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Dynamical model for light composite fermions
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A simple dynamical model for the internal structure of the three light lepton and quark generations {v„e,u,d),
(v,p,cp), and (v„~,t,b) is proposed. Each generation is constructed of' only one fundamental massive generation
F = (I g, ,U,D) with the same (SU,) )(SU2&(UI quantum numbers as the light generations, bound to a core of one
or more massive Higgs bosons H, where H is the single physical Higgs boson necessary for spontaneous symmetry
breaking in the standard model. For example, e = [L H], p = [L HH], r = [L HHH]. It is shown that the
known binding force due to H exchange is attractive and strong enough to produce light bound states. Dynamical
calculations for the bound-state composite fermions using the Bethe-Salpeter equation, together with some
phenomenological imput, suggest MH -16 TeV and Zd~-100 GeV. It is likely that such bound states can have .

properties compatible with the up to now apparently elementary appearance of known fermions, for example, their
Dirac magnetic moments and absence of intergeneration radiative decays {such as p~6). Phenomenological
consequences and tests of the model are discussed.

I. INTRODUCTION

The discovery in recent years of the charmed
and bottom quarks and the ~ lepton has led to the
expectation that all of our apparently fundamental
fermions will appear in recurring generation
multiplets of successively higher mass but similar
(SUs)„„,x (SUs) x (Ut) quantum-number structure. '

In this scheme the leptons and quarks belong to
the generation mul'. iplets

[I]= [v„e,u, , d,.],
[II]=[t it c s 1

[111]=[t'. ' f &;]

where the subscript i denotes SU3 color, and the t
quark's existence is presumed but not yet ob-
served. This proliferation of flavors or genera-
tions sems to demand a unification more com-
prehensive than that of the standard (SU,)„„,
x(SU, xUt) t„tr ~ gauge model, yet even the
SUs grand unified gauge theory' [or its O(10) ex-
tension] naturally interrelates only quarks and
leptons within a generation, but not different gen-
erations. Some still larger group is necessary
to encompass all generations within one irreduc-
ible representation, and the distended size of
such groups makes the fundamental nature of such
an approach to the generation problem somewhat
questionable.

Faced with this, it seems increasingly attractive
to believe instead that this recurrent structure
betrays a latent compositeness to quarks and
leptons, with successive generations correspond-
ing to either the excitation levels of some internal
degree of freedom (e.g. , a radial quantum number
of some bound-state wave function), or perhaps
to the addition of successive identical constituents

to the lowest-lying generation (analogous to the
formation of the periodic table by electron addi-
tion). Models of this type, and their discussion,
have become increasingly popular, and if cor-
rect they save grand unified theories from the
problem arising from successive generations,
that of enlarging the group as more are discov-
ered.

In this paper I propose and discuss a composite
model for leptons and quarks which requires no
new particles or groups or gauge bosons beyond
those already required for other good reasons.
Some of this work has been previously outlined, '

and the same model has been independently con-
sidered by Veltman. ' The model assumes the
existence of only one very massive fundamental
lepton and quark generation, routinely embedded
in the standard gauge model (SU,)„„,x(SUs
x U, )„ t„, ,~, together with the one heavy neutral
Higgs boson H that emerges from the standard
model's single Higgs-boson doublet in the unitary
gauge. The lowest-mass generation [I in Eq.
(1.1)] is formed by binding one heavy Higgs boson
H to the fundamental generation. Successive
generations II, III, . . . , are constructed by add-
ing extra Higgs bosons. I shall show below that
the binding of such Higgs bosons H to the funda-
mental generation is strongly attractive for the
mass of H large enough (- several TeV), and can
therefore produce light bound composite fermions.
Since the Higgs boson H is neutral with respect to
weak, electromagnetic, and colored interactions,
it is clear that successive generations will all
have similar strong, electromagnetic, and weak
interactions. I shall show that it is plausible that
despite their compositeness such fermions can.
appear to be pointlike at probing energies less
than 100 GeV—i.e. , they can have constant elec-
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tric and magnetic form factors, Dirac magnetic
moments corresponding to their bound-state mass,
and suppressed radiative generation-to- genera-
tion decays, or, in short, behave like the leptons
and quarks we know.

An advantage of this model is its economy in
utilizing the already required Higgs boson to ex-
plicitly (and in principle calculably) account for
binding. The only undetermined ingredient in the
standard model is the mass of the Higgs boson H,
M~. Since Higgs-boson couplings to themselves
and to fermions depend upon the Higgs-boson
mass and the fermion mass, ' and since these
couplings must be strong enough to produce light
composite known fermions, the approximate mass
M~ and the approximate mass of the one funda-
mental generation M~ can be determined. This
will be done below, and I shall show that M&-16
TeV and M~-100 GeV are likely values.

Most composite-fermion models' have little
to say about the dynamics of binding, and concen-
trate mostly on schematics and quantum numbers
(exceptions are the paper by Adler ' and that of
Veltman, ' the latter of which is similar to the
present paper and some earlier work on the same
model '). In contrast the model discussed here
has the binding dynamics (due to the Higgs boson)
explicitly displayed, and so some approximate
dynamical calculations can be executed. Since
the treatment of relativistic strong binding is ex-
tremely difficult, the approximations made are
necessarily crude. The best attitude to take to the
calculations below (within the framework of the
model) is to regard them as a theoretical labora-
tory for starting to examine relativistic bound
states in the model, . but not to take their numeri-
cal predictions too literally.

Finally, it is interesting to note that the value
M„-16 TeV is the approximate value required
for the Higgs-boson mass in dynamically broken
gauge models. It is possible that the Higgs
boson utilized in this paper is in reality itself a
composite of heavier hyperquarks held together
by gauge forces, and that the calculations below
utilizing an elementary Higgs boson should just
be regarded as a phenomenologically viable way
of tackling the bound-state problem in such a
dynamically broken gauge model.

The paper proceeds as follows. Section II out-
lines some of the fundamental difficulties of all
composite models and discusses their possible
solution. In Sec. III the model yroposed here is
defined and its qualitative features discussed.
Section IV contains a potential-theory treatment
of the bound states that is intuitively straightfor-
ward although of uncertain validity. Nevertheless
the results it produces are compatible with those

of Sec. V, where the bound states are treated via
the ladder-approximation Bethe-Salpeter equation.
In both cases similar predictions are obtained for
the Higgs-boson mass. In Sec. VI I discuss the
phenomenology of the model using some results
and assumptions from Sec. V about the solution
for the wave function of the composite fermions.
In particular, I show how the composite fermions
may appear pointlike due to their heavy constitu-
ents, and propose some qualitative tests of the
model.

II. DIFFICULTIES OF COMPOSITE MODELS

Assuming that one has some notion of the nature
of the constituents and perhaps even the binding
mechanism, the fundamental stumbling block for
composite models of quarks and leptons is their
manifest elementarity, particularly in the case of
leptons. For example, the measured cross sec-
tions for e'e -e'e, p'p, , and &'~ agree well
enough with pure quantum-electrodynamic pre-
dictions so as to imply that "all the known charged
leptons are pointlike particles to a distance
c10 ' cm." In momentum variables, this cor-
responds to constant form factors up to probing
momenta. -100 GeV/c. Furthermore, the mea-
sured muon anomalous magnetic moment agrees
with theory to a part in 10, the theory being es-
senti3lly that of a pointlike Dirac fermion. In
addition, the miniscule upper limit of 1.9
x10 ' on the branching ratio p,'- e y, and the
suppression of strangeness-changing neutral cur-
rents (represented at the quark level by, e.g. ,
d-sZ where Z is the massive neutral gauge
boson in the standard model) testify further to the

apparent lack of structure of the fermions, since
in composite models such transitions should cor-
respond to radiative decays analogous to 2P -1S
+ y in hydrogen. Such signatures of elementarity
will have to emerge as only low-energy (i.e. ,
a100 GeV) behavior in any viable composite
model.

The pointlike behavior of quarks and leptons at
-100-GeV probing energies implies that any con-
stituents are extremely strongly bound, so that a
multi-GeV jolt barely jiggles them. Such im-
mense binding energies within light, almost mass-
less, leptons means that the constituents too
must have multi-GeV masses.

If the internal constituents of a light composite
fermion of mass m have mass M, with magnetic
moment of order eS/2Mc, it is difficult to see how
the light fermion can have a Dirac magnetic mo-
ment eS/2me. This problem, especially severe
in static models, has recently been emphasized
by Iipkin and Gluck. ' The strong-binding and
heavy-constituent masses indicated in the para-
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graph above, however, make the static approxi-
mation a bad one for quark and lepton structure,
so that the difficulty is not necessarily prohibitive.

There are several hints that the magnetic-
moment problem may be soluble. I ipkin and
Tavkhelidze ' have shown that fermions bound in
a strong scalar relativistic potential obtain a
magnetic moment whose magneton is indeed de-
termined by the bound-state mass rather than the
elementary fermion mass. In brief, their argu-
ment considers a Dirac particle in an external
potential constant over all space, in the presence
of an external magnetic field. The Dirac equation
for a mass M spinor g in a scalar potential V and
electromagnetic potential A„ is

iy" (s„—teA„)g=(M+ V)g. (2. 1)

Defining m=M+ V, this is just the Dirac equation
for a free particle of effective mass rn in an ex-
ternal magnetic field, and taking the usual non-
relativistic limit' leads to a magnetic moment
el/2mc characterized by the effective mass which
has been determined by the binding.

For a static vector potential ' V, V instead ap-
pears in the Dirac equation with a matrix coeffi-
cient y . The resultant Dirac equation then de-
scribes a particle of original mass M but with
energy shifted by V, so that the magnetic moment
emerging from the nonrelativistic limit is el/2Mc,
unaltered by the binding, and unsuitable for de-
scribing a magneton scale determined by the light
bound mass.

This proof is of course only suggestive, since
it assumes static potentials and a single-particle
Dirac equation. Ciafaloni and Menotti have
shown that two-boson bound states, in the limit of
large single-boson mass and large binding energy,
obtain magnetic moments with magneton scale
given by the bound-state mass. Their proof makes
use of the ladder approximation to the Bethe-
Salpeter equation, and also requires a scalar
interaction, as required above. The prognosis
with regard to obtaining the correct Dirac mag-
netic moments for composite fermions in the
model discussed in this paper' ' ' therefore seems
promising, since the binding here is precisely
due to Higgs-boson exchange, and therefore scalar
in nature. The way in which this can occur in
the present model is discussed further in Sec. VI
below.

Another means of examining the magnetic mo-
ment of a composite fermion (say the muon) is to
write a dispersion relation for the anomalous
magnetic moment F2(q ), as has been recently
done by Shaw et al. ' ' The relation

d 2

F;(q') = — „, . lmF;(q') (2.2)
g 2g -g —ZC

F~ —mM~/Ms (2.3)

an even greater suppression. This formula will
be of use in Secs. IV and VI when I examine F&
in the present model, where light fermions are
composed of one massive fermion and one Higgs
boson. Dispersion relations analogous to Eq.
(2.2) can be used to similarly show" that electric
form factors vary slowly with q for q «M, .

These dispersion-relation proofs involve no
real dynamic input for the nature of the bound
states, and should perhaps best be viewed as
demonstrating the consistency between (i) no ob-
served low-energy strong interactions of leptons
and (ii) Dirac magnetic moments for leptons.
Since (i) and (ii) seem almost tautologous, the
significance of such proofs is unclear.

I shall show in Sec. VI how all the difficulties
listed at the start of this section may find a solu-
tion in this model. The assumption of a simple
scaling behavior in the Bethe-Salpeter relativistic
bound-state fermion wave function as a function of
the relative momentum [Eq. (5.34) below] leads to
quasipointlike fermion form factors, Dirac mag-
netic moments with the correct mass scale de-
spite the ultramassive constituents, suppressed
radiative decays such as p - ey, and perhaps even
the suppression of strangeness-changing neutral
currents. This scaling wave-function behavior is
at present only conjectured from approximate
Bethe-Salpeter solutions below, ' its proof is being
examined.

III. THE HIGGS-BOSON BINDING MODEL
FOR COMPOSITE LEPTONS AND QUARKS:

QUALITATIVE FEATURES

The motivating principle of this model is to con-
struct all known leptons and quarks without nec-
essarily going beyond the standard (SU3)„„,
x(SU2 x U&)„„„,,~ model. '37 I shall try to show
that g,ll leptons and quarks can be constructed

describes the contribution to F~(q ) from the pho-
ton dissociating into real constituents of the muon,
over and above the usual quantum-electrodynamic
and quantum-chromodynamic contributions. The
integral in (2. 1) therefore starts above the thresh-
old M, for producing free constituents. As ex-
plained by Shaw et a/. , ImF2-mM, /q', where
m, the muon mass, is involved in the definition
of F2, and M„ the constituent mass, appears due
to the helicity-flip nature of the o,„Dirac matrix
involved in defining F2. Equation (2. 1) then yields
Fq(0) -m/M„which is small for large constituent
masses. They also show that for a, muon (or
other light fermion) composed of a massive fer-
mion F and boson B, with masses M~, M~, and
with M~»M~,
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from the Higgs boson, plus only one fundamental
massive lepton and quark generation,

[E]=(LO,L, U„D,), (3.1)

where I and L are neutral and charged leptons
and U, and D,. are tricolored up and down quarks,
exactly analogous to the known generations in Eq.
(1.1). In terms of their SU3xSU, xU~ quantum
numbers, they are routinely embedded into the
standard model as left-handed SU2 doublets
(L, L )~, (U, , D,.)~ and right-handed SU2 singlets
(L')~, (L )„, (U,)„, (D,)s, with subscript i denot-
ing an SU3 triplet representation of color for the
quarks. The color index will be henceforth sup-
pressed.

These members of [E] have the standard gauge-
theory couplings to the charged and neutral gauge
bosons that ultimately become the W', ~, and y.
They also couple routinely to the single Higgs-
boson doublet Q =(Q', Q ) which gives them mass
via its vacuum expectation value in the standard
model. In the unitarity gauge, ' where only one
neutral Higgs boson H survives as an observable
particle or field, the self-couplings of the Higgs
boson are given by the interaction Lagrangian

2'/4 G MF H

-i 5 2 GFMH
2

-~GzMa' H3 GzMH H4
H 2&I4 4~2

(3.2)

where G~ is the weak-interaction Fermi constant,
H the Higgs field, and M„ its mass. The interac-
tion of 0 with a fundamental generation fermion
field f (a quark or a lepton) of mass Mz is given by

Zy„——-(2'~ v'G~Mq)ffH . (3.3)

The Feynman vertices for Higgs-boson and fermion
interactions are displayed in Fig. 1.

A few remarks are appropriate here. I have
specified only the SU3xSU2xU& quantum numbers
of [E]. It is possible that [E] is in fact a multiplet
of some grand unified gauge theory, e.g. , SU5.
This does not negate the approach adopted here,
since SU5 still faces the generation problem and,
since its low-energy limit contains SU2x U&, with

a similar Higgs boson, the same bound-state
solution to the generation problem is possible.
In fact, the attractive standard SU5 prediction of
sin 8& =0.2 is relatively insensitive' to the num-

ber of fermion generations, and so would still
hold in a one-generation model of the type pro-
posed here, in rough agreement with experiment.
The generation-number-sensitive predictions of
SU5, such as the mass of the b quark, are irrele-
vant in the present bound-state model, since
there is no fundamental 5 quark whose effective
"running" mass can be studied, since the b is a
bound state . .For dynamically broken gauge
models, the use of a fundamental Higgs boson

-i 2'"„G,M,
FIG. 1. Feynman vertices for Higgs-boson self-inter-

actions and fermion-Higgs-boson interactions in the
standard model. Heavy lines denote the Higgs boson
Il, mass Mz, light lines denote the fermion f, mass
M&. See Zqs. (3.2) and (3.3) for the Lagrangians which
generate these vertices.

to construct successive generations can perhaps
be regarded as a crude way of mocking up the
effects of a condensate in the vacuum. Finally,
it is important to note that the neutral L member
of [E] in Eq. (3.1) is necessarily massive in order
that it couple to the Higgs boson H [see Eq. (3.3)]
and form a bound-state neutrino below. Neutrinos
should therefore be four-component and massive,
as perhaps implied by recent results on neutrino
oscillations.

The schematic composition of the light fermions
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is now described. The interactions in Eqs. (3.2)
and (3.3) lead to attractive forces due to H ex-
change between two Higgs bosons, and between a
Higgs boson and a fermion, in addition, these
forces are proportional to M& or M„, and to the
relevant fermlon mass M~, where f=I, I, U,

or D. For large enough M„and M&, these binding
forces become strong enough to overcome the
constituent masses, so that light bound states can
occur. Generation [I] in Eq. (1.1) is then identi-
fied with bound states of the fundamental genera-
tion [F] and a single Higgs boson H, viz,

p, =(LOH), e =(L H), u=(UH), d=(DH) . (3.4)

Since H is (to lowest order) neutral with respect
to the gauge-boson interactions of the standard
model, the quantum numbers of the bound states
are the same as those of [F], and hence appropri-
ate to the known v„e, N, and d. The scalar
binding potential due to H exchange is, as dis-
cussed in Secs. II and VI, advantageous in solving
the magnetic-moment problem. The contruction
of generations [11]and [DIJ, as also suggested by
Veltman, ' involves adding one or two extra neu-
tral Higgs bosons H to [I) in Eq. (3.4). Since
these extra H's couple strongly to an H for large
enough M„, ' generations [II] and [III] can also be
light, although the addition of extra H's would be
expected to make successive generations relatively
heavier. The masses of generations [II] and [III],
using nonrelativistic three-body methods and the
relativistic H-H Bethe-Salpeter equations, will
be discussed in a subsequent paper. As is clear,
more than three generations should be expected
to be found.

The dual requirements that generations [I], [11],
and [III] all be light compared to Mz and M„re-
quires that the HH couplings and the fH couplings
be strong enough to cancel their masses in the
bound states. In Secs. IV and V I shall show that
this condition implies (very roughly) thatM„-16
TeV andM~-100 GeV. This lower limit on the
constituent mass of 100 GeV is just at the thres-
hold of current experimental searches for lepton
structure. If this model is correct, the next
order-of-magnitude increase in the resolution of
such experiments should start to show signs of
compositeness. These values of M~ and M& will
also be shown adequate to plausibly suppress lep-
ton anomalous magnetic moments (due to com-
positeness) below current experimental bounds.

Before proceeding to calculations within the
model, I stress once again that, due to the large
masses and strong couplings necessarily involved,
the treatment of dynamics is highly approximate.
Accurate numerical results should not be ex-
pected, only a zeroth or perhaps first-order at-

In this section I shall examine the Higgs-boson
binding model of Sec. III by employing nonrela-
tivistic potential theory in the static approxima-
tion for the Higgs-boson-exchange potential. I
shall show that the potential is attractive, that
binding can occur, and I shall estimate the masses
M„of the Higgs boson andM& of the fundamental
generation [F] for which light composite fermions
can occur. These masses and binding energies
will turn out to be so large as to invalidate the
potential theory approximations. Nevertheless,
the order-of-magnitude values may be correct,
since similar results occur in the relativistic
treatment of Sec. V. Further, the potentia1-the-
ory arguments are more intuitively accessible
and useful in estimating the binding energy's de-
pendence onM& and M„.

As an example, consider e =(L, H), p, =(L, HH),
ands =(L HHH) in this model. Since e is light
(almost massless), the binding energy of I, and
H must approximately cancel their masses. Since
p is light, the addition of an extraII to e must
result in additional binding energy that cancels
its mass (approximately); this will occur provided
the H-0 interaction is strong enough to form light
bound states. The dual requirements that both
a H) and (HH) form light bound states will be im-
plemented below to roughly determine M~ (i.e.,
M~) and M„.

Consider, therefore, H H scattering via H ex-
change in the nonrelativistic Born approximation.
The Feynman diagrams for this process are dis-
played in Fig. 2 and lead to the nonrelativistic
(static) limit for the amplitude

9V 2i 6~M„
5Rsg — -2 M 2

—RYiG~M„
q +M~

(4.1)

The first term corresponds to the Higgs-boson-
exchange graph in Fig. 2, with q the three-mo-
mentum transfer, the second to the seagull-type
four-boson interaction. The corresponding non-
relativistic potential is obtained from the Fourier
transform

-9GyMyg' 8 " 3M2.Gy.

2m r
This corresponds to an attractive Yukawa poten-
tial of range M„' with a repulsive &-function
core. For large ~~, the approximation

tempt at showing that the composite fermions in
the model can be identified with the ones we know.

IV. BOUND-STATE FERMIONS VIA
POTENTIAL THEORY
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-L 3 2'"IG, M„*
The binding energy of an (I H) state confined to

radius M„~ is, from Eq. (4.8), -3GHMLMH /(4&2v).
The net bound-state mass is

3GgM~Mg2
LH I H 4vt2&

(4.8)

-i 5 2' PG~M„ -i 5f2 G~M„
which, since the electron is almost massless, is
approximately zero, implying

FIG. 2. Feynman diagrams for lowest-order Higgs-
boson-Higgs-boson scattering. 6& denotes the Fermi
constant.

GM+= . (1+ ). (4.10)

leads to

(4.3)

Equations (4.6) and (4.10) embody in a crude way
the conditions on ML and MH such that e, lI, and 7
all be light. Analogous constraints apply to
j/1~0, M~, M~ from requiring that all generation
members be light. Equations (4.6) and (4.10)
yield

3G 3 eHHr
V„,(r) = — H 6'(r) =- G, M„2

2 42' " r I& —j~l& —MH =1 TeV. (4.11)

(4.4)

For large ~~ the attractive Yukama Potential
therefore overcomes the rePulsive core, leading
to a potential of range -~ ' and average height
-G~M~~ increasing with M~.

From Eq. (4.4), two Higgs bosons bound within
radius M~ ' by V» have a binding energy
-3GHMH'/(4v 2v). The net mass of such a bound

state is therefore

3G~Mg3
HH H (4.6)

GHMH2 —8vV 2/3. (4.6)

Consider also the mass of an (& H) bound state,
corresponding to the almost massless electron.
The lowest-order Feynman diagram for L -H
scattering is displayed in Fig. 3, and yields the
nonrelativistic amplitude

3V 2iG„MLM„'
I.H g

where q is the three-momentum transfer. The
corresponding potential here is

(4.7)

As discussed above, one requires ~» =0 in order
that p, and w as well as e be light. This necessi-
tates

This value of M„(in the Te V range) is similar to
that obtained from unitarity bounds on H-H scat-
tering, ~ and of course corresponds to the value
for which perturbation theory fails due to strong
coupling.

The above approximations made these 1-TeV
values only crude estimates. It is more likely
that M~-16 TeV and ~1, =M~-0.1 TeV, so that
ML/MH «1. The main reason for this is that, as
shown by Shaw et al. '~ [see Eq. (2.3) above], the
contribution of the muon's constituents to its
anomalous magnetic moment in models of the
present type is given by E;-m MJMH'. For
M~-Mz-1 TeV, E2-10, small but still too large
compared to the eight significant figure accuracy
agreement of the muon's moment with quantum
electrodynamics. ff ML/M„«1, say for ML-0.1
TeV and MH-16 TeV, &; can be suppressed to
more appropriate values. Note that +&0.1 TeV
is unacceptable because of the 100-GeV lower
limit on the momentum transfer below which lep-

-i 2'~+ GF ML

y (r) i $3~ IH

g-~a&
GHMLM

4mV2
(4.8)

again an attractive potential of range Mz ' and
average height -GrML~ increasing with M„, so
that for large ML (or in general MI) and MH one
expects strongly bound fermionic states of I and
H that can have small. radii.

FIG. 3. Feynman diagram for lowest-order I, -H
scattering. 6& denotes the Fermi constant.
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tons appear pointlike. " I shall also show in the
relativistic treatment of e as an (LH) bound state
below that if M~ —0.1 Te V, then M~ = 16 TeV.

For these reasons these values will be taken as
the most likely ones for g and MH in the model.
They imply that no more than an order-of-magni-
tude increase in the accuracy of lepton-structure
experiments should reveal their compositeness.

V. RELATlVISTIC LIGHT COMPOSITE FERMIONS

As shown above, the binding energies and masses
of the constituents of leptons and quarks in the
Higgs-boson binding model must be comparable,
so that a relativistic treatment of the bound state
is essential. In this section I shall treat the
bound state of one massive fermion and one Higgs
boson by means of the relativistic Bethe-Salpeter
equation. ~ In order to be specific the fermion
will be taken to be the charged massive I of the
fundamental generation [F] in Eq. (3.1), so' that

the bound state corresponds to the electron. Ex-
actly analogous equations could apply to Higgs-
boson bound states of I-', U, and D corresponding
to v„u, d. Since + &1 TeV and the H H-coup-
ling is large, there is no naturally small coup-
ling constant to employ in perturbatively expand-
ing the total Bethe-Salpeter kernel. I shall simply
work in the ladder approximation for no reason
other than that it is tractable. Although this is
still a crude approximation, it provides a theoreti-
cal laboratory for obtaining relativistically co-
variant bound-state wave functions and thus goes
a step beyond the static nonrelativistic treatment
of Sec. IV. Because of the approximated kernel,
numerical results should not be taken literally.
Th,e main aim here is to shoze the qualitative
feasibility of the mode/ Fur.ther assumptions
about the solutions below are explained as they
are invoked.

A. The Bethe-Saltpeter equation for composite fermions

Figure 4 displays the graphical form of the Bethe-Salpeter equation for the bound-state vertex function
of an (L H) bound-fermion state in the ladder approximation of H exchange. The vertex function g~(k)
satisfies

de�' 1 1i'.("-' ""~ ~ J (2.) (qg, P M)[(1 q)P k] M ~ (k k) -M ~ ~. "' (5.1)

where the vertex factors for 0-H and I- -8 coupling can be obtained from Fig. 1. I' is the bound-state
electron's total four-momentum, and k~ (or k'~) its relative momentum; q is an arbitrary parameter
(0& g& 1) involved in defining the notion of a relative momentum.

It is often convenient to deal with the fermion wave function 4~(k) defined by

(5.2)

In terms of C~, the Bethe-Salpeter equation is
" d 0'

(qf+$-M~)[[(1-q)P —k]2-M„QC~(k) =3&2iG~M~M„2 4, , 2 C~(k') . (5.3)

Equation (5.3) is not easily solvable. Since P P„=m, for an electron bound state, the equation is an eigen-
value problem for + and/or M~. In the center-of-momentum frame P=O, it becomes

d A''
(qm, yo+g -M~)[(1 —g) m, ' —2(1 —g)m, k'+k' MH']4 ~(k) = -3u 2iGzMzMH' J( ( ), ( „,), , 4~(k') .

(5.4)

Since the nonrelativistic treatment of Sec. IV suggested Mz,
-

Ms - 1 TeV, I shall proceed by ignoring m, in
Eq. (5.4) compared to all internal masses and relative momenta. In this limit of m, =0, Eq. (5.4) be-
comes

4

(P -Mz)(k2-Ms2)40(k) =3V 2iG~M~M„2 ~ [(k -k')2-Ms2] '40(k'), (5 5)

an O(3, 1)-symmetric eigenvalue equation for 3$z, with 4 0(k) denoting the zero-mass bound-state wave
function.

By expanding C, (k) in terms of spin and momentum eigenstates one can in general write

co(k) = I'(k)UO, I'(k) =Al+B —, . (5.6)
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where Up is a free Dirac four-component rest-frame spinor, I'is a 4 &4 matrix, and & and B are func-
tions of k and ~k~ . Substituting Eq. (5.6) into (5.5) leads to integral eigenvalue equations for A and B
Performing the standard Nick rotation" to Euclidean space one obtains the coupled equations

(km+M„2)(M~A+Bk2/M ) =3@2 GsM~Ms2
A(k')

(5.7)

k(k-2+ Ms 2) (A —M~B/Ms) = 3&2G~M~Ms
"d4k' {k k')B

In Eq. (5.7) the Wick rotation has resulted in converting the O(3, 1) symmetry to an O(4) symmetry, with
k =kp +k.

I now assume that the ground state of an 1. H system (i.e., the electron), being of lowest energy, has
an O(4) spherically symmetric eigenfunction, i.e., A and B are functions of Euclidean k only. In that
case the angular integrals in Eq. (5.8) can be performed to yield

3&2G~M~M„~ " tA (t)
H )( L + / 4) 8s2 dt s t+~2 [(s+t+~2)2 4 t]1/2 t

(5.8)

(s +% )( L / 4)- 8v2 J dt ( t+M 2+ [(s +t+~2)2 4st]g/2)2
—

1

x=s M„',
(5 8)

where s =k' and t =k' . Defining new dimensionless
variables

The transformation

u(x) =-x'~ '(1+x)'~ 'A(x)

v (x) =x (1+x) B(x)
(5.13)

one obtains the integral equations

(x+ 1)(M~A+xMsB) v(x)=x JI dye(x, y)u(y), (5.14a)

reduces Eq. (5.12) to the convenient final form

yA
y x+y+I+[(x+y+I)'-4 y]'~' '

(x+ 1)(A M~B/M„-)
f' oo 2g

Qyy (x+y+I+[(x+y+1)'-4xy]"'}' '

where

u(x) =-Z dy&'(x, y)v(y),
Wp

where

X(x,y) =
(1+x)(1+y)

(5.14b)

3&2GsM~~
(5.11)

x . . . (5.1 5)x+y+1+[(x+y+ 1)'-4xy]"'
is a positive kernel.

is a dimensionless eigenvalue.
In order to obtain an approximate value for X,

I employ the argument presented in the last
paragraph of Sec. IV above that requires MJ~
«1 in order that the bound-state magnetic mo-
ment be of the Dirac type. I shall therefore ne-
glect terms in Eq. (5.10) that are proportional to
M~ compared to those -M~; the solutions for &
and B to Eq. (5.10) will then strictly only be valid
for x»M~/Mz. With this approximation, Eqs.
(5.10) become {l-q)P-k

III
P

x(x+1)B=X dyy (x+y+1)+[(x+y+1)'-4 y]'I'

(x+I)A=-~ f dyy&x+y+I+[(x+y+I)~-4xy]'t }2

(5.12)

FIG. 4. Graphical form of the Bethe-Salpeter equation
for the (I "H) bound-state vertex function P~(k) in the
ladder approximation. Four-momenta labels are those
used in Eqs. (5,1)-{5.3).
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B. The Higgs-boson mass

In order to estimate X and hence M~ from Eqs.
(5.14), it is unnecessary to solve it numerically.
Instead one can combine the two equations to
obtain

v(x) = X f-'. «(x z)v(z)Xz,
0

«(xz)= f Xy«(xy)«'(y, z).
0

(5.16)

I

'This is a homogeneous integral equation with a
positive Hilbert-Schmidt kernel &, as shown by
the bound on the norm )(H ((&1 proved in the Ap-
pendix. From Eq. (5.16),

G» Mi M» & 8» /3v 2 . (5.18)

This lower bound on Q~M~M~ agrees qualitatively
with the nonrelativistic result of Eq. (4.10) for
M~ «M~. Assuming that the lower bound gives the
correct order of magnitude, one obtains

G M M -8z'/3W2,

so that

(5.19)

M~M~-1. 6x10' GeV'. (5.20)

Since M~ z 100 GeV from the experimental lack of
lepton structure,

M ~16 TeV. (5.21)

This is of course still a crude estimate in view of
the approximations made above, but it will suffice
here, and it agrees roughly with the previous
nonrelativistic re suits.

Not that larger values of M~ in Eq. (5.20) lead
to lower values of MH, and therefore larger ratios
M~/M». If M~ is appreciably greater than the ex-
perimental lower bound of 100 GeV obtained from
experiments of lepton structure, "the anomalous
magnetic moment of the muon F;-@pe „M /M' dis
cussed at the end of Sec. IV becomes much too
large. Although all these estimates are qualita-
tive only, I therefore expect M~ to lie close to
the 100-QeV lower limit, so that more accurate
experiments stand a good chance of detecting the
L, structure inside electrons or muons.

v'(x)dx = —X' | v(x)H(x, z)v(z)dx dz .
0 ~y Q

Schwartz inequalities applied to the above double
integral can then be used to show

(5.17)

or from Eq. (5.11)

C. The zero-mass wave function

%ithM„estimated, it, is interesting to examine
the zero-mass wave function 4,(k), or its com-
ponents u(x) and v(x) defined by Eqs. (5.6) and
(5.13), since these (at least in the small bound-
state mass case to which I hope the zero-mass
limit is a reasonable approximation) determine
the bound-state structure, form factors, etc.
Note firstly that since P(x, z) in Eqs. (5.16) is
positive, and since ~ must be real for a solution
corresponding to a stable electron, v(x) [and
similarly u(x)] must change sign at least once in
[o ")"

Although Eqs. (5.14) and (5.15) can be solved
numerically, it is more interesting to examine
their analytic form qualitatively. The z = 0 limit
of Eqs. (5.14) shows that

v(x) ~ x'~',
x~0 (5.22)

(5.23)
v(x) x' -'.

Combining Eqs. (5.13), (5.22), and (5.23) one can
write A and 8 in Eq. (5.6) as

F(x) ln(1+x)
x(1+x)'

(5.24)G(x)
B(x)

(1 ),

where E(x) and G(x) are finite in [0,~] and can in
principle be solved for numerically, though this
is unnecessary here. Equation (5.24) shows that
as x-0, A-g', g-~ ', as x- ~, A-g 'ln~,
J3-x

Combining Eqs. (5.6), (5.9), and (5.24) gives
the general form of the zero-mass bound-state
spinor wave function

e,(t) = r (n/M„)U„
where

(5.25)

MH 2 2 2 2

I

G(y'/M ') . (5 26)
Mg

u(x) ~ x'~'.
x~o

For large x, if one assumes f, dyu("y) is con-
vergent, the kernel in Eq. (5.14a) may be ex-
tracted from the integral to yield v(x) - x '. Sim-
ilarly, assuming f",v(x)dx is convergent, the
kernel in Eq. (5.14b) may be extracted, leading to
u(x)- x ' for large x. This latter result is in-
valid since J",v(x)dx is logarithmically divergent,
but a slightly more careful treatment leads to the
consistent results

u(x) ~ x 'lnx,
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Here the solution has been analytically continued
back to Minkowski space and U, is a free Dirac
rest-frame spinor. The nonzero-mass bound-
state wave function will be discussed below.

C ~(k) in Eq. (5.3) represents the Bethe-Salpeter
wave function for an incoming bound state, as
does C, (k) above. For an outgoing state one re-
quires the conjugate solution C ~(k), which is not
simply given by C t„(k)y, as would be the case for
a free elementary spinor. This is so because the
Bethe-Salpeter equation for an outgoing state
C ~(k) is given by

(5.27)

analogous to Eq. (5.3) with the same sign of the
imaginary coefficient on the right-hand side, and
with the same complex poles in the propagators,
not those corresponding to the complex conjugate
of Eq. (5.3).~' Although Cryo does not satisfy Eq.
(5.27), it is straightforward to show that

(5.28)c ~ =e ~@-'

does, where g ~ denotes the transpose of @~ and

X=y'y' (5.29)

is the time-reversal operator for the Dirac equa-
tion" and satisfies

Xy„Z-' = y„. (5.30)

So, given a solution 4 ~, the conjugate wave func-
tion @~ can be constructed from Eq. (5.28). For
a free Dirac spinor U~ of momentum P, the con-
jugate spinor given by Eq. (5.28) is V~= U~K '
=—Ut~yo, as can be proved from the properties of
the Dirac-equation free-particle solutions.

The Lorentz covariance of the Bethe-Salpeter
equation is derived analogously to that of the stan-
dard Dirac equation. Requiring that the equation
have the same form in different Lorentz frames
leads to the standard Lorentz boost operator S
for spinors, 4 where S 'y"S =a„"y" with a„" the 4 x 4
Lorentz boost matrix. In a frame where the
bound- state momentum P'" = g„' P ", the bound- state
spinor is

C (k )=SC (k),

and u" =a~@".
V

D. Finite-nonzero-mass bound-state spinors

(5.31)

Equations (5.18)—(5.26) embodying the results
on eigenvalues and wave-function properties were
derived for zero-mass bound-state composite
fermions, in the ladder approximation, neglecting

C (k)(qP+0 —M,)([(1—q)P- kj'- M„'j

d k' 1
=3MiG~MgM j/ (2 )4 (k kl)2 M 2 C'j&(k') ~

H

M~ compared to M„. For a real (say) electron,
the mass is nonzero, M~ may not be negligible,
and the ladder approximation is unjustified be-
cause of strong coupling, so that I am not honestly
in a position to employ the above wave function to
calculate its physical properties. A more accur-
ate solution to the Bethe-Salpeter equation for
finite bound-state mass is beyond the scope of this
paper. Nevertheless, it is interesting to examine
qualitatively some bound- state. pr operties using a
trial wave function, and so, in order to proceed,
I shall assume that C, in Eq. (5.25) also adequately
describes a bound state of small but nonce'
mass (P'„)"' in its center-of-momentum frame,
at least in the limit that its constituent masses
are much greater than the bound-state mass. Ex-
plicitly therefore I assume that in the limit of
large constituent masses, in the center-of-mo-
mentum frame, the correct bound-state wave
function is

C ~, = r(k/M„)U„ (5.32)

where U, is a free Dirac rest-frame spinor and

(a crucial assumption for all subsequent pheno-
menology) I' is a function only of k/M». Mz
should henceforth be interpreted as a typical ex-
tremely large internal mass, usually that of the
Higgs boson H or sometimes the heavy internal
fermion (say L). Where necessary these will be
distinguished. -

Employing Eq. (5.31) to boost C~ 0 to a moving
frame, one obtains the bound-state spinor of mo-
mentum P„,

C ~(k) = I"(k/M„)U~, (5.33)

where U~ is a free Dirac spinor of momentum P„.
I shall show below that this assumption of (k/M„)
dependence of Z', at least in the large-1Vl~ limit,
is sufficient to guarantee agreeable behavior
(pointlike properties, no radiative decays) for the
bound- state generations.

VI. PHENOMENOLOGY AND DISCUSSION

In this section I discuss the physical implica-
tions of the above model, often using the assumed
composite wave function C ~(k) of Eq. (5.33). The
discussion is not exhaustive; rather I examine an
assortment of physical processes with the aim of
qualitatively showing that leptons and quarks in

the model, although composite, can appear almost
elementary. I also try to estimate how, and at
what energies, structure will manifest itself.

A. Electromagnetic form factors

In terms of the Feynman diagrams of Fig. 5,
the matrix element of the electromagnetic current
J'„between an incoming bound-state electron of
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The integrand above is a function of k only, and
thus the integral must be proportional to y„so
that

(I-q)P-k

FIG. 5. Feynman diagram for the electromagnetic
form factors of the electron in the composite model,
corresponding to Eq. (6.1).

momentum P" and an outgoing one of momentum
P'" =P'+q" is given by"
(P'

~

Z ' (0)
~
P)

x y, i (k/M„) p~. (6.4}

1 —q P-0 —M 24~, Q' y„4~k
(6.1)

Here 4~and 4~ are the electron's wave function
and its conjugate, and k'=k+(1 —q)q is the rela-
tive momentum of the final wave function. I', and
I", are the usual electric and magnetic form fac-
tors.

Current conservation q~(P' ~J'„(0)~P) =0 follows
from Eqs. (5.3) and (5.27); although this involves
the ladder approximation, it would have to be true
for the exact solutions too. The Bethe-Salpeter
normalization condition follows from the charge
normalization condition E, (0) =1, and implies

d k'2, j[(1—q)P —k]'- M „2)C,(k)y„C,(k) =P./I,
(6.2)

for a bound state with P P~=m, '.
Combining Eq. (6.1) with the wave function 4~(k)

=I'(k/M„)U~ in Eq. (5.33) gives

de(P' ~Z '„(0)~P) =—,f[(1—g)P —k]' —M„']

x V, r(k /M„)y„r(k/M„)V, .

(6.3)
Since k' always appears divided by M „(the large
internal mass) in Eq. (6.3) and since k' =k
+ (1-g)q, the limit M„-~ is identical to the limit

q -0. Furthermore, in the limit M „-~, the
terms of order P ~ k and P in Eq. (6.3}are neg-
ligible compared to 0' and M~'. Thus

4
»m (P'~&; ~P)- — 2, [k' —M„']Vp, I (k/M„)

N~ 2'

»m (P'~J'„~P) -&„U,y„Up, (6.5)

where N„ is essentially given by the integral in
Eq. (6.4}. The charge normalization condition
(true irrespective of the value of M„) then ensures
N„=1, so that the electromagnetic vertex of a
composite electron, in the limit of infinite con-
stituent mass, is simply y„—that of a Dirac
fermion. Thus E, (q') =1, E,(q') =0, and the com-
posite particle with these assumptions has no an-
omalous magnetic moment due to its structure.
It will presumably" have the standard quantum-
electrodynamic (QED) perturbative additions to
the moment.

For large but finite M z, E,(q') and E2(q ) will
receive small contributions from their structure.
The corrections to E,(q') =1 can be of order
q'/M„', where M„could correspond to either the
Higgs-boson mass or the lighter heavy-lepton
mass M~ inside the electron. The corrections to
E,(q') =0 are -m, M~/M„', as suggested by the
dispersion argument of Ref. 23; where MH is the
Higgs-byron mass and M~ that of the heavy lepton
in this model. For MH-16 TeV and M~-100 GeV,
this is much smaller than the uncertainty between
QED theory and experiment.

The muon in this model contains two Higgs bos-
ons. Assuming that its wave function is also given
by Eq. (5.33) in form, it is also quasipointlike
with a composite contribution to its moment
-m M /M 2- 5 x 10 8. Although this is a little
too large not to spoil the agreement between QED
theory and experiment for the muon, the estimates
above are sufficiently crude that it is easily con-
ceivable that an accurate calculation (were it feas-
ible) could come out an order-of-magnitude smal-
ler, which would be satisfactory.

It is clear, therefore, that provided the present
model produces a wave function like Eq. (5.33), it
is consistent with experiments on lepton structure,
and g fortiori on quark structure. It also suggests
that another order-of-magnitude increase in the
accuracy of g- 2 experiments on muons, or in
e'e —p, 'p, experiments, should show deviations
from pure QED.

B. Suppression of radiative lepton and quark decays,
and flavor-changing neutral currents

Suppose~ that both p, and e have wave functions
given in form by Eq. (5.33). A calculation anal-
ogous to Eqs. (6.2)-(6.5} above then shows that,
in the limit M~- ~, the amplitude for p - ez is
given by
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A(p -ey) =N„,V(p)y, U(e)e (6.6) D. Absence of light spin-3/2 leptons

where U denotes the relevant lepton's spinor, &'

the photon polarization vector, and X„,a wave-
function overlap integral analogous to that of Eq.
(6.4) for N„

Electromagnetic gauge invariance necessitates
that N, =0. This expresses a sort of orthogonal-
ity between the e and p, wave functions (in the
large M„ limit) which guarantees the vanishing of
radiative amplitudes in the limit rn, /M„0. -The
same applies to s -dy, etc. For finite but smallI /M„, the amplitude is nonzero but small; the
exact value depends upon the detailed wave func-
tions and its estimation is beyond the scope of this
paper, although it would clearly have to be apprec-
iably suppressed to match the upper limit of 1.9
x 10 ' on the branching ratio' p, '-e'y.

The vanishing or suppression of N, (or N, ~)
from gauge invariance also automatically ensures
the vanishing of the vector part of any flavor-
changing neutral current coupled to the standard
model's Z' boson. However the suppression of the
axial part of the flavor-changing neutral current
is not an automatic consequence of this; one re-
quires some more general orthogonality, of d and
s (or p and e, etc. ) wave functions that holds for
both y„and y y, vertices in Eg. (6.4), since the
Z' couples to both these currents in general. This
imposes constraints on the wave functions which
should somehow emerge naturally from their
bound-state solutions, but how this happens is at
present unclear, though under investigation.

Note finally that for weak decays like u —sW, u
-dS', where because of the mass of the g boson
gauge invariance cannot be invoked to deduce van-
ishing amplitudes, the ratios of the amplitudes
(which determine the Cabibbo angle) are given by
wave-function overlap integrals between quarks of
different charge. These are therefore in principle
calculable; in practice one needs a realistic wave
function, at present unavailable.

C. Neutrino masses and mixing angles

The angular-momentum excitations of the (LH)
system necessary to produce higher-spin leptons
(or similarly, guarks) would be expected to excite
a finite fraction of the binding energy -M~. Such
leptons or quarks would be too massive to be cur-
rently pr oduced.

E. Lepton-number-violating interactions

Since different leptons of the same charge are
distinguished by their Higgs-boson content-, Higgs-
boson rearrangements occurring during weak in-
teractions could lead to small violations of lepton
number (which I am unable to estimate numerical-
ly). For example, instead of the traditional decay
p, -e v,v„, II rearrangements in the final bound
states can lead to the rare decay p, -e v v„
reminiscent of rare decays occurring in gauge
theories with a multiplicative lepton number. "
Experimental bounds" on such amplitudes are at
the level of 20$ of known weak decays and there-
fore not yet particularly prohibitive. Analogous
rearrangements can occur for quarks, leading to
a nonzero amplitude for v„+d-e +c with flavor
changes at both vertices. (Such an amplitude would
also occur in the presence of v -v, oscillations. )

F. Higgs-boson-light-lepton couplings:
Testing compositeness

Since H is responsible (via its vacuum expecta-
tion value) for the masses of the fundamental gen-
eration (I,', L, U, D), their couplings to H are
proportional to their mass. Thus their bound
states, say e = (L H), would not have Yukawa coup-
lings to II proportional to their light masses, as
occurs in the standard model with elementary
fermions. This suggests another possible way to
ultimately distinguish elementary from composite
fermions. Given the expected mass of H though,
it is probably only feasible to do so at energies
where their structure should already be manifest
in other processes mentioned above.

Qnly qualitative remarks can be made. Since
v, =(L H), v„= (LDHH), and v, =(L'HHH), and since

must be massive to couple to Il, I expect all
neutrinos to be massive, with a similar hierarchi-
cal structure to the e- p, -v series. Why they are
so light is then a puzzle. Weak mixing angles are,
as for quarks, in principle, calculable, and neu-
trino oscillations to be expected. " The v„with
three latent Higgs bosons, could have appreciable
mass, and better experimental limits would be
welcome.
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APPENDIX

In this Appendix, I bound the norm ~~H)~ of the kernel H in Eq. (5.17). From Egs. (5.16) and (5.17),
) 1/3( z 2/3

Hx, z)= x+1j '(z+I 0 y+1 (x+y+1+ [(x+y+1)' —4xy]"'} y+z+1+ [(y+z+1)' —4zy]"'2 1/2 '
2 1/2

By means of the inequalities

&1,x+ 1.

[(x+y+1)'- 4xy]" ')0,

oo 1Hx, z)& dy (x+y+1)(y +z+1)'
ao | 1

y x+1 (y+z+1)' (x+1)(z+1)
Thus)

one obtains
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