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Calculation of proton decay in the nonrelativistic quark model
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We compute two-body branching ratios in proton decay in the SU(5) and SO(10) grand unification schemes. Using
nonrelativistic approximation for quarks we can obtain algebraic relations between the matrix elements coming from
spin-flavor symmetries. The absolute magnitude can be fixed from nonleptonic decays of hyperons, a similar
phenomenon. We find branching ratios significantly different from previous works. Pion modes are very important
due essentially to phase space (m'e+, 37%, and n. +v„15%), and co e+ is quite sizable (-18%) due to its large
matrix element. We find also an important E p+ fraction (19%).Bound-state effects are quite crucial since we get,
from two-body modes, a lifetime at the edge of the experimental limits, r(p) 5)&10" or 8)&10" yr from
M~ = 3 && 10"or 6)(10"GeV.

I. INTRODUCTION

The idea of a grand unification of color SU(3)
and electroweak SU(2) xU(l), proposed by Patt and
Salam' and Georgi and Glashow, ' has important
implications both in cosmology' and in particle
physics at low energies. Predictions for para-
meters such as sin'8~ and fermion masses can be
made once one takes into account the renormaliza-
tion effects coming from extrapolation from the
grand unification mass to the energies where the
effective theory is SU(3) xSU(2) xU(l).' A most
interesting prediction of these schemes is the in-
stability of the proton through very weak inter-
actions violating both lepton and baryon number.
To know if such a prediction is testable; it is im-
portant to have information on the total decay rate
and the branching ratios of the expected dominant
modes.

Several authors' have estimated the total decay
rate of the proton within the SU(5) theory from
rough calculations of inclusive modes p —e'X',
p- v, X and various approximations in the deter-
mination of the leptoquark mass. The total lifetime
obtained by Buras et al. ', &~- 10"-10' yr, goes
down to 10"-10"yr after taking into account cal-
culation of P functions at the two-loop approxima-
tion and threshold effects, which lead to a value
as low as Mx = 2.7 x 10"GeV. '

More precise studies have been done recently to
estimate the branching ratios of the exclusive
modes. These calculations predict P —e+z roughly
dominant but do not agree with each other in the
relative rates. Although using essentially SU(6)
(spin-flavor) wave functions, these approaches
differ in their treatment of the relativistic effects
of the quark motion. Machacek' treats the
outgoing antiquark relativistically while the other

quarks are taken at rest. The authors using the
bag-model wave functions' disagree on some
branching ratios (although the details of their
approaches might be different). In any case, in
our opinion these calculations do not show clearly
the origin of the relative magnitude of the different
matr ix elements.

In principle, static-SU(6) wave functions should
lead to algebraic relations between them. We
think that, although relativistic corrections of the
qgggyk motion can somehow break these simple
algebraic predictions, a necessary step to clarify
the situation is to compu'te the matrix elements in
the familiar nonrelativistic quark model. After
all, the predictions for ~- m y, 6'-Py, magnetic
moments, p, ur-e'e, etc, are in good agreement
with experiment. Encouraging results are also
obtained in the nonleptonic decays of baryons, ' a
process not very different in nature from proton
decay. We will thus make the assumption of non-
relativistic motion of quarks but we will of course
treat the lepton as ultrarelativistic, as was the
case for the quarks and the photon in ~ —m y or
for the quarks and the pion in a process like
A -pp . The calculation is approximate but free
from the ambiguities of the relativistic effects of
the quark and the hadron center-of-mass motions
(Lorentz contraction and Wigner rotations). We
will see that we obtain simple expressions of the
matrix elements in terms of the baryon wave func-
tion when two quarks are at the same point, which
can be extracted from nonleptonic hyperon decays
or mass hyperfine splittings. ' Pur SU(6) approxi-
mation means that, in the calculation of the matrix
elements, p, ~, p, g are assumed to be degenerate.
We will break the degeneracy in the phase-space
factors as is usually done.

Since our branching ratios differ from recent
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literature [in particular the ratio I'(p- ee')/
I'(p -poe')], we will be very explicit. In Sec. II
we describe the general framework restricting
ourselves for the moment to SU(5). We deduce the
first quantization operators contributing to the two-
body modes. In Sec. III we write its nonrelativistic
limit and compute the matrix elements. In Sec. IV
we comment on the algebraic relations between the
rates and give the final numerical results. In Sec.

I

V we extend our results to SO(10) and in Sec. VI
we conclude.

II. GENERAL FRAMEVfORK

For the sake of simplicity, let us first start
from the "standard" SU(5) theory in the limit M»
=Mr (X, Y have charges

I Q I

= -', -', respectively),
neglecting Qabibbo-forbidden modes, '

2

, [(e,~„u'„~y„u~~)(2e~y"d«+ p~y"s~~+ e„'y"d „+psy"s „)+(q ~ p„zy„d~z)(P;zy"d ~+V'„y s,„)].

The relative sign between R and L leptons differs
fr'om the one of Ref. 10; we will explain this point
in Sec. V.

In Sec. V we will give a prescription for com-
puting branching ratios when Mr WMr in the SU(5)
and in the right-left-symmetric theory SO(10)."
In (1) a, p, y denote color indices, gz„+=2(1+7,)4.
Let us ignore for the moment the muonic-strange
decays. We have then three types of operators:

I —y. . ./1 —y, &

0,.=& z„u„'y„„uz r+, y
~& 2

'
~d

L

1 —y, , „r'1+ys

Ovg ~ gy +a~ I 2 dg ~eR~

I

factors they are of the order" (neglecting the pion
mass},

(+2 2~5
I'(P - e'vv)-I

I,2M~

%'e will discuss the calculation of these modes in
another publication and we will concentrate here
on the two-body decays.

The second-quantization operators (2) will give,
if we keep only the three combinations of Fig. 2

contributing to two-body modes, the following op-
erator:

We have kept the helicity label for leptons and not

for quarks in view of the nonrelativistic approxi-
mations we will make in Sec. III. Developing the
fields in creation and annihilation operators
(P=ua, +nb „P=P-c,+ib ,'), we will hav-e for each
operator (2) 16 combinations, half of which will
correspond to processes involving an incident e
(or v,}, and half to processes emitting an e' (or
v,}. From these, we do not consider the mechan-
ism uud- e' (Fig. 1) since it will be involved in

p - e'q or p - e'gg via Zweig-rule-forbidden pro-
cesses (as in charmonium P'- gq, g' - gwv). The
remaining processes will contribute to two-body
(Fig. 2) or three-body (Fig. 3) decays. We think
that three-body decays are not really small rela-
tive to two-body decays, since up to algebraic

and analogously for 0,, and 0-„. The notation for
R

spinors and creation and annihilation operators is
the standard Bjorken and Drell one. We have re-

d

FIG. 1. Example of Zweig-rule-forbidden process in-
volving interaction within the proton of the three va-
lence quarks. The broken lines are gluons.

FIG. 2. Examples of proton two-body decay processes
computed in the text.
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vy„' v a„b~ = —uy, ' u b~ a„. (7)
I

ft do, 2 CL

Changing now the name of the color labels (we have
an even combination) the first term in (3) finally
gives

0,. =q ~ —uy„u b-„a„(1) y5

y5xuy~ u be'au
2 0!

FIG. 3. Examples of three-body proton decays.

spected in (3) the order between creation and an-
nihilation operators and the corresponding spinors.
We will now order (3) under the form

& 8„(~ ~ ~ )b-', a, (' ~ )b-, a,
where ( ~ ~ ~ ) means the corresponding spinor ma-
trix element and

(4)

u

i.-u

e+

-t'e ~

(5)

O,. =p z, vy v a„b„-(1) y5
L 2 tiy

I

u 1 y5x uL y u b~+ag (6)

We must now exchange the creation and annihila-
tion operators (using v =Cur, u =CVr)

We adopt this isospin notation irrespectively of
the helicity [in SU(2)x U(1) we have doublets q~, l~,
g„,l„, but this will be useful more generally in
the right-left-symmetric theory SO(10)]. The
minus sign in (5) affecting the antiparticle is the
usual minus sign of antiparticle isodoublets, (,),
("-). To order (3) under the form (4) we need to
make a Fierz transformation of- the first term
[the form (V-A) ~ (V-A) is invariant under Fierz
transformations]:

In the second term of (3) we must first apply (7)
which gives

(2) — 1+ y50,.=p» —uy„2 u b„- a„

, 1 —y5x uLy' —u b, , ad

(io)

(i2)

and finally we get

and now make a Fierz transformation to (9) to
keep the same order defined by (4) and (5):

(y5+ 1&
x x

(

'
~x b,.a, I,'& 2i

since by Fierz rearrangement the Lorentz com-
bination (V+A)x(V-A) gives 2(P —S) x(P+S).
Changing the name of the color labels (even com-
bination) and affecting u with a minus sign to keep
to the isospin notation (5), we get

(2) —y5 1
Oe+ ~ogy 2 u u b(~ )a„

~ = "2'--b'"
For the third term in (3) we must make a Fierz
transformation, affect u with a minus sign and
change the color labels (odd combination),

j
(3)

Oe & eg uyv]( u b(~ ) a o

1 + y, ~ ,~l'1 —y, t — y, —1 t — y5 + 10,+ =q
gy uy„' u b-„a„uL y I 2

' u b, .a„+2 u
2

u b( —
)ad uL

2
u b,.a„

~II

y5 t vj 1 y5+ uy
2

u b(")ad uzy ) 2
u b +a„ (i3)

Using the same technique, we obtain for 0,+ the
same expression as for 0, , but withthe substi-
tution y, --y, . For O-„,~ we get the same ex-
pression as for 0, , but with e„-—v,~, u -d:

t

o,;=o,.(r, —r), —
(14)

These symmetries have been outlined by Weinberg
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and %'ilczek and Zee,"and can be seen easily
from the original interaction (2) by making the ap-
propriate Fierz and C operations. They come
simply from the SU(3), x SU(2) x U(1) invariance
of the interaction and from the broken left-right
symmetry specific to SU(5) which allows the em-
bedding into SO(10). One has, "for es and v', „the
operator,

e.,„e;,( .,dg, )(~; e„,)

for e~. In these expressions Greek indices mean
color and i,j components of flavor isodoublets.

1 XL"' ~~,-x..
X1

.Xs .

III. NONRELATIVISTIC APPROXIMATION
FOR QUARKS

Using the nonrelativistic limit for quark spinors
and the ultrarelativistic one for leptons,

and

&~gy& ~g( e&» ejgE)( Luy g)

(15)
where X~ „=-,'(1+ o p)x. We get, in terms of
Pauli spinors, the following simple operators:

0, (1,2)= —e ~ I

'
')[&,(u -e~)&,(u~ d„}-+8,(u -e~}&,(d8--~~„)],1 /1+ 0'y' 0'2

0, (1,2)= —g,„ I

'
I[&,(u -e„')8,(u, -d„)+8,(u -es)8,(d, --u„)],1 (1+a, ~ o2't „

(16)

u„)+ 8-,(d. - v,„)o,-(u, -d„)],

where the labels 1,2 mean the quarks 1,2 in the
nucleon wave function, and &,.(a- 5) are flavor
operators transforming a into b. Isospin in the
sense of (5) is conserved Thi.s gives for strong
isospin the 4I= —,

' rule remarked by Machacek. '"
What is remarkably simple in these formulas is
that the spin operator is just (1+5, 5,) in all three
cases. The fact that it is the same is just a
translation to the nonrelativistic limit of the. sym-
metries expressed in (15). Note that in the case
of nonleptonic hyperon decays we had instead a
(V-A)x(V-A) interaction involving quark fields
(and not fields and charge-conjugate fields as in
the present case), giving in the same nonrelativ-
istic approximation an operator (1 —o, o,} instead
of (1+o, (r,}.

It is now easy to estimate the matrix elements
of the decay p-lM where M is any ground-state
meson of isospin I=O or 1. Color will give a
factor v 2 since the proton and meson are color
singlets (with normalization factors 1/&6 and
1/v 3, respectively, and we have six color com-
binations in the interaction (16)

1
(X' 0' + X"g ) g', (16)

where tt' is a symmetric space wave function, and
X', X" and y', y" are mixed symmetric spin and

isospin wave functions, respectively, antisym-
metric and symmetric relative to quarks 1 and 2:

6
Wee

The rest of the proton wave function can be written
as

1
(duu —udu),

2 19
(2 l'

y" = -I —
I

[uud —-'(udu+ duu) ]

and X'" ', X"" ' are identical to those withu-0
and d~4.

The second-quantization operators (13) and (14}
will give rise to operators (16) summed over all
six (ij) pairs

go(ij).
Because of the full symmetry of (18) it is suf-
ficient to compute the matrix element of one op-
erator 0(l, 2) and multiply the result by 6 (number
of Wick contractions). The result must be divided
by v 6 because, in the second-quantization for
malism, the proton state is written down as the
product of the antisymmetrized wave function
times the product of the quark creation operators
divided by v 3!. Note that such factors 6 and 1/v 6
do not appear for the quark-antiquark-antilepton
final state since we have not adopted an antisym-
metrized wave function in this case of unidentical
particles.

The flavor matrix elements are given by [we de-
note the flavor operator in (16) without the color
indices by ]

(ex @r(2 3}
I

' ' '
I
&') =

2
(5a)+ 5sx)

1

(e,'4, (2, 3)
I

~ ~ Iy")= — 5„+W3 1
2 "2 3 "'

(2O)

(v, c,(2, 3)
I

~ ~ Iy')= —~5„,1

(v, @,(2, 3)
I

Iy")=—
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In these relations 41 denotes the outgoing meson
isospin wave function.

The action of the spin operator over the nucleon
wave function is very simple:

2

since in x' and x" the quarks (1, 2) are in a spin
singlet or triplet, respectively,

Clearly this spin operator turns a 56 representa-
tion of SU(6) into a VO". Since the outgoing lepton
is a helicity eigenstate, it. is convenient to quantize
the quark spin in the direction of the lepton mo-
mentum. In this way the spin-matrix elements are
very simple. For spin-zero mesons (s, rt),

&x"~(I)x.(2, 3) lx,"""'&=-1

o„(1,2)=o„(1,2)(q', —u', ), (25)

O-„(1,2)= —&,~ [8,(d - —v„s)ft,(u, -s„)].1
«8& ~ 1 ~ ~&& 2 &&

The spin operator is just a constant, instead of
(1+o, o, ) for the electronic cases. As we will
see, this will lead to a selection rule.

We will give the matrix elements in the simpli-
fied situation of neglecting the muon mass. Of
course, this is not a good approximation as for
the electron, but it is interesting to know the re-
lation to the leptonic modes in this limit. The
spin matrix elements are the same as before, and
we get, for the flavor matrix elements,

1/2

These operators give, in the nonrelativistic limit,

O„(1,2) = —e„„[8,(u, - p', )&,(u, - s„)],
1

(x,""(1)x.(2, 3)
l x,",".'~'& =—Ms

12g3

For spin-one mesons (&o, p},
(& „@ (2, 3)l lq"'&=-

vs
'

(2»)
I

'19"&=—1

2
'

(26)

1
2 3

(x+ ~ (1)x' (2 3) lx'&"»&= +
1

&x,'p(1)x,"(2,3)
l x,",",,'~'& =+„(.1/)

(22b)

All of these calculations give the rates of Table
I (phase-space factor is not included, sum over
meson polarizations and average over nucleon
polarizations is made). The calculations of Table I
include: (i) the flavor and spin matrix elements (20),
(22), (ii) thefactor 6/v 6, number of quark order-

= (y, +1&xu, l' (23)

and the corresponding operators for the right-
handed muon and antineutrino

o, , = o.;(r. —r,), —
(24)

where X',g~ means the lepton with helicity + -', (re-
spectively right or left handed), X», is the nucle-
on-spin wave function with mixed symmetry [well-
defined symmetry in the (1,2) labels], and the
spin meson wave functions are denoted by XJ Xg 0
= (I /v 2 )(04 a 4 i), x,"= 0 0.

For muonic-strange Cabbibo-allowed modes we
only have one operator instead of three as in (3),
since we can only create an r and not annihilate
an s, in the valence approximation. Ordering as
in (4), we get for the left-handed muon,

P rocess Process (J~P&

p e+7rp
L

p e+vr p
R

p eLq

p e+pp

p ~e+ pP

p -e~+~

p —e~+ cu

P ~ VggX

Vea~

p —p,„'zp

P ~ V~g+

9

24

96

24

96

24

96

24

u
96

48

48

9
48

48

0

P e+cu

45
96

15
96

i5
96

24

TABLE I. The spin-averaged rates defined in the text
(Sec. IV).
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ings and normalization factor, (iii) the normaliza-
tion of the nucleon wave function (18), 1/W2, (iv}
the factor W2 of color (17), (v) the factor I/&2
due to the normalization factor in front of (16),
(vi) the factor —,

' in front of the interaction (1) (our
coupling g at the grand unification mass is the one
defined by Buras et al. '), and (vii) the factor 2

affecting the operator 0, in the original Lagran-
gian (1). In the second column of Table I we have
simply added the B and L, lepton polarizations,
neglecting the difference in renormalization due to
SU(2) x U(1) from the unification mass to low ener-
gy in the R and L operators (2). We will take it
into account in the numerical results, as we will
see in the next section.

IV. ALGEBRAIC RELATIONS BETWEEN RATES.
NUMERICAL RESULTS

Let us how comment on the algebraic results of
Table I. We will use the notation I'= I'/phase
space when the modes that we compare have very
different Q values. We get the following relations
between rates:

(i) Relation between R and L positron modes:

I'(e' X') = 4I"(e„'X ), (27)

where X is any neutral nonstrange meson. This
relation is general (i.e. , noi specific of the ap-
proximations)" and comes from the R Lsymme-try
(15) and the factor 2 affecting the 0,. operator.

(ii) Relat. '.on between es and v,s modes:

Relations (27), (28), and (29) are completely
general, independent of the corrections to our ex-
act-SU(6) limit. On the contrary, relations (30)
and (31}are particular to our approximations and
could be corrected by relativistic effects. We do
expect, however, that the qualitative features will
remain in view of our experience in other domains
of particle physics.

We turn now to the Cabibbo-allowed strange--mu-
onic decays. Within our drastic approximation of
neglecting the muon mass, we get the following
relations:

(v) Relation between R and L muons:

r(p- w'I~') =r(p- p'If'). (32)

(32) comes simply from (25) plus m„=0.
(vi) Comparing muonic and electronic modes in

our limit we get

r(p- p'Id') = —,',I'(p -e' v'),

I'(p- p~) =2r(p-e'„vo),

r(p- p,'z') = xr( p-e' vo)

(33)

These relations come from the relative factor of 2
between e~ and ez in (1) and I/~ coming from the
m wave function. Note that we have a different
spin operator for p,+, v„production than for e', v,
[I instead of ~(l+ o, o,)] but in the case of p,', the

. Qjp2 state being uu, it must be in the p"X" state
implying that 1 and x'(1+ v, o,) are equivalent.

(vii) The spin structure (25) leads to the selection
rule

2r(e~0) = r(p, „x). (28) r(p- v„„Id')=0, (34)

r(e'v'} = 3r(e'q),

r (e'(o') = 9I'(e'p')

(29)

(3o)

for es or e~. Relation (29} comes simply from
flavor SU(3), and (30) from the quark model with
ideal mixing of &o and g. Note that the factor &

comes just in the opposite way as in I'(po- e'e )
=9r(&o- e'eQ. This relation comes from the
particular correlation between spin and isospin
in the nucleon wave function (18}. To our know-

ledge, this result is new.
(iv) Relation between pseudoscalar and vector

meson modes:

If X',X' are nonstrange mesons belonging to the
same isospin triplet. This comes from the AI= -'

2
rule of interaction (16).

(iii) Relation between isosinglet and isotriplet
mesons:

as we can see from the flavor (26) and spin (22a)
matrix elements.

All these relations can be somewhat modified by
the nonvanishing muon mass, but we expect they
are qualitatively true. Qn this basis we do not
understand why some authors find very small
muonic modes. The estimations of phase space
(Table II) and corrections due to the muon mass
(we find from preliminary estimations about a 30%%uo

correction) do not explain in our opinion these
small rates. Note that relation (34}does not have
this lepton mass correction, and could be more
general.

Let us comment now on the spatial matrix ele-
ments. It can be intuitively seen that the anzplitude
p-lM is proportional to the spatial nucleon wave
when two quarks are at the same point, and the
rate proportional to the square of it, '

I"(e'v') = 3I"(e'p') . (31) &tj'~ 6(r, —r.)
~

0'& . (35)

This relation is also a consequence of the spin-
flavor SU(6) structure of the baryon and meson
wave functions and the spin-flavor operators (16).

Remember that in nonleptonic decays of hyperons,
the amplitude was proportional to (35), since we
had the mean value of 5(r~- r~) between the initial
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TABLE II. Algebraic branching ratio from Table I (without phase space), phase-space fac-
tor p(k) =kE&E /M&3, and proton partial decay rates as a function of the gauge-boson mass
Mx.

Process

p -e+vr0

p e+g

p -e+p0

p e+v

P ~V~X

p ~v~p

p —j(f,'ZD

P vQ+

Total

Algebraic branching
ratio

——0.1745

270—= 0.0515
270—= 0.0515
270—=0.50135
270—= 0.0718
270—= 0.026
270—= 0.1336

270

Phase-space
factor p(A')

0.122

0.072

0.022

0.019

0.122

0.022

0.081

Partial rate
10 yr" (M /t 10 GeV) 'l

0.62

0.12

0.04

0.29

0.25

0.02

0.32

1.65

and the final baryons. But the rate is not exactly
given by (35) since the two outgoing (luarks must
recombine to give a meson. To have an idea of
this effect, let us use harmonic-oscillator baryon
and meson wave functions, the only ones which
allow the separation of the center of mass:

from one. For example, if the qq in a baryon and
the qq in a meson are bound by a harmonic confin-
ing potential with strength proportional to the color
Casimir operator, —-', for a qq color singlet, and
——,'for a qq color 3, we get, with the definitions
(36) instead of (39),

(j)/)((r~ r2 r ) =
I ~ ~ exp

f(j N

] 3/2 (r r )2

N N

(36)

normalized to unit with respect to the center-of-
mass measure

dr&5 — r&

with n =3 or 2. Using the fact that the mean value
(35) is given, in the harmonic oscillator, by

(40)

which gives, for the factor in front of (38), 0.97.
We think then that it is reasonable to take it equal
to one. On the other hand, the exponential is also
very close to unity even in the most unfavored si-
tuation of pion transitions since the baryon radius
is close to RN' =6 Qep ', as we have discussed
elsewhere. " We will then take it also equal to
one. Finally, we only keep the square of the wave
function of the baryon at small distances (35),

(37) (41)

we get, for the overlap integral (the outgoing lep-
ton wave function is just a plane wave),

Taking into account all previous calculations plus
phase space and renormalization from the grand
unification mass (GUM) to present energies, the
rates are given by

(38) r= g Nl S2A2

This expression shows the dependence in baryon
and meson radii and the momentum transfer k.
The factor in front of (38) is just e(lual to one if
the meson and baryon radii satisfy the relation

4R~' = 3~N' ~ (39)

Moreover, this factor hardly deviates significantly

(42)

In this expression g is defined according to Buras
et al. , ' we assume Mx =M„,

I

S I' is simply given
by (41), &IM I'& are given in Table I, and 4, and
A~z2's are, respectively, the SU(3), (Ref. 5) and

SU(2) x U(1) (Refs. 10, 12) renormalization factors:
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(p 2) 6/ (33-4n)

n(GUM)

(~ 2$ 27/ (86-16n) at (~ 2) -69/ (6+Son)
2 I

n(GUM) n(GUM)

2) 27/ (86 16n) at gg 2i 33/ (6+Qogg)

~B 2X 2 I 2 I
n(GUM)

where n is the number of generations (2n =f, f
being the number of quark flavors), and

(43)

n (p2) 12/ (33 4n)

n,(~;). (48)

E is just a combination of matrix elements of the
weak Hamiltonian {the parity-conserving part of it}
between baryon states,

p ~pc g+ + n gPc JI 2g 3

(49}

We see that c enters the E expression just as
lp, I' in the one of the width (42), multiplying the
square of the wave function at the origin. From
(48) and (43) we see moreover that the anomalous
dimension in c is just twice the one in the factor

n2(M+2) = n, jsin'e„, n, (M+2)=; . (46)
3 cos28

w

We need now a determination of (42). We will
use for it the rather model-independent estimation
from nonleptonic hyperon decays' whose absolute
magnitude is given in terms of the SU(3) coupling,

Q= 2 stneccosec&p'I 6(r, —r, ) I
g')c . (47)

We have taken into account the quantum. -chromo-
dynamic short-distance factor c to be consistent
with the previous calculation where we have con-
sidered this type of corrections

Then,

(p2} &2/ (33-4n& n (~ 2) &2/ (33-4n&

c n(GUM) n, (p,2)

(~. 2) 12/ (33-4n)
eK I' ~

n (GUM)
{50)

We see that in the ratio (50) the strong coupling

n, (p2) at the scale p2 —where both phenomena,
nonleptonic decays and proton decay, take place—
cancels out in this expression. We can then ex-
press the product

(~ 2} l2/ (33-423

n (GUM) 3Q since cosmic
(51)

1
('33- 2f&

I, ,2, )»I
(52)

we get, with 62=0.3 GeV' and f=6, n, (Mv2) =0.18.
From the value for the coupling at the grand uni-
fication mass"

n(GUM) =k,
we get

I
A3 I'jc =3.20. From the value of E fitted

from P waves" (see Ref. 16 for a discussion on
this point}, we obtain

(53)

&(I/ I 6(r r )1(j ) 0 046
Mp

(54)

To clarify the origin of all numerical factors,
and to express I" as a function of Mx (normalized
to 10"GeV), we rewrite (42) under the form

in terms of the magnitude of the nonleptonic ampli-
tude E and an enhancement factor at the M~2 scale,
just as the electroweak factors (44} and (45).

From

'—
I p(k)1«ln(«M)l2 -"' ".' " I&I~. I'& I&' I'+&I~. I'& I&,"2I'~ (55)

We have factorized (54), and the dimensionless
expression

I~' I'=2.48, Isa
I

=2.20. (58)

( )
kE,E„ (56)

5

(]0/4 GV)43.47x1 0 "yrs (57)

For the SU(2}x U(1) renormalization factors we
adopt the values of Ellis et al. '

coming from phase space and varying from mode
to mode. The factor in front of (55) gives the
dimensions

The values of & IM„~ I') averaged over the nucleon
and summed over the final-meson polarization are
given in Table I.

In order to show the origin of all numerical val-
ues, we give in Table II the algebraic branching
ratio (without phase space) expected from the re
suits of Table I, the phase space factors p(k) for
each mode, and finally the partial widths in years '
for various values of M~. In Table III we give the
branching ratios relative to the total tycho-body

decay rate. There are then upper bounds on these
branching ratios —close to the actual values since
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TABLE HI. Branching ratios of nucleon decays rela-
tive to the total two-body decay rate.

TABLE IV. Proton lifetime as a function of the gauge-,
boson mass Mx. This includes only two-body modes.

Process Branching ratio P rocess Branching ratio Mx |,'GeV) TQ) {yr)

p e+xo

P e+g

P e+p

P e+m

p ~v~x

P V~P

p—p+Ko

P V K+

37%

2%

18%

&9%

n e+n

n e+p

n vxoe

n -V,p'

n ~v~g

n "e

n ~vpK

74%

7.5%

0.5%

1.5%

3.5%

9.5%

1pi 4

3x 1014

6x 10'4
10"
10i6

6x1p»
4.8 x 10"
7.8 x 103o

6 x 103i

6 x10"

We get, for various values of Mx within the range
considered by Goldman and Ross, ' the lifetimes of
Table IV, and the neutron lifetime equal to the
proton's within 1/o.
We will comment on all these results in Sec. VI.

three-body decays cannot be a large fraction.
Concerning the proton lifetime we obtain an

upper bound —close to the actual value—

(p) ~ ( M„) (59)

V. EXTENSION TO SO(10)

In the case of SO(10)" we have to replace the
effective Lagrangian (1) by

M'

1, 1

+(d'„y„d, )-, (v,„y u, „)I.
XD

(e'„r"d.„)+» .(V'„r"s. )

1+,(esp "u.„)
gC

(60)

Clearly, when we take Mxt =M ~', and M ~,' =Mx '
=~, we recover (1). v,' is the left-banded anti-
neutrino, in the same irreducible 16 representa-
tion as all other left-handed fermions of one fam-
ily. Note that now the reason for the sign between
the R and L fermions we have found for the SU(5)
case, Eg. (1), is clear. This relative sign +, dif-
fers from the one found by other authors, "and
agrees with the one found by Machacek. ' Indeed,
SO(10) is a left-right-symmetric theory which
asymptotically has a pure vector coupling. Recall
that it contains the electroweak pure vector theory
SU(2)~ x SU(2)s x U(l). With the opposite relative
sign this coupling would be purely axial. Techni-
cally this relative-sign comes from the following
prescription in contracting the tensors (10

~

24 ~10):
b„(T')~~b", where b" is the rank-two antisymme-
tric tensor 10, (b)„.= (b'~), and T is the 24 adjoint
tensor. Qnly this prescription gives the same
charge to e'„and i dz and d~ a d n

The calculation for the SO(10) case then pro-
ceeds in a straightforward way as we have just

1(P-e„'X') (1/M~')+ (1/M, ,2) I2
I'(p - eiX ) (1/M~') + (1/M„') ]

with a similar result for the ratio between left-
handed and right- handed antineutrinos:

(61)

I'(P - v.~) (1/M„')+ (1/M„') '
I'(p- v, X') (1/M„p)+(1/Mz ') (62)

And relation (32) is still true in the general case

I(P p~E )
I'(p - v.~E') (63)

as well as the selection rule we have obtained for
the K" decay mode,

I'(p- v„~)=0 (64)

within, of course, the same approximations as be-
fore.

Relation (26) generalizes to

I

described. The a}.gebraic relations exposed in
Sec. IV generalize very easily to this general case.
Relation (27) generalizes to
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I'(P - v, X") ((I/M„~) + (1/M ')i

aDd anglogously for e~ ancl vg~. Fllpplng now all
isospins, we can obtain the corresponding neutron
decay modes:

r(P-e~) (1/M ')+(1/M„, ) l~

F(n- v, X') (1/M„')+ (1/M ')] ' (66)

r(P-e', X') t (1/M 2)+{I/M„m) )2
I'(n - v, X') ~(l/M„m) + (I/M ')) {6V)

F(P —P~) I/Mr~)~
r{n-v„,Z') I/M, ') ' (68)

r(p - t,z') I/M„&
F(n - v„X') 1/M„P&

(69)

F(P-esX ) 1
. F(n-e~) 2'

F(P- v.W)
F(n- v,sX')

(In all these reiations X', X, and Xo are non-
strange systems belonging to the same isomulti-
plet. )

Note that most of these relations have been out-
lined by Machacek. ~ From these relations one gets
easily, for SU(5), the neutron rates (Tabie III).

VI. DISCUSSION AND CONCLUSION

Let us now comment on our results summarized
in the tables. We obtain, for the range of M~ pro-
posed by Goldman and Ross, Mx- (2-6) x 10"
Gev, a lifetime which is close or even below the
experimental limit, r(p) &2 x 10'0 yr. There are,
of course, uncertainties in our calculation, but
we think that this is an interesting and encouraging
result for experimentalists, since this means that
maybe we will soon have experimental results on
proton decay.

The absolute magnitude of the total rate is given
by M~, essentially, and by the hadronic matrix
element. We have eliminated uncertainties on this
last factor by relating it to the nonleptonic hyperon
amplitudes. Since we have made the same approxi-
mations in both cases —proton decay and hyperon
decays —we are confident in our normalization.

Concerning our approximations, we think that,
grosso modo, our prediction of the branching ratios
will not be changed significantly if.we take into

account relativistic effects of the internal quark
motion. We know for instance from relativistic
effects in the nucleon axial-vector coupling, that
this type of corrections to the simpLe static result
are at most of the order of 30%. This can change
the absolute magnitude of the rate maybe by about
a factor of 2, and the branching ratios by pre-
sumably much less.

We do not understand how some authors do not
find a significant e+~ rate for which we get, glge-
braicalfy, half of the total rate (Table II). Phase
space, however, suppresses somehow this very
intense mode. Donoghue finds 56/0 for this decay;
this seems too much. We think that, on the other
hand, his 9%%uo for e'wo is too small. This comes
from the form-factor suppression by 3 in ampli-
tude of his model for pionic modes and seems cor-
related to his large ~e'. The corrective factor in
(38) is, for pion modes, about 0.Sin rate Note.
that other classical phenomena correctly described
by the naive quark model, as (d —m y, have a sim-
ilar momentum transfer. On the other hand, it
seems (private communication) that Donoghue finds
now 14/0 of IPp' All th, e.se effects go in the direc-
tion of a pattern of branching ratios qualitatively
close to our results, if one takes off the pionic
suppression factor of & in rate of Donoghue.

A last comment is to be made about the large
branching ratio in p,'E (19%). This is interesting
since muons can be easily detected. Previous
works find very smal. l rates for this mode. We
think that our algebraic result is correct, we do
not see really how the spin-flavor matrix element
should be small. Moreover, phase-space suppres-
sion relative to the m modes is not very large
(Table II). It is true, however, that because of
simplicity we have neglected m„to effects which
will give an interference between the right and
left parts of the. interaction. But these corrections
even increase the p,'K' by a factor (E„+m„)/E„
=1.3.. This is due to the relative sign we get in
the effective Lagrangian (1) between left and right
couplings which leads to constructive left-right
interference.

In conclusion, we think that our study can clarify
the situation concerning proton-decay branching
ratios. Our estimation is easily control1able, since
we obtain algebraic relations between matrix ele-
ments, and their scale is fixed by the gauge- vector-
boson masses and by the related phenomenon of
the nonleptonic hyperon decays.

Note gdded. Our static approximation implies
that the operator responsible for proton decay is
pure 8 wave (L =0). Taking into account the rela-
tivistic corrections would induce higher waves'
contributions. We do not claim that p and d waves
are negligible. We rather guess that realistic
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inclusion of their contributions would not change
the qualitative features we have stressed. In our
opinion this guess has been afterwards confirmed
by a recent work from Kane and Karl." They .

use three models, a static one equivalent to ours
and two models including intermediate and large
relativistic contributions. The qualitative results
happen, indeed, to agree in all three models: the
dominant channels are the same.
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