
positions are denoted z; and z,.

The intensity in one—or perhaps both—of the
output ports is measured by an ideal photodetector
(quantum efficiency one), and this measurement
provides informationabout thedifferencez =z, -z,
between the positions of the end mirrors. The
information about z is not the instantaneous value;
rather, it is some sort of average of z over the
storage time—the time 7,=2bl/c the light spends
in each arm. Thus the storage time defines the
interferometer’s time resolution; the best sensi-
tivity is achieved when the measurement time
7— the time over which one averages the output
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Photo-

detectors '

FIG. 3. Schematic diagram of Michelson interfero-
meter (b=2) described in text.

to get a value for z—is approximately equal to
7s. For a baseline /~1 km and b ~200, 7,~103
sec. Throughout the following analysis I assume
TgST.

The most important idealizations in this model
are the assumptions of lossless mirrors and
ideal photodetectors. The consequences of re-
laxing these two assumptions are considered
in Sec. III. .

The goal of this section is to analyze the quan-
tum-mechanical limits on the performance of an
interferometer. The philosophy is ruthless sim-
plification: throw away all details not necessary
for understanding the fundamental limits. The
quantum-mechanical uncertainty in the inter-
ferometer’s determination of z can be thought
of as coming from three sources: (i) the intrinsic
quantum-mechanical uncertainties in the end
mirrors’ positions and momenta; (ii) the per-
turbations of the end mirrors’ positions by radi-
ation-pressure fluctuations (radiation-pressure
error); and (iii) the fluctuations in number of
photons at the output ports (photon-counting error).
In reality, all three sources of error manifest
themselves in the same way—Dby feeding into the
interferometer’s output and producing fluctuations
in that output. A complete analysis must consider
all three simultaneously.?® Nonetheless, the di-
vision of the total uncertainty is a useful concept-
ual device, and it serves as the basis of the sim-
plified approach adopted here: calculate the
error produced by each type of uncertainty sepa-
rately, and then assume that the total error is
the quadrature sum of the separate errors.

The intrinsic quantum-mechanical uncertainties
in the end mirrors’ positions and momenta can
be dealt with most easily. They feed into the
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interferometer’s output and degrade its deter-
mination of z. In the best case these uncertainties
enforce a minimum error in z given by the stan-
dard quantum limit (1.1).2%7 These uncertainties
and the limits they impose on measurements of

z are well understood; consequently, they.need
not be considered here—i.e., the end mirrors

are treated as classical, rather than quantum-
mechanical, objects.

The radiation-pressure error is obtained using
the following simple procedure. The momentum
transferred to the end masses is calculated as-
suming the end masses remain at rest throughout
the measurement—i.e., assuming m -«<. Since
the end masses really do move, the actual momen-
tum transferred will be slightly different because
of the Doppler shift of the reflected radiation;
this difference is negligible for the cases of in-
terest. The perturbation of z produced by the
momentum transferred is estimated by reverting
to finite masses » and allowing the end mirrors
to move. This perturbation of z feeds into the
interferometer’s output and produces a compar-
able error in determining z.

In much the same way the fluctuations in num-
ber of output phdtons are determined assuming
the end mirrors are at rest. These fluctuations
are then converted into the photon-counting error
by considering differences between neighboring
z =const configurations. This procedure ignores
the complicated averaging produced by the storage
time, but it retains the essential features of the
output fluctuations in number of photons.

The above-outlined assumptions allow a further
‘drastic simplification. Instead of dealing with
beams of finite size and finite duration, I can
restrict attention to only a small number of
plane-wave modes of the electromagnetic field.
In addition, I ignore the small angular deviations
in the directions of the beams—i.e., I assume
that the plane-wave modes propagate precisely
along the directions of the x and y axes of Fig. 3.

2. Radiation-pressure error and second-order coherence

With the above assumptions one can calculate
the momentum transferred to each end mirror
quite simply. One finds the momentum carried
by the light in each arm of the interferometer;
the momentum transferred at each bounce is
twice this amount.

Carrying out this procedure requires only four
modes of the electromagnetic field in the presence
of the beam splitter (“beam-splitter modes”).
The first two modes of interest are “in” modes—
modes appropriate for constructing precollision
wave packets that scatter off the beam splitter.
Thus they are in states in the sense of scattering

theory. The first mode of interest (mode 1*)
describes light incident from the input (laser)
port. It consists of an incident plane wave with
angular frequency w, propagating inward along
the x axis, and scattered waves propagating along
the two arms of the interferometer. The second
mode (mode 2*) is the corresponding in mode
that describes light incident from the normally
unused input port (light incident along the » axis;
direction of dashed arrow in Fig. 3). Outside
the beam splitter the electric fields of these two
modes have the forms

N aei(kx-wt)_ 2-1/2@ei(A-u)ei(ky'wt) y>x
E] = ’
{2-1/2aeiAei(kx-wt)’ Y<x
(2.12)
Ete { 2-1/2aeiAei(ky-wt)’ y>x
5 =

@ei(ky-wt)+ 2-1/2aei(A+u)ei(hx-wt), y< x

where it is assumed that the electric fields are
polarized out of the page. Here k=w/c is the
wave number, @ is a real constant determined
by one’s choice of normalization, and the overall
phase shift A and the relative phase shift u are
properties of the beam splitter. The relation
between the phase shifts the two modes suffer

at the beam splitter is dictated by the assumed
symmetries of the beam splitter—time-reversal
invariance and reflection symmetry through the
plane x=-y. (The further and unnecessary as-
sumption of reflection symmetry through the
plane x =y was made in Ref. 11; this assumption
implies p=7/2.)

The other two modes of interest (modes 1~ and
27) are “out” modes (time reversed “in” modes).
Out modes are appropriate for constructing post-
collision wave packets. Modes 1™ and 2~ are the
out modes whose exiting plane waves propagate
along the x and y axes, respectively. The sym-
metries of the beam splitter allow one to relate
the electric fields of the out modes to those of
the in modes:

E;=2"Y2"'NE! + ¢ " E]),
E;=2"Y2"'NE} ~ " ET).

(2.13)

Now let the creation and annihilation operators
for modes 1* and 2* be denoted by af, @, and af,
a,; similarly, for modes 1" and 2°, bf, b, and
b}, b,. Equation (2.13) implies

b, =226 Ya, + eita,), (2.14)
b2=2-1/2ei'A(a2 _ e'i”al) .

The operator @ that specifies the difference
between the momenta transferred to the end



23 QUANTUM-MECHANICAL NOISE IN AN INTERFEROMETER 1699

masses is proportional to the difference between
the number of photons in modes 1™ and 27:

@ = (@b w/c)(blb, - blb,)
=~ (2bhw/c)(e*ala,+e ¥ala)). (2.15)

Note that, when written in terms of operators
for the in modes, @ is clearly due solely to
the interference of modes 1* and 2*. This is
merely a restatement of the fact, true classic-
ally, that thedifference in the intensity in the two
arms of an interferometer is produced solely
by the interference of light coming from the
two input ports.

Now assume the state of the electromagnetic
field is

| ¥)=8,(£)D,(@)]0), « real, ¢=-re2,

(2.16)

where D, is the displacement operator for mode
1* and S, is the squeeze operator for mode 2*
[see Egs. (2.3) and (2.7)]. Mode 1* is in a co-
herent state with complex amplitude « (the
choice of a real is merely a choice of phase for
mode 1*), and mode 2* is in a squeezed state
with zero expected complex amplitude. Note that
the squeeze factor » can be either positive or
negative. The phase with which mode 2* is
squeezed is chosen carefully so that, in the arms
of the interferometer, the reduced-noise quad-
rature phase of mode 2* is either in phase or 90°
out of phase with the coherent excitation of mode
1*. The numbers of photons in modes 1* and 2*
and their variances are given by

(Nl)ln = (a:al) = az ’

(AN, 2=a?, (2.17)
(N,)4q = {ala,) = sinh?r , )
(AN,),,2 =2 cosh?®r sinh®r

[cf. Egs. (2.6) and (2.11)]. To relate to the case
where the light has a finite duration 7, one uses
the mean numbers of photons in the two modes

to define a mean power P into the laser port and
amean power P, into the normally unused input port:

P=Rwa?/7,

P,=Hwsinh®*r /7.

(2.18)

For reasonable values of 7, P, is an extremely
small power (Fw/T ~2X107¢ W).

It is now a simple matter, using Eqgs. (2.4) and
(2.8), to evaluate the expectation value and vari-
ance of @:

@)=0,
(AR)2 = (2bK w/c)?(a2e?T + sinh?y) .

(2.19a)
(2.19b)

Both terms in Eq. (2.19b) come from the inter-
ference of modes 1* and 2*—the first term from
the superposition of the coherent excitation of
mode 1* on the fluctuations in mode 2* and the
second from the interference of the fluctuations
in the two modes. There is zo contribution to
Eq. (2.19b) from the superposition of the coherent
excitation of mode 1* on fluctuations in mode 1%;
these input power fluctuations perturb only the
sum of the end masses’ momenta and, therefore,
do not affect the interferometer’s performance.
Equation (2.19b) also displays the effect of putting
mode 2* in a squeezed state. In the arms of the
interferometer one quadrature phase of mode

2* is in phase with the coherent excitation of
mode 1*—but with opposite sign in the two arms.
This phase is entirely responsible for the first
term in Eq. (2.19b). By attenuating or ampli-
fying the noise in this phase, one can reduce

(r <0) or increase (v >0) A®.

In a time 7 the disturbance (2.19b) of the dif-
ference between the end masses’ momenta per-
turbs z by an amount

(82),.~ (A®)T/2m = (bEwT /mc)(ae® + sinh®r)/ 2 ,

rp—

(2.20)

This is the radiation-pressure (rp) error in z. Be-
low, (Az),, is used in an analysis of the optimum
sensitivity and optimum power.

Before going on to a consideration of the photon-
counting error, it is perhaps useful to look in
a more general way at the intensity correlation
of the light in the two arms of the interferometer.
The beam-splitter modes of Egs. (2.12) and (2.13)
are ideally suited to a discussion of a character-
istic intensity-correlation experiment in quantum
optics—an experiment of the type pioneered by
Hanbury Brown and Twiss.?*?® In such an experi-
ment one counts the number of photons in the two
beams emerging from a beam splitter and looks
at the cross correlation of the number of counts.
The quantity that characterizes this photon-num-
ber correlation is the second-order coherence ,'?
which, for the simple case of two out modes con-
sidered here, is given by

22 = (b7b,b7b,) .
127 (b1 by )(b3 by)

If gﬁzz)> 1, the intensities in the two output beams

are correlated—a phenomenon known as photon
punching. If ¢@ <1, the intensities are anti-
correlated—a situation referred to as anti-
bunching. Antibunching is generally considered
to be an intrinsically quantum-mechanical prop-
erty of light; a great deal of effort has gone into
trying to produce and detect antibunched light.?®

(2.21)
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To see how squeezed states fit into this pic-
ture, I consider a more general state of the field
than |¥). This state,

“I’ ” =Sz(§z)D1(a)51(n)|0> ’
a and 7, real, [,=-7,e %, (2.22)

differs from |¥) in that mode 1* is in an excited
squeezed state with complex amplitude o (S, is
the squeeze operator for mode 1*). The squeezing
of mode 1* is of the sort depicted in Figs. 2(b)
and 2(c).

Using Eqs. (2.14), (2.4), and (2.8), one can
evaluate the second-order coherence of |¥’):

gh=1 (a®+ sinhzf1 +sinh®y,)? ’ (2.23a)
Q =a’e %1 - o®e®"2 + 2 cosh®y, sinh®y,

+2 cosh’, sinb®y,

~ (sinh7, coshy, — coshy, sinhy,)* . (2.23b)

The terms in @ have simple physical interpreta-
tions: the first and second terms come from
interference of the coherent excitation of mode 1*
with the fluctuations in modes 1* and 2*; the third
and fourth terms come from the fluctuations in
the two modes separately; and the last term
comes from interference of the fluctuations in
the two modes. The terms arising from each in
mode separately (terms 1, 3, and 4) always
make a positive (correlated) contribution to @,
whereas the interference terms (terms 2 and 5)
always make a negative (anticorrelated) contri-
bution.

Only one quadrature phase of each in mode is in
phase with the coherent excitation of mode 1*.
These in-phase quadratures are responsible for
the first two terms in Q. Thus, by squeezing the
in modes to put more or less noise in the in-
phase quadratures, one can make the light
bunched (Q >0) or antibunched (Q <0). Rewriting
Q@ in a different form makes it clear that only the
first two terms in @ can lead to antibunching:

Q = -2a%e™ "1 sinh(y, +7,)
+sinb?(r, +7,)[1 + 2 sinb?(r, - 7,)]. (2.24)

The pure-fluctuation terms in @ always make a
net positive contribution.

It is useful now to look at some special cases
of the above. The simplest is the case where
mode 1* is in a coherent state (, =0) and mode
2* is in the vacuum state (»,=0). Then one ob-
tains the well-known result that ¢@ =1. This
lack of correlation results from the precise
cancellation of the first two terms in @ [Eq.
(2.23b)]; the correlated contribution due to

fluctuations in the input coherent state is can-
celed by the anticorrelated contribution due to
vacuum fluctuations entering the other input port.

The second case is the one where mode 17 is
in an excited squeezed state and mode 2* is again
vacuum (r,=0). The intensity correlations of
this type of light have been investigated by
several authors.!*:1%:2728 For this case @ takes
the form

Q@ =a(e™®1-1)+sinh®,(1+2sinh% ).  (2.25)

The light is bunched if one increases the noise
in the quadrature phase of mode 1* that carries
the coherent excitation [r,<0; Fig. 2(c)]. It can
be antibunched if one decreases the noise in that
quadrature phase [r,>0; Fig. 2(b)]. Note, how-
ever, that as one increases the value of 7,, the
pure-fluctuation terms in Eq. (2.25) eventually
dominate and the light becomes bunched. If |a|
>>1 this transition from antibunching to bunching
occurs when 7, ~ 5In(84?). .

The last case is the one where mode 1*is in a
coherent state (»,=0), but mode 2* is in a squeezed
state. Then @ takes the form

Q = a?(1 - *"2) + sinh®,(1 + 2 sinh?,) . (2.26)

This case is similar to the previous one. The
output light is bunched if one decreases the noise
in the quadrature phase of mode 2* that gives rise
to the anticorrelated contribution in Eq. (2.26)
(r,<0). The output light can be antibunched if
one increases the noise in that quadrature phase
[7,>0; it is antibunched light of this sort that
increases the radiation-pressure error (2.20) in
an interferometer]. As in the previous case, the
light eventually becomes bunched as one increases
75, the transition occurring at »,~ $In(8a?) if
|a|>1. That this case can produce antibunched
light is perhaps not very surprising, because if
one allows light to enter both input ports of a beam
splitter, anticorrelation can be obtained using
classical light. On the other hand, this case
should not be dismissed too quickly, because the
squeezed state of mode 2*, with its zero ex-
pected complex amplitude, is certainly not like a
classical radiation field.

The antibunched light discussed in this section
is different from the antibunched light that has
been produced and detected in a recent series of .
experiments.?*:*° In these experiments the goal
has been to produce light that is closer to a pho-
ton-number eigenstate than a coherent state is.
Such light is antibunched by virtue of its reduced
amplitude fluctuations, which are purchased at
the price of an ill-defined phase. For the case of
a squeezed mode 1* (»,=0, 7,>0), the light con-
sidered here is also antibunched because of de-
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creased (correlated) amplitude fluctuations, and
the phase is correspondingly less well defined
than for a coherent state. For the case of a
squeezed mode 2* (r,=0, 7,>0), however, the
antibunching is due to increased (anticorrelated)
amplitude fluctuations, and the phases of the two
output beams are better defined than for a coherent
state. The difference between the light used in
‘the current experiments and the light considered
here could be observed using phase-sensitive de-
tection of the two beams from the beam splitter.

3. Photon-counting error

For the case of ideal photodetectors, the photo-
count statistics of the photodetectors are the
same as the photon statistics, so the photon-
counting error can be determined simply by cal-
culating the fluctuations in number of output pho-
tons. Just as for the case of radiation-pressure
fluctuations, this calculation requires only four
modes of the electromagnetic field, but now they
must be modes for the entire interferometer
(“interferometer modes”).

The in modes of interest are again called modes
1% and 2%, with mode 1* describing light incident
from the input (laser) port and mode 2* describ-
ing light incident from the other input port. Out-
side the arms of the interferometer the electric
fields of the two in modes have the forms

ael(kx-wt)_iael(é-ll) Sin(¢/2)e-l(kx+wt) , V> x
Ej-=
ae‘@cos((p/z)e—f(ky*wﬂ’ y<x
(2.27)

aeid’cos(d)/z)e-l(kxd-wt) , ¥Y>x
+
E; =
QetRy=Uh_j@et (F M) gin(p/2)e” BYU | y<y

where @ is a (real) normalization constant. The
phases ¢ and ® can be defined precisely as follows:
let light enter the interferometer fromthe laser
port, and consider the output light in the bottom
output port of Fig. 3 (-y direction); then ¢ is the
phase difference between the light from the two
arms, and & is the mean phase. The two phases
are related to the (constant) positions of the end
mirrors by

¢=2bwz/c+m -2y , (2.28a)

¢=20wZ/c+ %, , (2.28Db)
where Z = 3(z,+2,) and €, is a constant.

The two out modes, again called modes 1~ and
27, are the time reverses of the in modes. Mode

1° is the time reverse of mode 1* and, therefore,
describes light leaving the interferometer along
the —x axis. Mode 27, the time reverse of mode
2%, describes light exiting along the -y axis. The
fields of the two sets of modes are related by

E; =e '®[ie'*ETsin(¢/2) + E}cos(¢/2)], )
29
E;=e"*?[Efcos(¢/2)+ie **E}sin(¢/2)].

The creation and annihilation operators for the
interferometer in modes are denoted a, @, and
aTz, a,; similarly, for the interferometer out
modes, ¢!, ¢, and ¢%, c,. Equation (2.29) implies

c,=e!?[ —iea sin(¢/2) +a,cos(¢/2)],
(2.30)
c,=e**[ a,cos(¢/2) - ietta,sin(¢/2)].

The operators of interest are the photon-num-
ber operators for the two out modes and the dif-
ference between these two. These are given by

cte,-clc,=(ala, —a%a,)coso

-i sing(e’*a’ a, - e **al a,),
(2.31)
clc,=al a;sin*(¢/2) +a' a,cos?(¢/2)

+i sin(¢/2)cos(¢/2)(e**ala, - e **ala)) ,

(2.32)
where cTzc2 can be obtained from c? ¢, by the
transformation ¢p-¢+ 7.

Now assume, as before, that the electromag-
netic field is in the state |¥) of Eq. (2.16). For
this state the expectation values and variances of
the operators (2.31) and (2.32), evaluated using
Eqs. (2.4) and (2.8), are

Nou = (e, = cle,) =cosp(a? - sinh?), (2.33a)
Ang 2 = a®cos®¢ + 2 cos?¢ cosh?» sinh?y
+sin’¢(a’e”* + sinh?) , (2.33Db)

(Nyou = (clep) = a?sin(¢/2) + cos®(¢/2)sinh?r
(2.34a)

(AN ) ou® = @ sin?(¢/2) + 2 cos*(¢/2)cosh®r sinhZr

+8in%(¢/2) cos*(¢/2)(a?e~ 2 + sinh?r) .
(2.34Db)

Equations (2.34) characterize the output (signal
and noise) of an ideal photodetector in one of the
output ports (mode 17), and Eqs. (2.33) character-
ize the differenced output of two ideal photode-
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tectors, one in each output port.

Changes in z are detected by looking at changes
inng, or (N ). Taking the case of differenced
photodetectors, one finds that a change 6z pro-
duces a change

07 oy = — (2bw/c)a®sing 6z (2.35)

inn,,, where I assume |a| > |sinh7]| in order to
neglect the second term in Eq. (2.33a), and where
Eq. (2.28a) is used to convert ¢ to z. Using Eq.
(2.35) to transform Az, into a corresponding
error in z, one obtains a photon-counting (pc)
error:

c cot?
(Az)pcﬂz—b‘;,(az(PJr o

2 cot?¢ cosh® sinh?
4

(2.36)

+— + 5

e~?  sinh% \1/2
o @ :

For the case of a single photodetector [ Eqs.
(2.34)], a similar calculation yields the following
photon~-counting evvor:

c [tanz( $/2) L2 cot®(¢/2)cosh® sinh?r

m” 2 4

(Az)y =~ p. p

+ (2.37)

+
aZ a4

g sinhzr]l/ 2
’
~where it is necessary to assume | a |>| cot(¢/2) sinhr |
in order to neglect the second term in Eq. (2.34a).
The terms in Eqs. (2.36) and (2.37) [or, alterna-
tively, in Eqgs. (2.33b) and (2.34b)] can be inter-
preted in ways familiar from the earlier discus-
sions of A® and Q. The first term in both equa-
tions comes from fluctuations in mode 1* super-
posed on the coherent excitation of mode 1* (input
power fluctuations), the second term comes from
fluctuations in mode 2%, and the last two terms
come from the interference of modes 1* and 2*.
For the case of differenced photodetectors [Eq.
(2.36)], both of the first two terms can be made
zero by operating at an appropriate place in the
fringe pattern (cos¢ =0); hence, input power fluc-
tuations can be made irrelevant. For a single
photodetector [ Eq. (2.37)], the contribution from
input power fluctuations can be made negligible by
operating near a null fringe [ sin(¢/2)~0], and as
long as |a| > |cot(¢/2)e” cosh7sinh 7|, the second
term in Eq. (2.37) is also negligible compared to
the interference terms. Thus, in either case, one
canarrange that the dominant contribution to the pho-
ton-counting error comes from the interference of
modes 1* and 2* ; since the interference terms in
Eqgs.(2.36) and (2.37) are independent of position in
the fringe pattern(i.e., independent of ¢ ), they make
the truly unavoidable contribution tothe photon-
counting error.

The third term in Eqs. (2.36) and (2.37) displays
a result of a now-familiar sort: only one quadra-
ture phase of mode 2* superposes on the coherent
excitation of mode 1* to contribute to the photon-
counting error. This quadrature phase is not the
one that makes the same sort of contribution to the
radiation-pressure error [ cf. third term in Egs.
(2.36) and (2.37) and first term in Eq. (2.20)].
Consequently, squeezing mode 2* can reduce the
photon-counting error while increasing the radia-
tion-pressure error (r>0), or vice versa (< 0).

4. Optimum sensitivity and optimum power

The objective now is to investigate what happens
to the interferometer’s optimum sensitivity and
optimum power as one squeezes mode 2*. For the
case of differenced photodetectors operating at
cos¢ =0, the photon-counting error (2.36) and the
radiation-pressure error (2.20) have the forms

(Az) e = (c/2bw)| @] ~te™T , (2.38)

(Az) p = BRwT/mMC)| ale” . (2.39)

Here I assume that a? is large enough so that the

last term in both Eq. (2.20) and Eq. (2.36) can be

neglected—i.e., I assume that |@| > sinh®», which
is equivalent to P, << (Phw/7)*/? [ see Eq. (2.18)].

The total error is Az =[(az), 2+ (Az)2]1/2 If one
minimizes the total error with respect to a2, one
finds a minimum error

(B2)ope = (BT/m)/ 2= (82)sqr, (2.40)

[see Eq. (1.1)] and an optimum value for a?,

aopt2 = aoze—” ’ 0!025 %(mcz/ﬁw)(l/wf)(l/bz) .
(2.41)

The quantity aomz is the optimum number of pho-
tons in mode 1* [ see Eq. (2.17)], and it translates
into an optimum input power

P, =P e | (2.42)
where P, =7 wa,?/7 is the optimum power for a
standard (v =0) interferometer [Eq. (1.2)]. For
the fiducial parameters, a,>~4x10' and P,~8
X10° W.

Equation (2.42) displays the desired result: the
optimum power can be adjusted by squeezing the
vacuum before it can enter the normally unused
input port. There are, however, limits to the
validity of Eqs. (2.41) and (2.42)—limits imposed
by the validity condition, |a| > sinh?®r, for Egs.
(2.38) and (2.39). What happens, for example, if
the squeeze factor » becomes so large that a,
violates this condition? The answer is contained



23 QUANTUM-MECHANICAL NOISE IN AN INTERFEROMETER 1703

in the exact equation for the photon-counting er-
ror [Eq. (2.36)]. As the squeeze factor is increas-
ed past a value 7, ~31no,, the last term in Eq.
(2.36) begins to dominate the optimum sensitivity.
For r= 7, the optimum sensitivity becomes rap-
idly worse than the standard quantum limit. As

a result, the maximum useful value of 7 for this
case of differenced photodetectors is 7, which
corresponds to a minimum optimum power (R,,,t )mi,l
~ (P21 W/T13 (@ opt? ) min ~ @o*/°] and a power into
the other port P,~ [ P (hw/7)?]*/3[Eq. (2.18)].

For the case of a single photodetector [Eq. (2.37)]
operated near a null fringe [ sin(¢/2) ~0], one ob-
tains the same results (2.38)-(2.42), but with more
stringent validity conditions, || > sinh? and | ¢|
> ¢? sinh?, because of the second term in Eq.
(2.37). These more stringent validity conditions
mean that the optimum power cannot be reduced as
much as in the case of differenced photodetectors
(see, however, the discussion at the end of Sec.

11).
One interesting question not investigated in the
above analysis is whether there is some reason
to squeeze the light in mode 1*. Doing so can,
for example, reduce the size of the first term in
Eqs. (2.36) and (2.37), but there is little point in
doing this, because this term can be made negli-
gible by operating at an appropriate place in the
fringe pattern. There is, however, another rea-
son for squeezing the input laser light. Recall
that, for the case of differenced photodetectors,
the term that limits the reduction of the optimum
power is the last term in the photon-counting er-
ror (2.36)—a term that arises from the interfer-
ence of fluctuations in modes 1* and 2*. For v
> 1 the noise in mode 2* is concentrated in one
quadrature phase, so one can reduce the size of
this term by squeezing mode 1* with appropriate
phase. In doing so, however, one inevitably in-
creases the term of the same type in the radia-
tion-pressure error [ second term in Eq. (2.20)].
In particular, if one puts the field in the state
| ¥') of Eq. (2.22) with 7,= —7, =7 (squeezed light
into both input ports), one finds that the last term
in Eq. (2.36) disappears, but the last term in Eq.
(2.20) becomes sinh?27 rather than sinh®». The
result is a mimimum optimum power
Dmin ~ (Poliw/T) /2~ P,

@, (2.43)

pt
[ 7max ~ 3 Ina,, (@gp) min ~ @0l . Equations (2.18) and
(2.42) imply that, for »>1, P, P,~ P fiw/T, so
Eq. (2.43) is the best one can do in reducing the
total power P, + P, required to run an interfero-
meter at the standard quantum limit.

Squeezing the input laser light finds another ap-
plication in an interferometer that measures Z

=3(z,+2,) rather than z. The intensity in an in-
terferometer’s output ports is determined by z,
but the phase of the output is determined by Z.

A standard interferometer, in which one monitors
the output intensity, is sensitive only to changes
in z, but an interferometer in which one monitored
the output light using phase-sensitive detection
would be sensitive to changes in Z. For the case
of a coherent state in mode 1* and vacuum in
mode 2%, a Z interferometer would have an op-
timum sensitivity (AZ) ,,, = (%7/m)*/? and an op-
timum power P,. By squeezing the light in mode
1*, one could adjust the optimum power just as

in Eq. (2.42).

III. PRACTICAL CONSIDERATIONS RELATED
TO SQUEEZED-STATE TECHNIQUE

In this section I turn from the abstract analysis
of Sec. II to somewhat more practical matters re-
lated to implementing the squeezed-state tech-
nique. In particular, I focus on the situation rel-
evant for real interferometers, which are limited
by photon-counting statistics. The strain sensi-
tivity of such an interferometer is given by

B2)pe ,_c €7 _ ¢ (Zig)l/z_
1 2bwl |a| 2bwl\PT

1 /% 1/2 _
Tt (I’%) e’ @1
s

[Eqs. (2.38) and (2.18)]. For a given measure-
ment time 7, one can improve the strain sensi-
tivity by increasing b, w, I, P, or 7. Thus, the
squeezed-state technique provides an additional
option for improving the strain sensitivity. The
availability of this option might be important, be-
cause changes in the interferometer’s other par-
ameters might be precluded by practical limita-
tions—e.g., unavailability of cw lasers of higher
power or higher frequency, unavailability of op-
tical components to handle higher powers or higher
frequencies, or limitations on the size of high-
quality mirrors.

There is one situation in which the squeezed-
state technique might be especially important.
The improvement in strain sensitivity afforded by
increasing the number of bounces b or the base-
line ! is limited by the condition that the storage
time 7, = 2b1/c be less than the measurement
time 7. For 7,> 7 the sensitivity does not improve
beyond the value attained at 7, ~ 7; this limits the
strain sensitivity of a standard (»=0) interfero-
meter to (Az),. /1 = (7 /Pw®)*/2. The greatest po-
tential usefulness of the squeezed-state technique
probably lies in its ability to improve the sensi-
tivity of an interferometer for which 7, ~7, with-
out increasing the input power P.
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In considering the design of a squeezed-state
interferometer, the first question to be addressed
is how to generate the required squeezed states.
One way of generating squeezed states is to usea
degenerate parametric amplifier. An optical
parametric amplifiers* is an optical component in
which one pumps a nonlinear médium, which has
a nonvanishing second-order nonlinear suscept-
ibility, with an electromagnetic wave whose angu-
lar frequency is denoted w,. The nonlinearity of
the medium couples this pump wave to two other
wave modes, called the signal and the idler,
whose frequencies w,; and w; satisfy w;+w;=w,.
If the wave vectors of the three waves in the med-
ium satisfy, or nearly satisfy, k,+k, =k, (phase-
matching condition), then the signal and idler are
amplified (neglecting losses) as they propagate
through the medium. A degenerate parametric
amplifier is a parametric amplifier for which the
signal and idler coincide (w,=w; =3w,, k, =k;
=1%,).

A degenerate parametric amplifier is a phase-
sensitive device: it amplifies one quadrature
phase of the signal mode, and it attenuates the
other. Takahasi®? was the first to point out that
this behavior applies to the quantum-mechanical
fluctuations in the mode. He considered a simple
model of a degenerate parametric amplifier, a
harmonic oscillator (the signal mode) whose spring
constant is modulated classically (the pump modu-
lation) at twice the oscillator’s frequency, and he
showed that an initial coherent state for the os-
cillator is transformed into a state whose uncer-
tainties in the two quadrature phases are unequal.
Since Takahasi’s work, there have been several
quantum-mechanical analyses!* 27> 33=35 of the light
generated by an optical degenerate parametric
amplifier. These analysesvary in complexity,
some including the effects of losses in the non-
linear medium?3' 35 and the effects of jitter in the
amplitude and phase of the pump.3*

The basic conclusion to be drawn from these
analyses is that an ideal degenerate parametric
amplifier generates squeezed states.'** 2’ Specif-
ically, the state of the signal mode at the output
of a degenerate parametric amplifier is obtained
by applying the squeeze operator (2.7) to the state
at the input. The phase of the squeezing [ 6 in Eq.
(2.7)] is determined by the phase of the pump, and
the squeeze factor 7 can be read off the results of
a classical analysis®!:

r= (4nw‘L)d|E,l
cng

drw, L 8rp,\1/? .
= [— = P
( - )d ( ) (cgs units). (3.2)

Here I assume there is perfect phase matching at

degeneracy, and I use the notation of Ref. 31: d
is the effective nonlinear susceptibility, E, is the
amplitude of the pump wave’s electric field, L is
the length over which the interaction takes place -
in the nonlinear medium, and n, and n, are the
values of the index of refraction at the signal and
pump frequencies. In the second part of Eq. (3.2)
I have converted the pump electric field into a
pump power P, distributed over an area A.

The best nonlinear optical media have d/n®/2
~1078 in cgs units.® Thus, for a pump power
P,~ 100 mW=10° ergsec™!, a beam area A~3
X1072 ¢cm?, an interaction length I ~10 ¢m, and
a signal frequency w,~4x10'® rad sec™!, the
squeeze factor is »~0.03. This does not look very
encouraging, and one must remember that the es-
timate is overly optimistic because losses in the
medium have been neglected. There is, however,
a way to increase the achievable squeeze factor.
If the single-pass loss through the medium does
not exceed the single-pass gain, one can increase
the squeeze factor (gain) by enclosing the medium
in an optical cavity that resonates at the signal
frequency. This increases the effective interac-
tion length, because the signal wave passes
through the nonlinear medium many times before
it leaves the cavity. The resulting device is
called an optical parametric oscillator.’* For
pump powers of 10-100 mW, parametric oscilla-
tors at optical frequencies have achieved a signal-
mode output of a few milliwatts in a bandwidth
of about an angstrom?®; this corresponds to a
squeeze factor e” ~200 (» ~5). The bandwidth here
is huge compared to that necessary in a gravita-
tional -wave interferometer; nonetheless, these
results hint at the possibility of achieving reason-
able squeeze factors.

Even given a reasonable squeeze factor, there
are still stringent demands on the operation of
the degenerate parametric amplifier in an inter-
ferometer. The critical demands are that the
amplifier be pumped at exactly twice the frequen-
cy of the laser (w, = 2w) and that the pumping be
done with just the right phase so that the vacuum
is squeezed with a phase that is properly matched
to the phase of the laser [see Eq. (2.16)]. To
satisfy these demands in practice, one would
probably extract a small fraction of the laser light
at a beam splitter, run this light through a fre-
quency doubler, and then use the doubled light
(with just the right phase) to pump a degenerate
parametric amplifier located in the normally un-
used input port. This scheme is shown in Fig. 4.
If the nonlinear medium is pumped at exactly
twice the laser frequency, it is zof necessary
that the amplifier operate precisely at degener-
acy. If it operates a small distance from degen-
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eracy, then it produces two output waves, a
signal and an idler, whose frequencies satisfy

wg +w; =w, =2w; the fluctuations in these two
waves are correlated in just such a way that their
superposition mimics the behavior of a squeezed
state at frequency w.

There are a host of practical problems to be
faced in implementing the squeezed-state tech-
nique using a degenerate parametric amplifier.
Nonetheless, the brief discussion given here is
perhaps sufficiently encouraging to motivate fur-
ther investigation of the idea.

Degenerate parametric amplification is not the
only optical process that generates squeezed
states. Any phase-sensitive nonlinear process is
a good candidate. For example, Yuen and Sha-
piro®® have pointéd out that a degenerate four-
wave mixer generates output waves that can pro-
duce squeezed states when they are combined at
a beam splitter. Four-wave mixers are now being
vigorously developed because of their ability to
produce phase-conjugated (time-reversed) light.?”
Yuen!® !° hag also suggested that an ideal two-
photon laser would produce squeezed states.

The losses in real mirrors are likely to impose
the most severe practical limitation on the useful -
ness of the squeezed-state technique. Losses
destroy the crucial feature of the technique—the

reduced noise in one of the two quadrature phases
of mode 2*. One can estimate the effect of losses
from the following argument. Consider a nearly
monochromatic beam of light bouncing back and
forth between mirrors of reflectivity ®&. If one
identifies ® as the probability that a given photon
is reflected, then a simple “random-walk” argu-

‘ment yields the mean and variance of the number
of photons in the beam after g reflections:

N, =N,&® , (3.32)

(AN)2=(AN)2®* + N &R (1 -R?) . (3.3b)

Here the subscript 0 designates the initial values.
Since reflection is a linear process, Egs. (3:3)
suggest that, after g reflections, the X, and X,
of the light beam have the following variances:

(X)), *=(0X,)2R+5(1-R),
(3.4)
(BX,)2=(AX,) R +1 (1 -R?) . ‘

Equations (3.3) and (3.4) have the same form as
the equations for a damped harmonic oscillator in
contact with a heat reservoir at zero temperature.
The first term in Eqs. (3.3b) and (3.4) represents
the damping of the initial fluctuations, and the
second term represents the fluctuations added
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FIG. 4. Squeezed-state interferometer (abbreviations: BS=beam splitter; FD=frequency doubler; DPA=degenerate
parametric amplifier; PD=photodetector). The crucial feature of the squeezed-state technique is the DPA located in
the normally unused input port. This DPA takes the vacuum fluctuations incident on it (dashed arrow) and produces a
squeezed state. To pump the DPA, one uses light that is extracted from the laser beam at a beam splitter and then
doubled in frequency. There is another DPA in one of the output ports. This output DPA squeezes the light in that port,
which is near a null in the fringe pattern, and thereby matches the noise in the light to the shot noise in an inefficient
PD. The output DPA is pumped by frequency-doubled light from the other output port. The laser operates at frequency
w. Light beams at frequency w are drawn with thin lines, and the components for handling them are drawn with heavy
lines. The pump beams at frequency 2w are drawn with dotted lines, and the mirrors for routing them are drawn with
heavy, broken lines. These mirrors are assumed to transmit at frequency w.
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due to losses. The added fluctuations appear with
random phase. Thus, an initial coherent state
[AX,),=(aX,),=4%, (AN)?=N,] remains coherent
as its mean amplitude damps away. An initial
squeezed state, however, loses its squeezed na-
ture; the losses randomize the phase of its fluc-
tuations, and its initial error ellipse becomes
round.

In a squeezed-state interferometer, the added
random-phase noise must be small enough so
that it does not greatly increase the fluctuations
in the low-noise quadrature phase of mode 2*.
This requirement suggests that the number of
bounces b must satisfy

bsbye T =e” /(1 -R) (3.5)

[Egs. (2.11), (2.16), and (3.4)], where I use the
fact that the total number of reflections in each
arm of the interferometer is ¢g=2b -1, and where
b,= (1 -®)™* is the optimum number of bounces in
a standard (v =0) interferometer.®

Equation (3.5) is a severe restriction. It im-
plies that the squeezed-state technique can be used
only if the interferometer is not limited by mirror
losses (i.e., only if 5<b,). At the beginning of
this section it was remarked that the most likely
application of the squeezed-state technique is to
interferometers whose number of bounces and
baseline are large enough so that 7, ~7. The
mirror-loss restriction (3.5) means that the tech-
nique can be used in this case only if 2b,l/c>7—
i.e., only if b, bounces correspond to a storage
time longer than the desired measurement time
(for I~1 km and ® ~0.999, 2b,l/c ~7x107° sec).
Thus, the potential usefulness of the squeezed-
state technique is restricted to the case of a long
baseline, high-reflectivity mirrors, and a short
measurement time.

It is perhaps useful to emphasize the situation
in which the squeezed-state technique is likely
to become useful. Consider an interferometer
operating with b, bounces and a measurement
time 7. The interferometer’s strain sensitivity
can be improved by increasing its baseline, but
this improvement continues only until I = ¢7/2b,,
at which point the strain sensitivity is approxi-
mately (7 /Pw7®)!/2. A further increase in length
does not improve the strain sensitivity—unless
one applies the squeezed-state technique as one
decreases the number of bounces. Use of the
squeezed-state technique allows the strain sen-
sitivity to improve as (Az) p/I =~ (%/PwT®)/2(cT/
2b,1)*/2 for 12 ¢7/2b, [Egs. (3.1) and (3.5)].
~ The analysis in Sec. II assumed ideal photo-
detectors—a case for which the photocount sta-
tistics at the output of the photodetectors coin-
cide with the photon statistics of the light incident

on the photodetectors. If a photodetector has a
quantum efficiency £ less than one, then the
photocount statistics are a combination of the
photon statistics and the shot noise in the photo-
detector. How does the shot noise change the
previously obtained photon-counting error? For
the case of a single photodetector in one of the
output ports [Eq. (2.34)], the mean and variance
of the number of photons counted by the photode-
tector are given by3®

NPd = g(J\rl)ouz ’ (363.)

Adiz = gz(ANl)omz + E(l - g)(N],)out ’ (3-6b)
where (N,)os and (AN,),,, are the mean and vari-
ance due to the photon statistics alone [Egs.
(2.34)]. The second term in (3.6b) is the shot-
noise contribution. Using the same procedure as
in Sec. III B3, one can convert AN,4 into a photon-
counting error, '

(A2)e = 57 [tanz(L/2)+£;

2bw a? a

1-¢ 1/2
Here I retain only the terms that dominate when
|a| is sufficiently large. Near a null the first
term in Eq. (3.7) is negligible, but the shot-noise
contribution completely swamps the remaining
photon-statistics term unless 1 - £ £e™2". If the
squeezed-state technique is to significantly im-
prove the sensitivity, this requirement demands
extraordinarily efficient photodetectors.

There is an alternative approach that avoids the
requirement for high-efficiency photodetectors.
The light emerging from the interferometer has an
excellent signal-to-noise ratio near a null by vir-
tue of its low noise in the quadrature phase that
carries the signal. The photodetector ruins this
good signal-to-noise ratio, because its shot noise
is much larger than the noise in the light. To
overcome this difficulty, one would like to amplify
both the light signal and the noise in phase with
the signal while keeping their ratio constant,
thereby matching the noise in the light to the shot
noise. This is precisely what would happen if
one squeezed the output light before it reached the
photodetector. The squeezing could be done by a
degenerate parametric amplifier located in the
appropriate output port (see Fig. 4).

Formally, the squeezing is described by intro-
ducing new creation and annihilation operators
Z‘ﬂ, ¢,. These operators characterize the light
emerging from the degenerate parametric ampli-
fier, and they are related to the operators for
interferometer mode 1~ by
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¢,= 8] (De,S, (D)

1

1;62“@-11) sinh7, t=,rezi(<l>-ll).

(3.8)

Here S is the squeeze operator for mode 1-,

and Eq. (2.8) is used to transform c¢,. Note that
the squeeze factor here is the same as the one
used previously, and that the phase of the squeez-
ing is carefully matched to the phase of the output
light in mode 1~ [see Eqs. (2.28b) and (2.30)].

The mean and variance of the number of pho-
tons emerging from the degenerate parametric
amplifier is obtained by evaluating the expectation
value and variance of ¢ &, in the state |¥) of
Eq. (2.16). Using Eqgs. (3.8), (2.30), (2.4), and
(2.8), one finds that

=c¢,cosh7r —¢

(ﬁl)out = ( 61]‘. 61) = Sin2(¢/2)(aze27 + Sil’lhzr) N
(3.9a)

(AN,) oi% = sin®($/2)(a%e™ + 2 cosh? 7 sinh®r)

+sin?*(¢/2)cos?(¢p/2)(a’e® + sinh?r) .
(3.9p)

These equations now replace Eqs. (2.34); they
characterize the light incident on the photode-
tector. The disadvantage of this approach is re-
vealed by Eq. (3.92): unless one operates very
close to a null fringe [|sin(¢/2)| < e77], the
power out of the degenerate parametric amplifier be-
comes comparable to or larger than the input power
P —a situation clearly inconsistent with the oper-
ation of the parametric amplifier and with the
desire to reduce the total power requirements.

It is worth noting as a matter of principle that
Eq. (3.9b), unlike Eq. (2.34b), imposes no re-
striction on the reduction of the optimum power.
Thus, by using a degenerate parametric amplif-
ier at the output, one can in principle achieve
with a single photodetector the minimum total
power of Eq. (2.43).

One can now obtain the mean and variance of
the number of photons counted by the photode-
tector by applying Eqs. (3.6) to Eqs. (3.9). These
results are then converted in the usual way into
a photon-counting error in z:

€ Ytan’(¢/2) e = ] "
(Az)Pc_wa{ o a? [“ £ cos*( ¢/2)}

= (c/2bw) £"Y2 |a| “le™" for sin(¢p/2)~0.

(3.10)
Here I again retain only the terms that dominate

when || is large. Equation (3.10) explicitly
demonstrates that insertion of a degenerate par-
ametric amplifier into the output port allows one
to use an inefficient photodetector without a signi-
ficant increase in the photon-counting error [ cf.
Egs. (3.10) and (2.38)].

To make this approach work, one must find a
way to pump the degenerate parametric amplif-
ier. The pump must have just the right phase
relative to the phase of the output light in inter-
ferometer mode 17, to ensure that the squeezing
of the output light occurs with the right phase.
There is only one available beam of light that
carries the necessary phase information, and
that is the light in the other output port (inter-
ferometer mode 27). Since one wants to work
very close to a null, there is plenty of power
available in the other output port. One would
take the light in the other output port, double its
frequency, and then use the doubled light to pump
the degenerate parametric amplifier in the output
port. This approach is sketched in Fig. 4.

IV. CONCLUSION

The squeezed-state technique outlined in this
paper will not be easy to implement. A refuge
from criticism that the technique is difficult can
be found by retreating behind the position that the
entire task of detecting gravitational radiation is
exceedingly difficult. Difficult or not, the
squeezed-state technique might turn out at some
stage to be the only way to improve the sensitiv-
ity of interferometers designed to detect gravita-
tional waves. As interferometers are made
longer, their strain sensitivity will eventually
be limited by the photon-counting error for the
case of a storage time approximately equal to
the desired measurement time. Further im-
provements in sensitivity would then await an
increase in laser power or implementation of the
squeezed-state technique. Experimenters might
then be forced to learn how to very gently squeeze
the vacuum before it can contaminate the light
in their interferometers.

ACKNOWLEDGMENTS

I thank R.W.P. Drever for a series of conver-
sations that clarified the details of the squeezed-
state technique, and I thank K. S. Thorne for
making available his notes on the properties of
the squeeze operator. This work was supported
in part by the National Aeronautics and Space
Administration [ NGR 05-002-256 and a grant
from PACE] and by the National Science Founda-
tion [ AST79-22012].




1708 CARLTON M. CAVES 23

lFor reviews of efforts to detect gravitational waves and

of theoretical estimates of gravitational-wave strengths,

‘see K. S. Thorne, Rev. Mod. Phys. 52, 285 (1980) and
references cited therein; see also the chapters by

R. Weiss and by R. Epstein and J. P. A. Clark, in
Sources of Gravitational Radiation, edited by L. Smarr
(Cambridge University Press, Cambridge, 1979).

’c. M. Caves, K. S. Thorne, R. W. P. Drever, V. D.
Sandberg, and M. Zimmermann, Rev. Mod. Phys. 52,
341 (1980).

SR. L. Forward, Phys. Rev. D 17, 379 (1978).

‘H. Billing, K. Maischberger, A. Rudiger, R. Schilling,
L. Schnupp, and W. Winkler, J. Phys. E 12, 1043
(1979).

R. W. P. Drever, J. Hough, W. A. Edelstein, J. R.
Pugh, and W. Martin, in Experimental Gravitation,
proceedings of a meeting held at Pavia, Italy, 1976,
edited by B. Bertotti (Accademia Nazionale dei Lincei,
Rome, 1977), p. 365.

" SR. Weiss, in Sources of Gravitational Radiation, edited
by L. Smarr (Cambridge University Press, Cambridge,
1979), p. 7.

V. B. Braginsky and Yu. I. Vorontsov, Usp. Fiz. Nauk
114, 41 (1974) [Sov. Phys.—Usp. 17, 644 (1975)].

8R. W Weiss, Quarterly Progress Report No. 105, Re-
search Laboratory Electronics, MIT, 1972 (unpub-
lished).

w. Winkler, in Experimental Gravitation, proceedings
of a meeting held at Pavia, Italy, 1976, edited by
B. Bertotti (Accademia Nazionale dei Lincei, Rome,
1977), p. 351.

Loy, A. Edelstein, J. Hough, J. R. Pugh, and W. Martin,
J. Phys. E 11, 710 (1978).

e, M. Caves, Phys. Rev. Lett. 45, 75 (1980).

12R. J. Glauber, Phys. Rev. 131, 2766 (1963).

3p, stoler, Phys. Rev. D 1, 3217 (1970).

4E. v, C. Lu, Lett. Nuovo | Cimento 3, 585 (1972).

155, N. Hollenhorst, Phys. Rev. D 19, 1669 (1979).

16p, Stoler, Phys. Rev. D 4, 1925 (1971).

g v. C. Lu, Lett. Nuovo Cimento 2, 1241 (1971).

4. P. Yuen, Phys. Lett. 514, 1 (1975).

YH. P. Yuen, Phys. Rev. A 13, 2226 (1976).

20y, P. Yuen and .J. H. Shaplro IEEE Trans. Inf. Theory

1T-24, 657 (1978).

21J H. Shapiro, H. P. Yuen, and J. A. Machado Mata,
IEEE Trans. Inf. Theory IT-25, 179 (1979).

24, P. Yuen and J. H. Shap1ro, IEEE Trans. Inf. Theory
IT-26, 78 (1980).

#W. G. Unruh has sketched a procedure for doing a com-
plete analysis of a standard interferometer (no
squeezed states); see the chapter by Unruh in Gravita-
tional Radiation, Collapsed Objects, and Exact Solu-
tions, proceedings of the Einstein Centenary Summer
School, Perth, Australia, 1979, edited by C. Edwards
(Springer, Berlin, 1980), p. 385.

AR, Hanbury Brown and R. Q. Twiss, Nature 177, 27
(1956).

R, Hanbury Brown and R. Q. Twiss, Proc. R. Soc.
London A243, 291 (1958).

%por a review of the theory of bunched and antibunched
light and of the efforts to detect antibunching, see

R. Loudon, Rep. Prog. Phys. 43, 913 (1980), or D. F.
Walls, Nature 280, 451 (1979).

21p, Stoler, Phys. Rev. Lett. 33, 1397 (1974).

28C, W. Helstrom, Opt. Commun. 28, 363 (1979).

2y, J. Kimble, M. Dagenais, and L. Mandel, Phys. Rev.
Lett. 39, 691 (1977).

3. Dagenais and L. Mandel, Phys. Rev. A 18, 2217
(1978).

31A review of optical parametric amplifiers and para-
metric oscillators is given by R. G. Smith, in Laser
Handbook, edited by F. T. Arecchi and E. O. Schulz-
Dubois (North-Holland, Amsterdam, 1972), Vol. I, p.
837.

324, Takahasi, Adv. Commun. Syst. 1, 227 (1965), es-
pecially Sec. XI.

SM. T. Raiford, Phys. Rev. A 2, 1541 (1970).

%M. T. Raiford, Phys. Rev. A 9, 2060 (1974).

351,, MiSta, V. Pefinov4, J. Pefina, and Z. Braunerovi,
Acta Phys. Pol. A 51, 739 (1977).

36H. P. Yuen and J. H. Shapiro, Opt. Lett. 4, 334 (1979).

313, AuYeung and A. Yariv, Laser Spectroscopy IV,
edited by H. Walther and K. W. Rothe (Springer, Ber-
lin, 1979), p. 492.

38R, Loudon, The Quantum Theory of Light (Clarendon,
Oxford, 1973), especially Chap. 9.



