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Three-body decays of the proton
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The rates for the three-body proton decays p~m. e+ are related to the rate for the decay p~m. e+. This is done by
making an ansatz for the form of the three-body amplitude which is consistent with current algebra and with the
measured mv final-state interactions. We find that the three-body decay rates are comparable with the rate for the
two-body decay p~'e+.

I. INTRODUCTION 3C, =a, Q, +b Q, +H.c. (3a)

Grand unified models of the strong, weak, and
electromagnetic interactions contain new inter-
actions which can mediate baryon-number-violat-
ing nucleon decay. ' lf proton decay is character-
ized by a mass scale of order 10" GeV, ' as in-
dicated by renormalization-group analysis, then
only baryon-number-violating operators of the
lowest possible dimension can contribute at an
observable rate. Weinberg and Wilczek and Zee
have enumerated the baryon-number-violating
dimension-six operators consistent with Lorentz
and SU(3) 8 SU(2) 8 U(1) invariance. ' ' For decays
into nonstrange final states they are

("az"ss)(" yrJ', s s. ) as' ~

Q2 (d aLnsL)( yReR) as'

Q = (d sn ss)(M s es —B svs)6 s

and

Q, -(~ s&ss)(&'~ee)& s

x~~~= =x, +x, (2)

where

where the notation of Weinberg has been used. We
have shown only those operators relevant to de-
cays with a positron or electron antineutrino in
the final state. Similar operators exist for decays
with an antimuon or muon antineutrino in the final
state. The operators Q, and Q, lead to right-hand-
ed antileptons in the final state while Q, and Q,
lead to left-handed antileptons in the final state.
Consequently it is convenient to decompose the
effective Hamiltonian for proton decay so'that

and

R =a Q~ b+Q3+H.c. (3b)

& "e'I30,(0)l p& = &, ~:(1+-r,)a, ,

and the total rate (m is the nucleon mass)

&(p-"")=—„(IE, l'+
I
E I')

(4)

(5)

contains no interference between the contributions
ofX, andX .

Recently several estimates have been made for
the two-body proton decay rates in the Georgi-
Glashow SU(5) grand unified model. ' In this paper
we shall consider the three-body proton decay
modes p- ~~e' in a model-independent manner.
Since the operators Q„.. . , Q, defined in Eg. (1)
are purely isospin —,', the final-state pions can
either be in an I = 0 or I = 1 state; the I = 2 final
state is forbidden. To obtain crude estimates for
1'(p-wm(I =0)e') and I'(p-mx(I =1)e') one can
compute the rate for the decays P- ~~e' from the
lowest-order diagrams of Fig. 1. Using Egs. (4)
and (5), neglecting the momentum dependence of
the form factors E„and noting that the isospin
properties of Q„.. . , Q, imply (s e'I K, (0)l n)
= v 2 (w' e'I R, (0)l p), these contributions give'

The Wilson coefficients a, and b, depend on the
specific grand unified model being considered.
The contributions of K and X do not interfere if
the mass of the final-state antilepton is neglect-
ed. ' For example, in the decay p- ~'e' the matrix
elements for right-handed and left-handed posi-
trons can be parametrized in the following man-
ner:
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FIG. 1. Born or pole diagrams contributing to p mme .
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1

when the pion mass is neglected, and where g„ is
the pion-nucleon coupling constant

Therefore, the naive expectation is that the three-
body decay modes p- ~~e' should be significant
in comparison with p ~De'.

Several improvements on the above estimate of
the rates for the three-body decay modes
p-xv(I =0)e' and p-vv(I =l)e' are possible. In
Sec. II current algebra is used to gain information
on the decay amplitudes when one of the pions is
soft and in Sec. III dispersion-relation techniques
are used to estimate the effects of final-state
strong interactions. Concluding remarks are giv-
en xn Sec. IV.

II. CURRENT-ALGEBRA CONSTRAINTS

When one of the pions is "soft," current algebra' can be used to gain information on the amplitudes for
the decays p mme'. Consider firstly the decay p- m'm e', The invariant amplitude for this decay

a' "(P.,p, ) = &e'(P,-)v'(p. )~'(p, )I 30,(0)~ p&

is a symmetric function of the pion momenta. Using the Lehmann-Symanzik-Zimmermann reduction
formula, one finds

(6)

a'o' "(p„p~) = lim i (y. '-p, ') d4ge'~&' " &e'(p~)mo(p, )~ T(po(x)K~(0))[ p), (9)
P3 P

where p is the pion mass and Q, the neutral-pion field. Any field with the appropriate quantum numbers
can be used for the pion in Eq. (9) provided it is appropriately normalized. The standard choice in current
algebra is to relate the neutral-pion field to the third component of the axial-vector current by

s P~(&)
0 ~2f P

Inserting this into Eq. (9), integrating by parts and taking the soft pion limit p, -0, one finds

", "(p. o)= & '(P) '(p.)l[Q',"x, (0)]lp&
-i~2

+ lim p3&

p3 ~0 1f

d'~e'" *&e'(p,)~'(p.)l T(&'„"(x)36,(0))lp&.

From Eq. (1) it is easy to relate the equal time
commutators of the axial-vector charges Q, to
those of the isospin charge T,

[Q„3C,]=+[T,X,]. (12)

I+g~ I y5"~

(13)

This can be used to evaluate the commutator term
in Eq. (11). The second term in Eq. (11) can be
evaluated by diagrammatic technique using the
axial-vector current-proton vertex ( g„/2)y„y, .
From Eq. (4) we find

when pion mass is neglected.
In the Introduction rates for p-7txe' were given

that were computed using the Born diagrams in
Fig. 1. However, the amplitude arising from Fig.
1 is not consistent with the current-algebra rela-
tion in Eq. (13). The diagrams in Fig. 1 are ex-
pected to vary more strongly over the kinemati-
cally allowed region than other contributions, for
example, from diagrams with higher-mass inter-
mediate states (e.g. , N*). Consequently we as-
sume that these contributions can be approximated
by a constant over this kinematical region. We
further assume that the amplitude for p-~'e',
when the proton is virtual, is well approximated
by that for a physical proton —i.e., we neglect the
off-shell dependence of E,. These assumptions
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then lead to the following ansatz for the amplitude
for p~x 7!' g

+~gC, y, u, . (14)

Our guiding principle (assumption) here is that
the (PCAC) (partial conservation of axial-vector
current) constraints are to be satisfied by adding
terms to the $0sgesl; angular momentum states for
each isospin value.

The decay rate following from this amplitude is
easily calculated when the mass of the pion is
neglected:

(I 8, I
'+

I
E I

2)

c =-I3-—1( 1)
2I g„]'

Inserting this into Eq. (16) yields 1'(p ))oboe+)

=0.06r(p-)('e'). Since the amplitude for p
-«(I =2)e' vanishes, the rate for p-vovoe+ is
one third that for p- «(I =0)e'. Thus

(18)

r(p-«(I =O)e')=O. 17(p-r'e') . (19)

by current algebra. Proceeding as before, we
find

Next we consider the charged-pion final state
and the constraints imposed on the invariant am-
plitudes

'(p. , p.)= &'(p-, ) '(p.) ( p. l)36, (ol) p)

where

C, +-. C,',
e; ~

- (p„O)=+ —'(e'(p, ) '(p, )l [I„X„(0)llp),

(21)

or equivalently

r(p-))owoe') g„'
r(P- )( e') 32))' (16)

where Eq. (12) has been used. There is no pole
term in this amplitude and the isospin operator
acting on the states yields

The constant C, can be determined by requiring
that the limit of Eq. (14) when p, -0 agrees with
Eq. (13). The Goldberger-Treiman' relation

g&; ~ &(p„p,) — —M2z, v', (1+ y, )y, u~ .
P ~ 0

(22)

W2mg„

then gives

(17) Alternatively, when the m' is removed from the
final state of the matrix element in Eq. (21) and its
momentum is taken to zero, we find that"

I

pPa','' '(0, p, ) = lim -~ ~ d'xe'~2 '(e' (p, )w (p, )I T(A'„'(x)K, (0))I p) .
P ~0 Tl'

(23)

The commutator terms vanish in this case and the
right-hand side of Eq. (23) can be evaluated with
diagrammatic techniques using the proton-neu-
tron-axial-vector-current coupling+ g„y„y,. The
result is

(+, )(p p ) gA E
02~0 fw

x x'. ((xy,)((+ ' y, xx (44)
p p.

when the pion mass is neglected.
The amplitudes for p-)()((I =0)e' and p-«(I

=1)e' are related to those for p-)(')( e' by the
relations

"="(p p)=l~~[ ' '(p. , p)

I
and

Using Eqs. (24), (23), and (4)

p ~p Jn

(+4x) x xxf mgA

iP'P2

4

p2~ 0 Jm

(26)

(27)

' (p., p, )] (25)
x -' " p, +1+gAIysu~ . (28)p'p
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The isospin-zero amplitude in Eg. (27) leads to
the same result as was derived from our discus-
sion of p-7t'n'e'. The isospin-one amplitude re-
sulting from the Born diagrams in Fig. 1 does
not satisfy the constraint given in E(l. (28). A
simple ansatz for the I = 1 amplitude that is con-
sistent with current algebra, Bose statistics,
and with our intuition that most of the kinematical
variation of the amplitude (apart from the effects
of nm final-state interactions) comes from the
Born diagrams of Fig. 1 is

a' ~i=" ( p„p,) = i v 2 E,g„v ', (1 + y, )

( 6 Ps & &i
( )"

~(2p p 2p p )'m
2

+ s D.p (p. -p.) &.&pm
(29)

(p- (I =l)e') = ' "
2

', ' mg„'I,

when the pion mass is neglected, and where

J,=[(7 --', n')+-', C, +-', C 2

j. 1 1—
6 Cxai —AD&+ i5&x j

or equivalently

r( p- ~~(i =1)e') g„'
1 (p- x'e') 16m'

The constants C, and Dg are constrained by Eq.
(28) to satisfy

1 1-D = —— 1 ——
1 1

To parametrize the freedom in the choice of Cy
and D, we write

C, =--
~

1-—j(1 -f),1( 1t
g~i

where C, and D, are constants. The rate following
from this amplitude is

TABLE (. I'(p —~we')/1 (p —~ e').
)

porn+ PCAC Born+ PCAC+ rescatterxng

I= 0 1.38 0.17

0.24 (b=0)
0 23 (b=1)

0.24

1.6 (b= 0)
1.5 (b=1)

1. Recall that this procedure resulted in a re-
duction of the rate for p-n~(i =0)e' by roughly a
factor of 10 but a negligible reduction in the rate
for p- ww(i =1)e' for 5 =0 or 1 (see Table I).

However, these computations have neglected
the effects of strong-interaction final-state x~

interactions. Since there is considerable phase
space available for the pions, their final-state
interactions can be dynamically significant. In
the case where the pions are in an I = 1 state, a
large enhancement of the rate from the final-state
interactions is expected since they can form a p
resonance. In Sec. III we estimate the effects of
final-state interactions for both the J=0 and 1
final states.

Absa,"='"(s,p j)
1 4JLL ) df (I p f)g'gent"='"', (s;j j)32m s ) . 4m

xo(l 0, 1&( .f .p)

III. FINAL-STATE INTERACTIONS

Up to this point our discussion has neglected the
strong interactions of the pions in the final state.
To include these effects we must first decompose
the amplitudes for p -mme' into partial waves.
The p-vv(I=O, 1)e' amplitudes a,"= ' satisfy a
unitarity constraint which follows from a consid-
eration of the crossed diagram shown in Fig. 2.
I et s be the square of the mw center-of-mass
momentum. In the "physical" region, s &4p, ',
the absorptive part of the ep-mw amplitudes
a, = ' satisfy

1 1 )
D, =+— 1 ——ib .

2 g„]
Thus the choice b = 0 means that D, =0, and b = 1
means that C, =0.

In this section we have attempted to improve the
naive estimates made in the Introduction using
current algebra to gain information about the am-
p1.itudes for p-'7lme' when one of the pions is soft.
Vfe then extrapolated over the whole kinematical
region assuming that most of the variation of the
amplitude arises from the Born diagrams in Fig.

Here we are working in the wm center-of-mass
coordinate system where

kp
ppr

FIG. 2. ep 7|7t scattering diagram used in derivation
of Eq. (33).
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and

P, +P, =k=(&s, o), -'(p, -P,)=q=(o, q),

l2+ la
——k = (v s, o), «(l2 —lg) = I = (0, I),

P=(&, p), -P, =(e, -p).

A 32K
K(sil ' q) —

(I 4 2/ )1/2

x g (2J+ 1)P~(l q)e "& sin6~ . (40)
z 0

From P - P, = k = (v s, o) it is easy to show that for
p, =0,

2 + 2 2—e=, Z= +
and )p(= . (34)

In Eq. (33) SR' = '" is the isospin-zero or -one
pion-pion scattering amplitude. The p mme'

amplitude a,"='"can be expressed in terms of
two types of form factors. Suppressing the iso-
spin superscripts

a, = iV,'(I + y~)(A, + 2B,))ysu« . (36)

The unitarity constraint for the crossed process
ep-mw, given in Eq. (33), implies that

u,'(1+ y5)(ImA, —2 ImB,))u~ = u,'(I + y5)(a, —2$,)u~,

A,(s;s) + B,(s,z) ='Q(24+ 1)P~(z)f, (s),
(41)

where z =P xq, the unitarity constraint becomes

Imf,'(s) = e "~ sin6~ f,'(s) . (42)

Next we multiply Eq. (36) by u~Qu', and sum over
electron and proton spins. Choosing the four-
vector C=(0, pxq), we find that

ImB, ~pxq~ =(pxq)(pxb, ) (43)

or equivalently, using Eq. (37),

The phase shift for the Jth partial wave 5~ depends
only on s, and thus it is evident from Eq. (39) that
when one m~es the expansion

where

(s6) 4 2~ i/2
ImB = 1- - K*s,l ~ qB~sP l

1 ( 4& l'~' "d
a, =

2
~1-

~
'II*(s,'I q)A, (s$ ~ I),

(37)

(q I) —(i" &)(q
1-(q i)'

(44)

( 4P, '&' ' " d~I'sit*(s;I. q)B,(s;j I) I,
32m i s j . 4s

(36)

Frpm a standard prthpgpnality relatipn fpI
I'~ it follows that the partial-wave expansion of
B, is

and 5, =0.
Multiplying Eq. (36) by u&u,

' and summing over
the electron and proton spins gives

(2J+ 1)B,(s,s) =
) ( ) )„2P,'(s)g,'(s),

J'

and the unitarity constraint for the g~ is

(45)

2m@, q 2mb, 'f)6

p «p, 4 4 p, «p
(se) Img„'(s) =e "& sin6~g, (s) . (46)

The mm scattering amplitude SR has the partial-
wave expansion

The decay rate for p-mme' can be written as a
sum of squares of the partial-wave amplitudes

f,'(s) and g,'(s):
I

2

~=,s,s, «&-," I&- —'a
I

$(2&+»Klx'. I'+ If-'I'&+&~-4~'&(I~'. I'+ Ia'I'&I
2 7 ~4~2 S

(47)

The partial-wave amplitudes which follow from
the expressions for the (Born) decay amplitudes
given in Sec. II are real on the positive real s
axis, s &0. These partial-wave amplitudes we
denote by f~(s) and g~(s). The bar signifies that
these are not the same as the true partial-wave
amplitudes f, (s) and g, (s) which have a cut for
s & 4p, and satisfy the unitarity constraints given

2

f J( )
z(i )f J( )(s)

(46)

in Eqs. (42) and (46). A simple form for the par-
tial-wave amplitudes f~(s) and g, (s) that is con-
sistent with the unitarity constraint is
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Dg (ti. )
g, (s)= D ( ) g,(s) (49)

The quantities f~ and g, can be deduced from the
expressions for the decay amplitudes given in
Sec. II. The Omnes D~ function is defined by'

p-ww(I=O)e" so we shall neglect higher partial
waves. The s-wave isospin-zero m-w phase
shift t)0 is consistent with the presence of a broad
resonance of mass 700 MeV and width = 500 MeV.
Therefore, we assume that in the physical region
0 ~ s - m the function Dp(s) has the form

D, (s) =exp ——' ds'1,'", 5J (s')
'F ~4~2 S -S-Zf„ (so)

Dp(s) s )= 1-—~-irpv s .
Dp(0) sp]

(s4)

—(ip& ~ gm~f I 1
2 pp. p, 2p. p, m' pi

(sl)

—(1=0 &
F~ ft' 1 1

(s2)

In Eqs. (51) and (52) and hereafter the pion mass
is neglected. Again we use a bar to denote that
final-state interactions have not been included.
The s-wave amplitude f (s) following from these
form factors can be derived by inverting Eq. (41).
Ne find that

and takes into account the effects of final-state mm

interactions in the 4th partial wave. The ampli-
tudes f~(s) and g, (s) defined in Eqs. (48) and (49)
satisfy the unitarity constraints given in Eqs.
(42) and (46) because Dz(s) has a cut for s &4p,
and equals ~D~(s)

~

exp(-is~) in this region. The
normalization factor Dz(p ) was inserted in Eqs.
(48) and (49) so that the decay amplitudes follow-
ing from f, and g~ will satisfy the current-algebra
constraints which restrict the amplitude in the
neighborhood of s = ]Lt, . Note that since the func-
tions Dz(s) are real and slowly varying for s
&4g, Imf, (s) =Imf, (s) and Img, (s) =Img, (s) on
the left-hand cut.

The isospin-zero amplitude a,' = ' only gets con-
tributions from even partial waves. The form
for a,'~ P' given in Sec. II [see Eq. (14)] can be
cast into the form of Eq. (35). The resulting
form factors X,' =" and B,' = ' are

The parameters so and yo are related to the s-
wave phase shift. Using

1 D,*(s)- D„(s)
2i D,(s) (ss)

S""=v2E g — + ~+ —,C, . (58)
1( 1 1 t 1' " 4p p2 p'ppi

As in the isospin-zero case, the rate for p
-ww(I= l)e' is dominated by the contribution of
the lowest partial wave. ' Consequently we shall
restrict our attention to the p-wave amplitudes
f„'(s) and g,(s), ignoring the rescattering correc-
tions to the (&1%) contributions of higher partial
waves. Inverting Eqs. (41) and (45) we find that'P

= ppspv s[(s —sp) —zppspv s ]

it is evident that so can be identified with the mass
of the s-wave "resonance" and yo controls its
width. Therefore, the values so =0.5 GeV and

yo =0.8 GeV ' are adopted. Performing the re-
quired integration [cf. Eq. (46)] we find that ww

final-state interactions enhance the rate for
ww(I=0)e' by about a factor of 1.5 so that

r(p -ww(I=O)e')=O 2r (p-. w' e')
The isospin-one amplitude a,'I=" gets contribu-

tions only from odd partial- waves. The expres-
sion for a,' "in Eq. (29) of Sec. II can be put in
the form of Eq. (35). Then

+ 1 +g+~4
4 I P"P P'P m3

(57)

P 2)~i

f,(s) =v 3E, —"
Cp —

2 1- 2 ln-'m m -s m —s s&

(s3)

1( 1'l( s i
6 E g~) E

The second term in the square brackets depends
on s and arises from the Born diagrams in Fig. 1.
The first term is a constant independent of s and
was added to make the amplitude consistent with
current algebra.

The s-wave contribution dominates the rate for

' m' (m' —s)' m'-s ~( s m'

1 1~

gaj
(6o)
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The last terms in Eqs. (59) and (60) were added
to the Born amplitudes to comply with current-
algebra restrictions.

The final-state interactions of two pions in a
p wave are dominated by the p resonance. There-
fore, we assume that in the physical region 0(s
&m the function D&(s) has the form

(61)

Fitting s~ and y& to the mass and width of the p
resonance gives 8&

——0.59 GeV and y&
——0.41

GeV . Performing the required integration we
find the final-state interactions enhance the rate
for P —vw(I= 1)e' by about a factor of 6 and hence
I'(P-vw(I=I)e')=1. 51'(p w e') for both b=0 and

1. Note that for 5 =0 the piece added to the am-
plitudes f,'(s) and g,'(s) to satisfy the current-
algebra constraints can be interpreted as arising
from a bare p-nucleon-positron coupling of the
form

(62)

where e is the p-polarization vector. Neglecting
the off-shell dependence of the form factor F, we

have that

(63)

where m, is the p-meson mass and f„,is the p-
two-pion coupling constant.

IV. DISCUSSION AND CONCLUSIONS

In this paper we have attempted to make a sim-
ple estimate of the ratio of two-pion to one-pion
final states in proton decay without assuming a
particular grand unified model. We found that for
the isospin-zero two-pion final state the pole or
Born contribution gave a ratio around one but
when PCAC was imposed the ratio was reduced
by almost an order of magnitude. In the isospin-
one case the Born diagrams gave a small ratio of
about one fifth. However, in this case the cur-
rent-algebra constraints caused only a slight re-

duction in the ratio of two-pion to one-pion final
states. Finally the effects of final-state strong
interactions in the lowest partial waves were es-
timated using familiar dispersion-relation tech-
niques (whose validity it would be inappropriate
to discuss here) and were found to enhance the
two-pion rates substantially. This oscillatory
history is shown in Table I where the rates in-
clude the Born contributions to the higher partial
waves. Note that the same results mould-have
been achieved if the Born amplitude was first
corrected for the effects of final state interactions
and then consistency with the results of current
algebra was imposed.

The imposition of the PCAC condition is unique
if one adds only constants (no growth in s) to the
lowest possible partial-wave amplitudes. ' In the
I=1 case this corresponds to the choice 5=0.
However, because of the additional s dependence
in the rate associated with g, [cf. Eq. (47)], we
do not consider the choice 5=0 to be compelling.
Fortunately PCAC has little effect on this ampli-
tude and the rate is insensitive to the value of b.

The large rate for the isospin-one two-pion
final state is more or less in qualitative agree-
ment with bag-model estimates of p -pe'. We
have also found a significant rate for isospin-zero
two-pion final states. Because of the large
amount of phase space available to the pions one
should be suspect of the dramatic cancellation
which occurred when the Born amplitude was ad-
justed to satisfy the current-algebra constraints.
The rate for p-vw(1=0)e' may be somewhat
larger than we have calculated. "

Finally we note that other three-body modes,
such as n m m e', p -m'm v, and n -mdiv follow
from our estimates by simple argunients [e.g. ,
from isospin I'(n —irv(I= 1)e') = 21'(p -vw(1= I)e')].
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