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Unified electroweak gauge theories based on the gauge group SU(2)~ )& SU(2)„y,U(1)~ L, in which the breakdown
of parity invariance is spontaneous, lead most naturally to a massive neutrino, Assuming the neutrino to be a
Majorana particle, we show that smallness of its mass can be understood as a result of the observed maximality of
parity violation in low-energy weak interactions. This result is shown to be independent of the number of
generations and unaffected by renormalization effects. Phenomenological consequences of this model at low energies
are studied. Observation of neutrinoless double-P decay will provide a crucial test of this class of models.
Implications for rare decays such as p ~y, p —+eee, etc. are also noted. It is pointed out that in the realm of neutral-
current phenomena, departure from the predictions of the standard model for polarized-electron —hadron scattering,
forward-backward asymmetry in e+e ~p+p, and neutrino interactions has a universal character and may be
therefore used as a test of the model.

I. INTRODUCTION

The nature of weak interactions appears to be
intimately connected with the properties of the
neutrino. The celebrated P-Q theory' of charged-
current weak interactions, which enjoys resound-
ing phenomenological success at low energies, was
motivated on the basis of y, invariance of the Weyl
equation of a massless neutrino and its generaliza-
tion to charged fermions. The standard SU(2)~
x U(l) gauge model of weak and electromagnetic
interactions' provides a sound mathematical basis
for the (V-A) theory of charged-current weak
interactions and predicts the existence of neutral-
current weak interactions which have also been
conf irmed' within present experimental accura-
cies. In the standard electroweak model, as in
the current-current p-A. theories, a massless
neutrino and a maximally parity-violating weak
Lagrangian seem to go hand in hand.

In recent years, an alternative approach4 to
electroweak interactions has been proposed ac-
cording to which the basic weak Lagrangian is
invariant under space reflections, as are electro-
magnetic and strong-interactions. It therefore
involves both p-A. as well as &+A. charged cur-
rents. The observed predominance of left-handed
weak interactions4 at low energies is understood
as a consequence of the fact that vacuum is not
symmetric under space reflection. More pre-
cisely, the weak Lagrangian prior to symmetry
breakdown is given by

g I, =~2 (J„W"+ Z„„Wg),

where Z, ~
= Z~(y, - -y,) and W~ and W~ are the left-

and right-handed gauge bosons, respectively. The
noninvariance of the vacuum under space reflec-
tion results in yyzw» ypzw and, as a result, allSg Wg

low-energy weak processes appear the same as in
the SU(2)~ x U(1) theory, with small corrections
[proportional to (@pe~ /pyz~ )'J, undetectable in ex-
periments performed to date.

In the left-right-symmetric models, ' since both
left- and right-handed helicities of the neutrino
are included, the neutrino naturally has a mass. '
The important question can then be raised as to
why the neutrino mass is so small. ' There appears
to be a growing conviction among many physicists
that a satisfactory understanding of small neutrino
mass requires the neutrino to be a Majorana par-
ticle. ' " This point of view was, in the context
of left-right-symmetric theories, advocated by
us in a previous paper, ' where we have shown
that for neutrino being a Majorana particle, one
can obtain the following qualitative relation:

The precise form of (1.1) depends, as we shall
see, on the unknown, free parameters of the Lag-
rangian. We suggest a class of models where Eq.
(1.1) takes naturally an interesting form

m, '
ygp = const x

(1.2)

relating the mass of the neutrino to the mass of
the electron. We believe, however, that the im-
portance of Eq. (1.1) [and (1.2)J lies not so much in
the precise value of pyz„but rather in the fact
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that it provides a deeper physical insight into the
connection between the small neutrino mass and
the maximality of parity violation. In particular,
note that in the limit of mz —~, m, - 0 and weak
interactions 6econze pure V-A type. If the recent
experimental results from Irvine" and the Soviet
Union" indicating a nonvanishing neutrino mass
are confirmed, they would provide a support for
the line of reasoning presented above.

In this paper, we analyze in detail the question
of small neutrino masses and mixings in the left-
right-symmetric models in which Eq. (1.1) holds
true. We study the naturalness of Eq. (1.1) and
extend it to include the neutrinos at higher gener-
ations, i.e. , v„and v„. We also study the impli-
cations of our model for various low-energy weak
interactions. In particular, we discuss the pre-
dictions for rare decays such as p, —ey and )L(,—eee
and for neutrinoless double-p decay, "whose ob-
servation, we argue, would be a crucial test of
the model.

The rest of this paper is then organized as fol-
lows: Section II describes the basic ideas behind
this work, i.e. , emergence of neutrino masses
and their natural smallness in the particular SU(2)~
x SU(2)zx U(1) gauge theory. In Sec. III we discuss
the phenomenology of the model, paying special
attention to the realm .of neutral-current pheno-
mena. Section IV deals with the generalization of
the model to the case of three generations of fer-
mions. Section V presents the estimates for rare
processes that violate lepton number, in particu-
lar neutrinoless double-P decay, p, —ey, and

p, —eee decays. It turns out that neutrinoless dou-
ble-P decay is the most interesting prediction of
the model, since its observability requires two
main features of our model to hold true: MBjorana
character of the neutrino and reasonably small
value for gg~ . Finally, we summarize our work

R
in Sec. VI. Some of the technical details of the
paper are left for two appendices: in Appendix A

we show how the particular choice of the Higgs
sector forces neutrinos to be two-component Maj-
orana particles. In Appendix B we discuss a major
aspect of symmetry breaking in our model; we
show how parity gets broken spontaneously, and
more than that, how the vacuum expectation values
of left-handed Higgs scalars which give masses
to neutrinos are necessarily small (-m~ '). That
in turn leads to the main conclusion of this paper:
in the limit m~ —~, neutrino nzasses vanish natur-
ally.

II. LEFT-RIGHT SYMMETRY AND SMALL NEUTRINO
MASS

In this section, we will derive Eq. (1.1) relating
the small neutrino mass with the strength of the

V+A charged currents in left-right-symmetric
models. For the purpose of simplicity, we will
work in an SU(2)~ x SU(2)~ x U(1)~ ~ model. '"
Here, we have used the recent observation" that
in contrast with the U(1) generator of the standard
model, that of the left-right-symmetric models
can be interpreted as the B-L quantum number.
As we show below, this observation provides phys-
ical insight"'" into Eq. (1.1). To see this, note
that in left-right-symmetric models, the formula
for the electric charge reads as follows:

B-L
'Q Isz. + Isa+

Since AQ= 0 and if we are above 100—200 GeV,
b.i~ = 0, Eq. (2.1) leads to

EI~~ = —24 (B L)-

(2.1)

(2.2)

This implies that breakdown of parity and breaking
of local B-L symmetry are related. Since for
the neutrino B= 0, Eq. (2.2) makes it clear why the
neutrino ought to be a Majorana particle (since
then aL w0) and in particular why its mass must
have something to do with gag~ . An explicit reali-

Wp

zation of this intuitive picture is provided by spec-
ifying the Higgs-particle and fermion content of
the left-right-symmetric model. We illustrate
our procedure with one generation of fermions and
extend it subsequently to include higher genera-
tions.

Fermions are assigned to left-right-symmetric
representations' of the group as follows:

Q
f ll (& 0 &) Q

(2.3)

To implement the physical picture outlined in
Eq. (2.2) we will choose a particular set of Higgs
multiplets, ' some of which carry B-L quantum
numbers. The minimal set with this property is
(see Appendix B for a detailed discussion of the
Higgs sector)

(2.4)

Note, incidentally, that the above Higgs multiplets
have the same representation content as the follow-
ing bilinears in fermionic fields: P

—= p~g~ or @~Q~
and a~,. :-g Cr, T,)~ and &„,. ==psCr, v, g~ There-.
fore, the conclusions of this paper are likely to
remain valid even if symmetry breaking is dynam-
ical and there are no elementary Higgs scalars.

The various stages of symmetry breaking are
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SU(2)~xSU(2)~x UB ~(1) zz, )~o (~ z 0SU(2)~x U(1).

)=(' 'l (,. )=(' 'l(,
zzzz 0z (vz Oj

(0 zz'i

(2.5)

with g'«g in order to suppress g~-W„mixing"
and AS = 2 Higgs-particle-induced processes"

At this stage parity as well as local p- L symme-
try are broken. The subsequent breakdown of
SU(2)~x U(1) down to U,„(1)is achieved via (zt) g0.
Switching an (p) g 0 induces a nonzeroz7 "value
for (s~), but as we show in Appendix B, (~ )
=0((zjz)'/y~) «(p) (also see Ref. 17).

We now proceed to discuss the fermion spec»
trum, paying special attention to neutrinos. One
can imagine two, physically distinct situations:

(i) There is only one p inthetheory, whose vacuum
expectation value sets the mass scale for both
left-handed gauge mesons and fermions. One then
attributes tiny fermion mass (mz «zzz~ ) to the
arbitrarily chosen small Yukawa couptings. Al-
though being the simplest alternative, we don' t
find this particularly appealing. As we shall see
later, neutrino mass then tends to be somewhat
larger than acceptable for reasonably light ~~ .

(ii) It has been speculated that the small fermion
mass may originate from a different mass scale
than the masses of gauge bosons. This is achieved
by simply postulating the existence of two P's,
with one of them coupling to the fermions and pro-
viding their small masses through its small vac-
uum expectation value. We would then have g„
and P~ with (g~)-zzz~/g providing the gauge-meson
mass and (Pz) -mz/» giving the masses to fermions.
In this case, we can imagine (Pf) =100 MeV, so
that Pg. need not be much smaller thang. Of course,
if such models are right one still would have to
explain why (pz) «(zjz~). In this case, however, we
obtain more reasonable values for the neutrino
mass, on the order of yn, '/m~ .

Below we analyze the implications of these two
cases on the neutrino-mass question.

Case (i) The pa.ttern of symmetry breaking that
follows from the minimization of the potential
takes the form (see Appendix B for details)

sector to Sec. III and go directly to fermions, pay-
ing of course special attention to neutrinos. The
most general Yukawa couplings are given by

&r »zzj-zr, 44R+ izA'i44R+»3@rpQ~'iz4QikQ~

fg8 —QyK +$2 K ~

m„=h, IC +kg~ z',
m„=A, K +(24K.

(2.8)

Por the v~, v„sector, we obtain

Ll'»«, =», [vJ(vzCvz, + vLC zz*;)+ zzzz(vzzCvzz+ zzz C vg)]

+ (»a +»,zz') (v~ z R+ v~ v, ) . (2.9)

The Eq. (2.9) looks like a mixture of Majorana and
Dirac mass terms. The situation becomes much
simpler if we rewrite (2.9) in terms of two-com-
ponent spinors z

—= z~ and N= C(v„) r. U—sing the
properties of charge-conjugation matrix

) C 1

and

Cy„C = -y„
(2.10)

we easily obtain

vz~C v~ = -N CN,

vzvi= N Cv= v CN,

so that Eq. (2.9) can be rewritten as

2"„, =»,(zzz;v Cv —zzzzN CN)

+ (»,zz+», w')vr CN + H. c.

(2.11)

(2.12)

The above expression is a significant simplifica-
tion: now all the mass terms are of the Majorana
type; remember that v and N are effectively two-
component complex spinors —that is most simply
seen in the representation of Dirac matrices where

We now summarize the situation with the following
form of mass matrix:

+i»„(zjz Ct 6 p +p"Cz, h p )+ H. c., (2.7)

where g —= z;p*y, and C is the Dirac charge-conju-
gation matrix. This gives rise to the following
masses for charged fermions:

5g» K,

K
(2.6) 2 „,=(v N )MC +H.c.,

N

where
where y is the ratio of Higgs-particle self-coup-
lings determined from (B13) in Appendix B.

We postpone the discussion of the gauge-meson
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and

a h5v—t, r b —-h, v„, c —5(h, tc+h, v ). (2.13)

2|"
tan 2(= = 2c/b.b-a (2.14)

In Appendix A we show that p, and pf, are Majorana
spinors, i.e. , they satisfy the equations that the
spinors defined through the abbreviation g'=—C(g) r

=|jr do." There we also discuss some of the useful
properties of Majorana fields (the discussion there
is presented in terms of manifest two-component
spinors).

We now study the eigenvalues of (2.13), assuming
as before &'«&, only for the purpose of simplicity.
Now, since Q»a, c, we obtain

m, = a —c'/b,
(2.15)

mN ~ ~e

Using Eqs. (2.6) and (2.13) one obtains for the
light and heavy Majorana neutrino masses,

( 1 ~h'& ~'

h5) vR (2.16)

mN hi; Ug.e

We remindthe rea.der that R-m5, /gandvR m& /g
An important feature of the above expression is
noteworthy stressing: in the limit m~ -~ (i.e. ,
vR-~), obviously mR -~ and m„-0, in which
case the weak interactions become purely left-
handed. That is the main result of our pa.per,
promised in the introduction: the V-A limit of
this theory leads naturally to vanishing neutrino
mass, thus providing (at least qualitatively) a
rational for the smallness of the neutrino mass.
Unfortunately, the quantitative character of Eq.
(2.16) is definitely less clear: h„h„and y are
free para, meters of the Lagrangian. Namely, y
is an unknown ratio of various Higgs-particle self-
couplings tsee Eq. (B.13)], h, is not determined
by the electron mass (m, =h, R in the limit z» w'),

andh, would only be determined by the value of
To be specific, let us for simplicity assumeSe '

the natural value y-—1 and h, ~ Q, . In this case it
is easy to show that the ratio of m, and m„ is

e N~

approximately given by

(2.17)

I'he eigenstates of this matrix are therefore given
by

v, = v cos & + trt sin (,
Q, = —v sin)+& cos $-,

with

Now, even if we choose m~ —-1 GeV, in order to
obtain ~ ~10 eV one requires ~~ ~10~m~ . Thise
is admittedly a rather large value of

gyes~
. How-

ever, this still leads to interestiv~ predictions for
fry ~ oscillations" (i.e. , t„„-=10' sec, which is
well within the accessible range of present exper-
iments) .

In conclusion, in this case, for reasonably light
m~ (m5, ~ 3m5, ~), the natural value for neutrino
mass tends to be quite larger than experimentally
allowed. We should mention, though, that if y is
small (more precisely if y«h, '/h5') and if h, -h„
we would obtainm„-m, /m~, which is definitely

ve

a reasonable value. For example, if m~ ~ 3m~
(a safe lower bound)" we would obtain m, ~ 1 eV.

Next we turn to case (ii), which, as we shall
see, predicts naturally more reasonable values
for the neutrino mass.

Case (ii). This is the case where gauge-boson
and fermion masses originate from different mass
scales. Now,

h
mgz 9e g

h m, '
n%. =

g m@1~

(2.18)

If h/g= 1, substituting again m~ ~ 3m~, leads to
the predictions

m~ ~230 GeV, m, s1 eV.
e Ve (2.19)

Clearly, this ca,se leads naturally to a small m, .
e

Also, the value for m~ is safe concerning the
somewhat stringent bounds coming from the neu-
trinoless double-P decay (see Sec. V).

Before closing this section, we rewrite the new
left- and right-handed doublets in terms of physi-
cal fields (mass eigenstates) v, and N„

(~w
(4W) ~q0 r/~r

where R~- m~ /g and y-mz/h (we assume for sim-
L

plicity z' «z, although now it is not needed since
(rtr~)«(rjr~)). The fact that in this case p~ doesn' t
couple to the fermions; means that the form of
neutrino mass matrix [Eq. (2.13)] is unchanged,
since v~-g'/vR as before (see Appendix B). The
main difference from the previous case is that a
natural value for g is now in the 100 MeV region,
and will therefore lead to much smaller values for

For example, if we assume h, =h, =h, —=h in
e

order to be specific, we obtain
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~v — N l)
~

(left-handed doublet),

(r ight -handed doublet),
~N, + vl

(2.20)

A~= si n8~(W~„+W„'~) +(c os2 8~)'~ B„)

Z~„= cos L9~g ~„-sin g~ tan (9~/ ~„

—tan 8~(cos 28~)"'B„, (3.3)

where we have assumed lVlajorana condition.
N=C(N)r (since N satisfies Majorana equation)
and the tiny mixing between p, and &, is given by
((= tan $«1)

(cos 28 )'~'
cos 6)~

where tan 8~=g'/(g'+g")'~' and

e i h, a1

b 2 h5v~ (2.21) m '= (K'+K"+4m ')g 1
2 eos Og

(3.4)

It is clear from (2.20) that the right-handed cur-
rents are very small until very high energies
P & ppz„. Thus, the analysis at low-energy charged-
current data" ceases to be useful in determining
bounds on ~~ . We would like to add that in this
model, since the right-handed neutrino is extreme-
ly heavy, the astrophysical considerations" do
not restrict the mass of the right-handed charged
gauge boson.

III. NEUTRAL-CURRENT SIGNALS OF THE MODELS
AND CONSTRAINTS ON m g ~ AND mzg

Whether our approach can be experimentally
distinguished from the standard model in the near
future depends on the right-handed gauge-boson
masses. In this section, we therefore analyze
the mass spectrum for W~, Z~, , W~, and Z~, the
eigenstates of the gauge-boson mass matrices
and remark on the constraints that follow from
the available neutral-current data. As we men-
tioned before, charged-current data does not prove
helpful in this regard due to t.he large mass of the
heavy neutral leptons (N), which is the right-hand-
ed counterpart of p.

Below we give the gauge-meson eigenstates and
their masses. First, in the charged sector,

mz„' —-2(g'+ g")v~'.

In the above expression 8~ has been defined in
such a way that it can be identified with the Wein-
berg angle of SU(2)~ x U(1) (hence, the subscript
W) i.e. , e'=g'sin' 8~. Also, note that the cele-
brated relation of the standard model '~~ '=

pyg~
'

2
I Zg

x cos 8~ is preserved to the lowest order [compare
(3.2) and (3.4)]; it gets corrections of order K'/
v„' and ~~'/K', but these corrections will be small.

Now, let us proceed to analyze the structure of
effective neutral-current Hamiltonian in this mod-
el. We will show that there exists a remarkable
feature of universality of strength in various neu-
tral-current processes, which may be used as
a test of the model, once the desired accuracy of
experiments is reached. .

To make computations simpler, we employ the
method of Georgi and Weinberg. " Let us briefly
recall their result. The effective neutral-current
Hamiltonian ean be written in the following form:

(3.5)

where f, f' stands for any fermions; i, j counts all
the neutral generators but one (arbitrary) corres-
ponding to any U(1) subgroup of hn original gauge
gr oup~

W, =S"~cos e +g„sin e,

W, = —W~ sin ~+pecos &,

(3.1)
2

n; =—~ C;P,. ——2C; (3.6)

with

mtl —2g (K + K + 2@a ).
2

(3.2)

We shall, in what follows, assume negligible
g~ -W~ mixing(i. e. , e «1 or K' «K). In that ap-
proximation, g~ and g~ become the eigenstates
of the mass matrix.

As for the neutral-gauge-meson sector, we ob-
tRill (ill the llllllt K« va)

where C,. are defined from the expression for the
charge.

q=+C. T„. (3.7)

In (3.7) IT/ = ITo, T,.'I (T, being left out of compu-
tations) .

We are now equipped to present our results. We
will apply the above method to the three distinct, im-
portant classes of neutral-current phenomena: neu-
trino interactions, parity violation in electron-quark
scattering (applicable to polarized-electron-hadron
scattering and parity violation in atoms), and
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A. Neutrino scattering

In this case one obtains for the relevant piece
of the neutral-current Hamiltonian

K = v 2Gpvyp(1+ys)&

x[(1+ n)qy" (T, —2Q sin'g)p

+ (1+P)Py" y,r,y],
where

(3.8)

forward-backward. asymmetry in e+e - g+ p, pro-
cesses.

complicated and it depends on whether case (i) or
case (ii) introduced in Sec. II are realized. Name-
ly, in ca,se (i) g - m~ /g and so v~/x again mea, —

sures the ratio of m~ /m~„. (Recall that v~-x'/vs}.
In case (ii), however, x-m&/h and therefore is ex-
pected to be of order 1—100 MeV and therefore
completely negligible and so v~ -x'/v~ can be
taken practically to be vanishing.

Let us now, in passing, describe the situation
in terms of heavy right-handed gauge-meson
eigenstates. From (3.4) we have the following
relation between WR and Z~ masses (we ignore
for simplicity the tiny mixing between W~ and W~):

K2 2V
+ s~

K 2VR K
(3.9)

cos g~
~n '= 2 — ~m

~z cos20~ (3.12)

(recall that we work in the approximation w'«x).

B. Parity-violating electron-quark scattering amplitude

Analysis of the neutral-current state including
these effects have been carried out by several
groups. Ecker" gives the following bound (using
1 standard deviation):

Using the same technique, we find that a piece
of the Hamiltonian responsible for parity viola-
tion in atoms and in the SLAC experiment on po-
larized-electron-hadron scattering can be written
as

Xpv = ~ (1+P)[ey„(-1+4 sin 0~)eqy" ysTsq

—ey y, eqy" (T, —2Q sin'9~)qI.

(3.10)

Note that (I+P) denotes the departure from the
predictions of the standard model and is the same
factor as the one accompanying the axial-vector
piece in neutrino scattering [Eq. (3.8)].

C. Forward-backward asymmetry in e+e ~ p p

Inthis case, the relevant piece is theey„y, eI(Ly"ysp,
four -fermion interaction. A simple calculation
gives

m /m -029. (3.13)

Taking ma =90 GeV, (3.13) implies m~ ~ 300 GeV.
Now, for sin'0~= 0.22, from (3.12) we obtain

m~ = 0.7mz '
R

which then gives a lower bound onm~,lVR &

m ~180 GeV
W~

or tpl}y ~ 2.2 5&i ~R L

(3.14)

(3.15)

IV. HIGHER LEPTON GENERATIONS
AND LEPTON MIXING

In Sec. II, we discussed the neutrino mass for
one generation only and showed that its small-
ness is related to the smallness of V+A charged-
current couplings. In this section, we extend this
result for neutrinos of all three generations and
discuss the implications of neutrino mixing. To
begin we denote the leptonic doublets, which are
weak eigenstates,

=
2~2

(1+P}eYp YseI Y.
ys'P '~' (3.11}

(4 1)

Again, the same departure from the standard-
model prediction.

It is therefore clear that once the desired ex-
perimental accuracy is reached, the above uni-
versality of coupling strength may be used as a
test of left-right-symmetric models. Let us now
analyze it slightly more quantitatively. We have
seen that the departures from the standard model
are of the form v~'/x' and v'/vR'. The latter ratio
is directly related to the ratio of left-handed and
right-handed gauge-meson masses, and so its
measure would determine the relevant parameter
of the model. The situation v~/x term is more

Working with the same set of Higgs mesons (i.e. ,
a~, b, R, and Q), we obtain the following most gen-
eral Yukawa coupling allowed by renormalizabil-
ity:

Zr — sh;;(g;z~saiCgg~+ $;R~sb'RCg;R)
=1

+ ij iI. jz + ij ii, .~ +H. C. 4.2
i~j=1

Notice that nothing would change if there are both

g and P~, as in the case (ii) of Sec. II, since only

P& couples to the fermions and so (4.2} follows
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again. Ef we assume w'«g and introduce fields
v, —= v,.i and N,. =C(v,.„)r as before, one obtains the
following mass matrix for the (v, , v„, v, ) sector:

vs vN (4.3)
M„q '.IItt,'g

where m„, M,~, and Slt» are 3&3matrices givenby

where

Ij 2 N

(4. j}

K
Imvv)i j p @ij &

~R

9 uN)ij xfij &

(5itiiw). j= vjih . .
(4.4)

( Vjj) s

IN) N,

N2

(for three generations) .

N3

They are related to the weak eigenstates, des-
cribed by

"e

fvw'}

Np

Again, we see that all three neutrino masses vanish
separately in the limit vs -~ (or m -~). This is
the generalization of the main result of this paper
for higher generations. This, in particular, im-
plies that the predominant left-handed nature of
the leptonic weak currents as well as the corres-
ponding hadronic currents at low energies is due to
the smallness of neutrino masses.

%'e now give the general method for diagonaliz-
ing" Eq. (4.3) and present rough estimates of the
various mixing angles in our case. To do this,
we write the mass eigenstates as

Of course, in our models„. »w„.. Since we ex-
N ~

pect X,.j and U,.j to be, in general, of order 1 (or
at least not small), Eq. (4.6) then implies that
IZ, , I ~0 Jm, )IXijl, IU„I »d lr,.jl~tt, rm„)IU, jl,
where', is a typical parameter in the mass ma-
trix of charged leptons, expected to be of order
g„m„orm, ). As a result, in general, we expect
very small mixing between the heavy and the light
Majorana lepton.

V. LEPTON-NUMBER-VIOLATING PROCESSES

In this section we discuss the rare processes
which do not conserve the lepton number. We
divide such processes in two categories: pro-
cesses which violate the total lepton number and
those which conserve the total lepton number, but
violate electron, muon, or 7 lepton number. The
example of the first class of processes is the
neutrinoless double-p decay (ji+n-p+p+e +e)
in which the lepton number is charged by two units,
and the second class of processes are the often
discussed muon decays: p-ey, p. -3e, etc. for
which b,L(total) =0. We shall discuss both classes
i.n some detail.

A. Neutrinoless double-P decay [{PP) process I

This process can take place in the second order
in the Fermi coupling if neutrinos are Majorana
particles (see Fig. 1). To see this we write the
charged-weak-current Lagrangian in terms of
physical lepton fields (for simplicity we first
discuss the case of one generation and generalize
it subsequently)

(5.1)

as follows

Using Eq. (4.3), we can write

(4.5)

WL(WR )

Ij (N),'(

WL(WR)

P

e

P

mX+MZ = XD„,

mY+MU = PD~,

IX+HZ = ZD. ,

MY+'mU = UD~,

(4.6)

FIG. 1. The dominant diagrams which lead to neutri-
noless double-P decay through exchange of Wi and v;
{i=e,p, v) or W& and N;. The cross on a neutrino intern-
al line denotes a (Majorana) mass insertion, since it is
clearly a term v z(N N ) which can lead to a production
of two electrons in a final state.
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where ment dictates, and m„& 100 GeV, Eq. (5.5) then
yields

~ &(3.5)x10-'. (5.6)

(5.3)

for m„~100 GeV. To compare this with experi-
ment, we use the analysis of Halprin et al."who
obtain

g ~5x10 ' (5.4)

on the basis of the present data in "Ca-~'Ti,
Ge- 6Se and Se seKr For illustration, note

that the bound in (5.4) corresponds to the half-
life of "Se:T~~g~ ~4x10""years. Clearly then,
such effects are extremely small in our model
and in what folIows, we ignore the tiny W~ —WR (e)
and v-N($) mixing.

As we shall see next, the situation is quite dif-
ferent with the first type of processes which go
through v' v and N'N, mass insertions. It turns out
that the model predicts amplitudes which ought
to be observable in the next generation of experi-
ments. Due to the tiny neutrino masses, the ex-
change of heavy right-handed leptons N, (i =e, g, v)
will obviously dominate and we discuss it first.
It can be shown that in this case q will be given
by"

(5.5)
Alga pf

where f, is the nuclear factor, estimated by
Halprin et al."for A =100 (3P) nuclei to be about
0.35QeV. If we take (m~ /m~ )2s —,', as experi-

(5.2}

where (=m, /m„ |see (2.22)] and e is W~ —W„mix-
ing, i.e., lV, = W~ + eW» W, = —~W~ + R'~.

We first note that in the lowest order the (PP)0
process has to go through mass insertions of the
type v'v or N'N or through currents of opposite
chirality. From (5.1} and (5.2) it is immediately
clear that the latter type of contributions are
proportional to e$. Now, from the usual P and g
decay, we know that e is small (e & 10 ') in order
not to conflict with the predominantly left-handed
character of such processes. We will present
our estimates in terms of the usual parametri-
zation of the (PP)' process, that is, in terms of
the admixture of left- and right-handed neutrino-
electron currents (denoted q hereafter), i.e.,
ey&[(1+y,)/2+ q(1-y, )/2]v. We then obtain for
the contribution involving W~ —W~ and v-N mixing

Detection of this effect would require measuring
ceoT,~~~ to an accuracy better than 10""years,

which can hopefully be reached in the next genera-
tion of experiments. In all fairness we should
admit that the above estimate depends sensitively
onrn . However, if m~ is light, as we believe,z' ' wz
then the estimation is fairly good, since N cannot
be much heavier than what we take; otherwise
Yukawa couplings would be too large and the per-
turbation theory would break down. Namely,
using m~ =hvar, m~ = gm~, we obtainm„=h/gm
Requiring h ~1 leads to the estimatem~~2mw,
since g —240 GeV, then clearly m~ S480 GeV and
we have a strict bound q ~7x 10"'. In conclusion we
have shown that for low mw our model predicts
neutrinoless double-P decay withe =(10 '—10 '}.
We believe that it makes future experiments even
more called for.

In passing, we comment on the upper bounds on
neutrino masses which can follow from the analy-
sis of (8P}' decay. Namely, the requirement that

q ~ 5x 10 can be shown" to lead to the bound

g(0„,.)'m„. & 1 kev, (5.7)

where 0~ is the Cabibbo-type rotation in left-
handed leptonic currents. To see what (5.V) im-
plies, let us first recall the laboratory upper
limits onm„." rn„&35 eV, m &500 keV, and

Vi
'

Ve Vlf

m, &250 MeV. We should also mention the cos-
mological bounds which result from the require-
ment that neutrinos do not dominate the matter
content of the universe: Zm„~50 eV, where the
above limit (quoted somewhat conservatively)
applies to stable (r„.& 10' sec) neutrinos only.
Now one can easily be convinced that v„ is practi-
cally stable. Namely, from m„& 500 keV, it' s"P
possible decay v&- v, +y leads to at least 7, &10"
sec. Therefore the cosmological bound app/ies
to v& and we conclude thatm„&40 eV, in which
case (PP)0 doesn't provide any new limit onm„.
However, since v, could be rather heavy (250

V

MeV), it can sufficiently fast decay into v,ee, so
that the cosmological bound doesn't apply to it.
Therefore, we can conclude that

(5.8)(0~„)'m„&1 keV,

which for heavy v, then implies a rather small
mixing angle with the first generation of leptons.

B. Electron- and muon-number-nonconserving processes

We present here simple order-of-magnitude esti-
mates of the various muon- and electron-number-
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changing processes: p-e y, p, -3e, muon capture
by nucleus, etc.' %'e start the discussion by
analyzing p.-ey decay. The dominant diagrams
for such processes are depicted in Fig. 2. To
set up the notation, we write the most general
form of the amplitude for p. -ey,

m(p. ey-) =e (f +fy, )inc„v ~„q"pe

where m„ is the muon mass. From (5.9) one de-
rives the decay width

(5.9)

rn„5
&(I -ey}= 6„" (lfl'+ Ifsl'}.

Our task is then to estimate the leading expres-
sions for f and f, We.separate the neutrino and
heavy-lepton contributions. By the analogy with
previous models and computations

(5.10)

p(o, ), ,(o, ),,—,"—,

m2

g (o„),,(0,),,
(5.12)

where i = e, p,, 7 is the generation index and OL and

OR are the Cabibbo-type rotations in the leptonic

&v &Sv 16+2 8 2
L (5.11)

e g'
fv fsN 16 2

—
6

R

where 5„and 5„are the Glashow-Iliopoulos-Maiani
(GIM) factors"

( cos9, , sin9, „)
&- sin 9~ s cos 9~ R)

(we ignore the tiny mixings between v's and Ã's,
since it doesn't affect the generality of our re-
sults). The result stated in (5.12) and (5.13) is
the well-known statement of the GIM mechanism:
the amplitude vanishes for vanishing neutral-lep-
ton masses or vanishing mixing angles.

Using the formula for the usual lepton-number-
changing muon decay

2 . 5G~ m„"."}= 192 ' (5.14)

we obtain for the branching ratio B(p -ey) —= &(g
ey)/r-(~ ev„v-.),

B(p ey) = B-"(p-ey) +BN(p. -ey)

where

+ B""(p,-ey), (5.15)

B"(p, -ey)= —5„',

sector introduced in Eq. (5.1). For example, for
the case of only two generations

m 2 —m 2
V . P~5„= sinOL cos8L
mw L (5.13)

2 2
mN ~m

5„= sinOR cos9R—
mw R

since in this case

WL(W

v( (N)) e

(WR)

]u. v)(N) ) e
I

GL(GR II GL(GR )

B (p, -ey)=—
~R

(y mw 2
B""(p ey) =— 5 5

(5.16)

NL(

v. (N ) e
I

I
I

'GL (GR)

jul, Vj

GL (GR)

(N() e

(WR)

FIG. 2. The leading diagram for. a lepton-flavor-
changing process p —ep. Again, the process goes
through the exchange of v; and 5& or¹,and W&. In
addition, due to the GIM mechanism, the Goldstone-
boson exchanges (denoted by 6& and G& in-obvious nota-
tion) are comparable in strength to gauge-boson-media-
ted amplitudes, We ignore the physical-Higgs-particle
exchanges, by assuming mH» mw.

From the limit in (5.2) coming from double-P de-
cay it is clear that 5, is desperately small, so that
clearly either B"(p -ey) dominates in the above
equation or the whole amplitude is negligible.
Continuing our assumption that 5~ is reasonably
light, we present some estimates for B(p -ey)
= B~(p.-ey}. Its precise value is obviously ob-
scured by the lack of knowledge of the GIM factor
5„even if mw is of order of a few hundred GeV.

R
Taking for definiteness 5„= 10 '-10 ', Eq. (5.16)
then gives

m 2 10' B(g -ey)= 10 ' —10 "
(5.1V)

1
B(p ey) =]0 && 10

mw
2 100

Needless to say, varying 5~ would produce dif-
ferent values for B(y, -ey}. The above estimate
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can, therefore, at best be taken as suggestive.
We now briefly comment on some other muon-

and electron-number -changing proces se s. The
interesting possible decay model in our model
is obviously p. -eee. This process is suppressed
by additional power in the coupling constant, as
is clear from a typical graph as depicted in Fig.
3. When compared to the p, -ey process, the
branching ratio B{p,-eee) = I'(p, -eee)/I'(p, -ev„v, )
becomes free of any uncertainties and one simply
obtains the order -of-magnitude estimate

A
B(u -eee)= —., B(V, -ey).

sin 9~
(5.18}

v) (N)) vi (N;)

W, (WR)

(WR)

v) {NI) e

(WR)

FIG. 3. Some typical diagrams leading to a decay

p —eee. Clearly, there are quite a few more graphs
involving Goldstone bosons, which we didn' t display
here.

For sin e~= 0.22, this would give B(p-eee, )/B(p
-ey) =(1 —10)%."This is an important prediction
of our model: p, -ey and p. -eee are tiedup to
each other and the simultaneous observation of
both could be used as a crucial test of the ideas
discussed in this paper. Lacking the hint from
experiment, we satisfied ourselves by order-of-
magnitude estimate given in (5.18). It is clear,
however, that a calculation of B(g -eee)/B(p —ey)
is called for.

Other possible muon-number-changing pr ocesses
are eg - p, e and muon capture by the nucleus: p,

+ g, g)-e + (A, S). It can be readily checked that

their evaluation is similar to p. -eee and the am-
plitude for all three processes are of the same
order of magnitude.

In conclusion, the model we suggest predicts
muon-number-changing processes. In particular
we estimated that B(p, -ey) =10 '-10 " for rea-
sonable values of m: 10&m~ '/m~ 'S100 and

R WR

(somewhat arbitrary) input 6„=10 '-10 '. Other
processes such as p. -eee are also possible, with

typical ratios B(p, -eee)/B(p-, ey)=a few /0 (a fea-
ture typical of models involving heavy neutral
leptons as sources of muon-number-changing
decays). Hopefully, future searches for such de-
cays (with improved sensitivity} will be able to
serve as a test of this and similar models.

VI. COMMENTS AND CONCLUSION

The main result of our work, as we emphasized
repeatedly, is the explicit connection between the
smallness of neutrino mass and the maximality of

parity violation in low-energy weak interaction.
Precisely, ue have shown that the neutrino grass
is inversely proportional to the mass of the right-
handed cha~ged gauge boson R~, zohich means that
the V- A /imit of left right sy-mmet-ric theories
corresponds to the vanishing of neutrino mass.
The crucial ingredient which was responsible for
our result is the Maj orana character of neutrinos,
i.e. , the fact that the left-handed and right-handed
neutrinos acquire very small and very large Ma-
jorana mass, respectively. That in turn is dictated
by the choice of the Higgs sector, which reduces the
amount of arbitrariness in the theory. The same
choice of Higgs multiplets leads to definite pheno-
menological predictions in the realm of neutral-cur-
rent phenomena and therefore ties the nature of neu-
trino states and the value of their masses with the

properties of gauge bosons. We have discussed at
length the experimental implications of our model and

concluded that the most interesting ones, which also
characterize the model most uniquely, are the pro-
cesses which violate the lepton-number conser-
vation. In particular, the neutrinoless double-p
decay (with t I.= 2) turns out to be the definite
prediction of the theory. We found that the rela-
tively small m~ (m~„~ 3m~ ) leads to appreciable
values for such amplitudes which ought to be ob-
servable in the. next generation of experiments.
Our analysis also showed that the strength of neu-
trinoless double-P decay is tied up to the strength
of various lepton-flavor-changing processes (with

total lepton number conserved), such as p. —ey,

p, -eee, and others. Again, it is the mass of W~

which aff ects such processes most and for low R~
we predict B(p, -ey) =10 ' —10 "and B(p, -eee)
= (a few%) B(p, —ey). The experiments now in

preparation" are likely to be able to observe the
amplitudes of such strength and combined with

neutrinoless double-p decay can serve as crucial
tests of the ideas presented in this paper.

Now, what about the actual values for neutrino
masses? As we have discussed at length in Sec.
II, the precise quantitative predictions of our
model are still lacking at this point, mainly due

to our lack of knowledge of the values of various
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Yukama couplings and Higgs-particle self-cou-
plings. It turned out that typically expected values
of m, 's depend crucially on whether there is only
one mass scale in the theory from which both
left-handed gauge bosons and charged fermions
receive their mass (in which case the small val-
ues of m, , m„, m„, m&, m, is attributed to very
small Yukawa couplings) or maybe it is the ex-
istence of hierarchy of mass scales which is re-
sponsible for rather different values of fermion
masses in different generations and gauge-boson
masses. " The latter case admittedly requires a
rather complicated Higgs sector with probably
four Q's: Q, , Q„, Q„and P~ with subscripts e,
p. , 7, and Wdenoting the fact that they give the
mass to the first, second, and third generation
of fermions, and W~ and Z~ bosons, respectively
Homever, we find it more appealing on several
grounds. First, the smallness of first-generation
fermion masses is not attributed to arbitrarily
chosen small Yukawa couplings, but rather would
be related to the smallness of mass scales (Q, ).
It is not inconceivable that one may eventually
construct natural hierarchies, in which case the
situation (P,) «( P„)«( Q„)«( Q~) would emerge
as a prediction of the theory, rather than to be
postulated adhac. Also, from the point of view of
our work, this case leads to much more plausible
predictions for neutrino masses as compared to
the case of single Q, when their natural values
tend to get larger than experimentally allowed.
Finally, we should add that in this case the Cab-
ibbo-type angles which characterize quark -flavor
mixings are necessarily small. Take, for exam-
ple, the case of two generations and let us for
simplicity, concentrate on d and s quarks only.
We then expect the folloming mass matrix:

which leads to the prediction of neutrinoless
double-P decay. We believe, in view of our re-
sults, that the experiments devised to search in-
directly for low-mass W~ are even more called
for.
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APPENDIX A: MAJORANA MASS OF NEUTRINO

In this appendix, we briefly recapitulate some
salient features of the theory of a Majorana mass"
and also remind the reader how in the limit of
zero-neutrino mass, both a Majorana and Weyl
neutrino are identical. As is mell known, for a
given four-component spinor g transforming under
Lorentz transformations as $-8(, where S

pv pv (wi'th g&~ = g&„and q&~ = (-) &q(-} "4

c„,) there exist two possible Lorentz-invariant
bilinears involving the g: (a) g'y, g and (b)grC 'g
mhere C is the Dirac charge-conjugation matrix,
which satisfies the property Cy„C '= —y„. [In
our basis,

f 0 - i~,.) (0 I ~

(io,. 0 f' ' (I 0)'

and

(i o

Since m, =(P,), m, =(Q„), then clearly the Ca-
bibbo angle is bound to be very small (the reason-
able value for 6P~ ean be obtained using the sug-
gestion which forbids the term dd).

In summary, we have shown how left-right-
symmetric theories naturally lead to small m „,
linking it to the parity violation in nature. These
models agree with the predictions of the standard
theory at low energies, while at the same time
predict small and universal departures in the
neutral- current processes. The main character-
istic of the model is the Majorana character of
neutrinos (dictated by the proposed Higgs sector)

C = y,y, .] The important difference between the
type (a) and (b) mass terms is that case (a) term
is invariant under a phase transformations of g:
g-e'"&, whereas case (b) is not. Therefore, for
a spin--,' particle without any kind of conserved
charge associated with it, one may choose either
(a) or (b) and in particular it is more economical
to choose (b). The reason this is so is that one
may then mork with only two-component spinors.
The reduction from four components to two is
usually done by requiring the Majorana condition
gc =—C(g)r=g in which case (a) and (b) become
identical. The above condition yields
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where Q is a two-component complex spinor. The
free-particle equation satisfied by @ is"

(o ~ V —Bt ) Q
—mo, f*= 0,

(8 V + at)o, y~+my= 0 .
(A2)

X=y, 2

(1/V)' '[Ag(k)Ug(k)e' '"

+4 ~ (k) V~(k) e "' "] (A3)

where Aq and A. ~z are annihilation and creation
operators, respectively, satisfying the canonical
antic ommutation relation

(&~(k)~ &*,~(k')] = ~~~ ~T. u (A4)

Uz and Vz are two-component spinors which can
be expressed in terms of the orthonormal basis:
o, (k), P(k) satisfying the relations: nto. =PtP =1
and ntp =0 and

In terms of n and P, we can write

U, (k) = V,(k) = [N(k) ]' 'o. (k)

These two equations have been analyzed in detail in
Ref. 31 and the Majorana field Q quantized in
this paper. The decomposition in terms of the
creation and annihilation operators can be written
as follows:

number as a conserved quantity. From this it also
follows that, for the massive Majorana neutrino,
the violation of lepton number is always proportion-
al to the factor (m„/E, ). This in particular implies
that"

(T(v+ ~ e + ). !/m p! 10
o(v+ -e + ) (E„]

(A7)

In obtaining the above form we had to use the sim-
ple equality N~y&8„~~ =N which follows from
the properties of the charge-conjugation matrix
stated before: C = —C = C ', Cy„C =;y„. Since
M is symmetric and real, it can be diagonalized by
ao orthogonal. transformation

/v ) /'cos] sin()/v, &

Pp E-sin( cosg)lN, ) '

The present experimental bound on the ratio of
corresponding cross sections obtained by Davis"
is at the level of 10k.

The discussion of this appendix also makes it
clear why double p-decay amplitudes (see Sec. V)
are also proportional to the lepton mass.

Next, we would like to show that v, and N, in-
troduced in Sec. II satisfy Majorana equation (A2).
%e remind the reader that we have defined v= v~

and N —= C(Ns) r. In turn, that leads us [see (2.13)]
to the following Lagrangian for v and 6/:

v 'I

2 = vy&a" v+Ny~s
"N'+ (vrN r)MC l ! + H.c.

Nf
(A8)

(
m[N(k)] '~'p (k)

k, +!k!

That in turn diagonalizes the kinetic part of the
potential, so that we get

—m[N(k) '~2p(k)
k.+ Ik!

2= vy„e" v+ 2m, (vrC v+ v Ct v*)

+N y„s "N+ ~m„(N CN +N C N*) . (A9)

where

m2
N(k) '=1+ „0+!k!

From Eqs. (A3), (A4), and (A5), it is.clear that
in the limit of m 0, we have

The peculiar factor of —; is just a definition of m„
and m„at the moment; its meaning will be clear
from the discussion we now present. Obviously
8 will satisfy the same equations of motion, so
we will analyze just one of them, say v. From
v= v~, where

P=+ (I/V)[A, (k) U, (k)e' '"

+&,*(t )V,(k)e-*""] . (A6)
!

/1 0)
=-'(1+r,) =( )

It is clear that in this case, particle and antipar-
ticle states are different and they restore lepton

in our representation, we obtain v= (&), where Q
is a two-component spinor. Therefore
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1) ( 0 -zo,-) (0 I)
1 0) ~io& 0 ~

' (1 Oj
' (0

t'0
+ —'m„(pt0)~ .

~ ~ ~ ~+H.c. . (A10)

It is then a simple exercise to arrive at the follow-
ing form of the free Lagrangian for Q:

with the numbers in brackets denoting SU(2)~,
SU(2)z, and U~ z, (1) quantum numbers, respect-
ively. We give their transformation properties
under SU(2)~ and SU(2)„, choosing the matrix form
for h~ and 6„, (b, =- 1/v 2 w, 6, )

ULb L UL, b, R URER UR,

(a2)

2&= Qtg&8" Q+ " (pro, Q+ /to, Q*), (A11)
Q-U~QU~, Q-Ul QU„.

where 0, are the usual Pauli matrices and a4=-i
as before. Varying the Lagrangian in Q*, we ob-
tain the equation that Q satisfies

Their charge decomposition is easily shown to be

0'~s "Q = m „o2$* . (A12)

1 ~+

L~ R

APPENDIX B: THE HIGGS POTENTIAL
AND THE PATTERN OF SYMMETRY BREAKING

As we saw in Sec. II, the Higgs sector in our
model consists of the following types of multiplets:

h~(1, 0, 2), 6„(0,1, 2),

A(2, 2*, 0), g =- ~.g*~.(2, -'*, o),
(a1)

This completes our proof: v, and N, obviously
satisfy the Majorana equation (A2), i.e. , free-
particle equation satisfied by spinors for which
gc =g." We went through the little exercise des-
cribed above with an aim to show that we do, not
impose the conditions that neutrinos are Majorana
particles, but rather that such a condition is the
consequence of the particular Higgs sector and the
pattern of symmetry breaking. Namely, choosing
triplets of Higgs scalars hL and hR to break left-
right symmetry led automatically to the physics of
neutrinos as described in this paper.

. 1
I, B

go+

We present first the analysis of symmetry break-
ing for the case of single g [i.e. , case (i) of Sec.
II]. Towards the end of this section we shall see
how the analysis given below simply carries to the
case of two @'s [case (ii) of Sec. II]: g~ and pz,
with Q~ providing the gauge-boson masses and on-
ly Q& coupling to the fermions and being respons-
ible for their. masses.

Now, consistent with the transformation proper-
ties of h~, b,„; Q and P and left-right symmetry
(for simplicity and without losing generality we
forbid the trilinear couplings by an appropriate
discrete symmetry)

2 2 2

V= — Q p. ,~trQ; Q~+ Q &q~q, tr(Q; Q~)tr(QqQ, + Q ~'~qitrQ) (j)J Qq Q, —p, tr(bi6i+n, b, )
i ~ j=j. i~ jsky / =1 ig j,kgl =1

+ p, ((trb ~b ~)'+ (trb, „bz)']+p, (trEJdlb ~h~+ tr6sb zbzb, „)+pstrhJAIEzhz

2 2 2

+ Q Qg)trig Q)(trh~bg+trdsbs)+ P))(trb ~6~(j)) Q~+trbshsQ; Q))+ ~ y'g(trb~Q;b~Q),t
iy j=l ie j=l iy j=l

(a4)

where Q, =
Q and Q, =— Q. The symmetry of the

potential under parity conjugation (left-right) sym-
metry is recovered by the following constraints on
the Higgs-particle couplings (some of them being
equivalent to conditions for hermicity of the po-

I

tential):
Pi j= I jit ~1212 ~2121& ~ii jk iikj~

I
Xijkk= A jikkl Ai jkl = Xti jk —Akli j =

fkki~

lj=+y~l j gi P~» ~&I

(a5)
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2

(0 0) (0 0)

vz f p~ 0
(B6)

(K 0& - (K' 01

(0 K'f (0 Kj

The most general form of vacuum expectation
values of. the above fields consistent with U, (1)
electromagnetic invariance is

%e shall assume, for simplicity in what follows,
that all the vacuum expe ctation values are real
(it can always be made true for a proper range of
free parameters of the potential)

Our aim here is to show the relationship be-
tween v~ and v&, without entering the lengthy but
otherwise straightforward exercise of proving that
the extremizing solution is also an absolute min-
imum (that was discussed before). We then ob-
viously need to discuss the potentiaI as a function,
of v~, v&, K, and K' only. We obtain

I

V(&» &s~ K~ K ) = P(vz—+Vs') + (vz +vs )+—
v~ v~

(VI. VB ) ( 11 22 P11) K ( 11 22 P22)K (4 12 P12)KK ]

+2v~v„[(y»+y22)KK'+y»(K'+K")]+terms which depend on K K only, (B7)

I

+ Vz vs + (V2, +V~ )K + pvzvf2K
2

2 L 2

(B9)

with

2( 11 22 P11))

P = 2y

From the extremizing conditions 0 = SV/Svf
= sV/sv„, we obtain

P vI, =Pvz, +P vzvs + 12'K vf +PK v»I 2 2

v~=pv~ + p vgvg + +K vg+PK vg .2 3 I 2 2 2

(B10)

(Bll)

It is a simple exercise [we multiply the first
equation (B11)by V22 and second by v2, and then to
subtract them] to obtain

[(P —P') vzv„- PK'](vz' —vs') = 0 . (B12)

It is clear that the possible solutions to (812) are
2 2(a) vz

(b) vz 4 vs, in which ca,se

where

p=4(p1+p2), p =2p2 ~

As previously, we will work in the approximation
K'«K, so that (B7) becomes

V(n, ~, &s, K) = — 'P(v z+ v„') + (v~ + —vs')

I

local maximum]. That is a solution which we
seek —we wanted from the beginning parity to be
spontaneously broken. The relevance of (B13) is
now manifest, if we write

K
VL, = y—,

va
(B14)

$11 iQ Q i(f1

where y =-iI/(p —p'). Clearly, when v„-", vz -0
and so also rn„-0 (since m„~ vz)

Finally, we want to offer some discussion of
case (ii) discussed in Sec. II. It is a case of two
p's; pf and Q, with only 111f coupling to the fer-
mions, which enable s us to imagine an interesting
situation: (1t1f)«(Q ). We claimed in Sec. II that
one can still arrange that vz, -(1t1f) /v~, i.e. , vI
does not depend on large mass scale (P„). We
now prove that statement. From (Bl1) and (B13)
it is easy to see how to go about it: we should
forbid the term P~K11, vzvs (if such a term was ab-
sent for a single 1t1, we would have obtained vz
=0). Now, p11, =2(p~)12 so we need only forbid the
term (y )12trn, z1t1 &„Q„( tnioecthat we cannot
forbid tr&~P~&sf~ term, but it is proportional to
K2K1I and so can be made arbitarily small). Let
us therefore impose the symmetry &:

p
VIVE= I K

P P
(B13)

~f 1t'f' 1t1f ~f '

~a-&a .

(B15)

Now, under a choice of the parameters of the
Lagrangian one can show that solution (b) is a
minimum [in that case solution (a) becomes a

In this case, the potenti al is going to have the
general form (K» K K » K )
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U(&L, &R, K, KI)

tt (VI, + VR ) (VL VR ) VL VR

l 2
p vL, =pvt. +p vg vL,

+(&K + OtyK~ )VL + PK VR

2 3 I 2
p vg=pvR + p v~ vz

(B17)

+ 2(VL + VR )("K + O'~K~')+PVLVRK'

+(&K + &~KM )VR+ pK VL ~

Similarly as before, it is easy to show that

2
v~v&=yv , (B18)

+ terms which depend on ~, v only.

(B16)

The main point is that (B11)now becomes

where y= p/(p —p') (o'~ term drops out, as ex-
pected). That is a. useful result: it justified our
claim in subsection (ii) of Sec. ff, that m„mf /
m~, since K-mt/ft, rather than being-m~ '/

L
Pl Q/ ~
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