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Duality for heavy-quark systems. II.Coupled channels
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We derive the duality relation (0.) (o.b.„„d)which relates a suitable energy average of the physical coupled-

channel cross section o = o (e+e ~hadronsj to the same average of the cross section o b.„„dfor the production of
bound qq states in a single-channel confining potential. The average (orb.„„d)is equated by our previous work to the

average cross section (o„„)for production of a qq pair moving freely in the nonconfining color Coulomb potential.

Thus, (o.) (o„„).The corrections to these duality relations are calculable. We give an exactly solvable coupled-

two-channel model and use it to verify duality for both weak and strong coupling.

I. INTRODUCTION

Duality equates an appropriate energy average
of the observed cross section for e'e -hadrons
to the same average of the calculated quantum-
chromodynamics (QCD) cross section. ' ' It is
used in the P and T regions to predict leptonic
widths I'„,(Refs. 4 and 5) to determine quark
masses, ' ' and to test QCD. s 8 " In a previous
paper" we gave a proof of duality, under suitable
circumstances, for confining potentials which may
include short-range (e.g. , color Coulomb) com-
ponents. We found that the duality relation holds
up to correction terms which can be calculated
from data, and illustrated this relation for three
exactly solvable potentials (linear, harmonic
oscillator, and Hulthen, which mocks Coulomb
at short range).

Howeve'r, our proof and other studies of duality
for potential models" "have been restricted to
the single-channel process e'e —P„,where g, is
the nth 'S, qq bound state. It has been assumed
that the subsequent decay of the resonant states
to the observed hadrons does not affect the duality
relation. The real process is, of course, a multi-
channel process with complicated couplings to the
allowed final states, e.g. , DD, D~D, . . . . The
coupling to these channels results in significant
mass shifts for bound states and resonances,
distortion of resonance shapes, and changes in
decay probabilities. " It would not be surprising
if these effects seriously damaged duality. How-
ever, we show in this paper that duality survives
the coupled-channel effects.

In Sec. II we construct a very naive, but exactly
solvable, coupled-channel model which illustrates
both the effects noted above and our approach to
the coupled-channel problem.

'

In Sec. III, we derive a new form of the duality
relation, applicable to coupled channels, which
equates an energy average of the multichannel
cross section to the same energy average of the
single-channel bound-state cross section. In our

previous paper, "hereafter referred to as paper
I, we showed that the single-channel bound-state
cross section could in turn be related to the free
qq cross section, either with or without a short-
range color Coulomb interaction. The combination
of these two results, each with calculable cor-
rection terms, is duality for multichannel poten-
tial models.

In Sec. IV we show numerically that duality
holds for the model of See. II for both weak and
strong coupling. The accuracy of the duality
relations (-V/~ error) is remarkable considering
the displacements and extreme distortions of
resonances caused by the coupling. We conclude
that duality, with corrections, gives a very
reliable method for comparing QCD cross sec-
tions to experimental data.

II. A COUPLED-CHANNEL MODEL

The problem we are considering is e'e -y-
hadrons, where there are many hadron channels
open. The open channels do not include a free
qq pair, since quarks are confined, but do in-
clude such states as DD, D*D, . . . . However,
the state qq does appear as a closed channel, and
is the only channel to which the photon couples
directly. " The final hadrons result from the
coupling of the qq to the physical states.

We must define the wave functions for this
problem carefully. We will assume that the quarks
and mesons are nonrelativistic, and that their
interactions can be described by a multichannel
potential model. The complete Hamiltonian H

is then a matrix operator which acts on the space
of open channels plus the qq channel. "' The exact
eigenstates of H are denoted by $8, where the
physical channel P corresponds for x- ~ to an
observed state (DD, D*D, . . .). For r-O, within
the range of the strong interaction, H induces
mixing between channels and the $s have several
components. We denote the component of l)z in
channel i for small r by P~,.(x, E). The closed-
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channel (confined) qq state is labeled by i = 1.
The coupling of the asymptotic (observed) chan-

nel P to the photon depends in the nonrelativistic
treatment on $»(O, E). The partial cross section
is

o', (E) =(2«'o" e,'/m, 'lV') p, (E) ~4»(O, E) ~', (1)

where

=0.

where E is the nonrelativistic energy, W=E
+2m„m,. and e, are the mass and the charge
of the quark, n is the fine-structure constant,
and pN(E) is the density of states in channel P
at energy E. The total cross section is

The Hamiltonian used to discuss the ~P system
in Ref. 17 is restricted to a set of coupled two-
body channels,

r
1 +2+ V

SZ

Here m, =m„E,= E, and E, = E —(m, —m, ). ~e
assume that m, &m, . There are two solutions for
k.:f'
2k, =m2E, +m, E, —[(m2E2 —m, E,) +4m, m~ V']'

- 2m~ E„V-0, (5)
2k,' =m, E,+m, E, + [(m, E,—m, E,)'+ 4m, m, V ]'~ '

2m2E2, V 0,
with

~,E, —&,-'

A~,. m, V

The general solutions for g, (r) and g, (r) for
r &R are of the form

V' +m2 —m, + V2 y, (r) = g„sink,r+A„sink,r)/r,

)1),(r) = (A» sink, r+A» sink, r)/r .

where g=c =1 and ~m, is the reduced mass of
the ith two-body system. This Hamiltonian neglects
the (apparently small) coupling to three-body
final states. In this section we consider a very
simple, exactly solvable two-channel model with
a confining infinite-square well in channel 1."
H is defined by setting V, = 0 and V, = 0 for r ~ R,
Vy and V2= 0 for r &R, and V» ——V for r ~R.
This naiv'e model could be generalized but is suffi-
cient to illustrate the coupled-channel effects
which appear in Hef. 17, and to give a simple
test of duality in Sec. IV.

The elementary radial solutions to the Schro-
dinger equation for r &R are P,.(r) A,. sinkr/i,

For r&R, P, (r) vanishes identically and g, (r) is
given by

y, (~)=sin(k;r+f)/k;, k =m,E, &O,

)I),(r) =Ne 2 "/x, E,&0.

%e use the usual plane-wave normalization for
E, &0.

The boundary conditions require that )I),(r) vanish
at r =R and that g, (r) and its first derivative be
continuous. The general solutions for E,&0 are

r~P, (r) A(sink, R sink@ —sink, R sink, r)

&)P,(t') = (A/m, V)[(m,E, —k, ') sink, R sink, r —(m„E,—k, ') sink, R sink, r], r &R

= k2' ' sin(k2 r+ 5), (lo)

with

„,~ k, (m, E, —k, ') cosk,R sink+ —k~(m, E, —k,') sink, R coskg + ik,'(k,'- k, ') sink, R sink, R
k, (m,E, —k, ') cosk,R sink, R —k, (m,E, —k~') sink, R coskP —ik2(k~' —k, ) sink, R sink+

The normalization constant A. is

m, Vsin(k,'R+ 5)
k,'(k, ' —k, ') sink, R sink@
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We recall from Eq. (1) that
I g, (r =0) I' determines the cross section for e'e -hadrons. This quantity

is determined by Eqs. (9), (11), and (12), and is of course a function of energy,

I k, (m, E, —k, ') cosk, R sink, R —k, (m, E, —k, ) sink, R cosk, R —ik,'(k2' —k, ') sink, R sink, R I

(13)

The exact result for a for E,&0 obtained by
substituting Eq. (13) in Eq. (1) is rather opaque.
We will therefore illustrate the coupled-channel
effects initially by taking the coupling V to be
small and calculating the positions and widths of
resonances to order V' (Born approximation),
and will afterwards demonstrate the effects of
strong coupling numerically.

The resonances in the coupled-channel problem
are at the poles of S in Eq. (11), and for V small
we expect them to be near the bound states in the
single-channel square-well problem,

m, E' k02 —n2v2—/R ~

Thus we let k, R=nm+~, where ~ is small, expand
the denominator of Eq. (11) in powers of e and

find its zeros. 'The resultant poles in the E plane
are at the values (correct to order V')

(i4}

E =E +&E —il' /2,

where

2m, V'k'„' sink,'R cosk,'A
(k

'2 ko 2)2 k& R
n

and

(
2w, V'k'„' s in'k,'8

with E' and k' given by Eq. (14).
The features displayed by this simple model are

qualitatively the same as in Ref. 1V. The positions
of resonances are shifted from their single-chan-
nel values by amounts comparable to the half-
widths of the resonances. The I's acquire poten-
tially nontrivial structure through the factor
sin'k,'R and decrease rapidly for large energies.
Equation (17) is exactly the Born-approximation
result for I' if the process is considered to pro-
ceed through the production and decay of bound
states.

The exact expression for the cross section is
given in Eqs. (1) and (2). For our example, m,
= m„Ptakes on only qne value, and p~(E) =sr~,k,'/
4v'. It can easily be seen that Ig, (O, E) I' will
show resonance structure: the denominator of
I $, (O, E) I' is just the absolute square of the de-
nominator of S(E). Thus Ig~(0 E) I' has p
the same locations as IS(E)I'. Using the same
small-e expansion for Ig, (O, E) I' as for S(E), we
find for V small that

I
y(0, E}I'o(E)

k'„' I „/2
2vR (E E„—&E—„)'+(I'„/2)'

The energies of bound states are determined by
a small-e expansion of S(E) as before, E = E'
+~8„,with

2' V Q 8 "& sinhy R
(k'„'+~„') ~ R

where w„'=m (m2, —m, —E„),E„=n'w'/m, R', and
V is still assumed small. Note that the energies
of the bound states are lowered by the coupling to
the second (meson) channel.

In summary, for V small, we find shifts in the
positions of both resonances [Eq. (16)t and bound
states [Eq. (21)]. The magnitude of these shifts
b,E„is on the order of I„/2. We further find
momentum-dependent structure in I'„[Eq.(17)],
which can distort the resonance shapes and alter
the decay probabilities.

For large V, we must treat the problem num-

(2i)

The factor k'„'/2vR is just I'P~(0~E }I'. the value
of the normalized bound-state wave function for
the (uncoupled) square-well potential at r= 0. We
can therefore write 0' approximately as

c(E) = (24m'n'e, '/&~i, 'W')

I „/2v
4(01E~)

I (E E g E )2 (F /2)2

(is)

For the I"s sufficiently small, the Breit-Wigner
factors can be replaced by ~ functions, and 0

=Z„v„„,„„dwhere o'„„,„„dis the usual cross sec-
tion for the production of the nth bound state in
e'e annihilation. This, of course, is the expected
result. For V large, we must use the exact
expression for

I $,(0, E) I' in Eq. (13).
For E,&0, the expression for the cross sec-

tion in Eq. (1}includes a sum over discrete bound

states, plus the continuum contribution

(E)=, ," g Ig, (0, E„)I'5(E —E„)
tf

+ ','
I P, (0, E) I'B(E,)

(20)
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25
V=0.25

erically. We choose parameters to mock the P
region, rH] && & 5 GeV, m, =1.8 GeV, and R
=5.736 GeV '. These parameters give a spec-
trum with one bound state (the "i(") and a spacing
to the first resonance of 600 MeV, with the "DD"
threshold halfway between. The function

t
t/i, (O, E) ~'

calculated from Eq. (13) is shown in Fig. 1 for
several values of the coupling potential V. We
also show on Fig. 1 the location of the bound state.
The value V=0.1 GeV gives a fairly weak coupling
and for this value the resonances are approxi-
mately Breit-Wigner curves except near threshold.
As V increases, the resonances are strikingly
distorted and their positions shift. The structure
near E=0.6 GeV results from a zero in the num-
erator of

~
),(0, E) ~' caused by unequal mass kine-

matics.
In Table I we give the energy of the bound state

and ~$, (O, E,) ~' for several values of V. The
bound-state ("g") energies are shifted downward
for stronger coupling by amounts which would
significantly alter single-channel fits to the spec-

TABLE I. Variation of the bound-state energy El
and of

~ $~(0, E&) ~

2 with the coupling V for the two-
channel model of Sec. II. Here |t)~(O, E&) is the value
of the quark-antiquark component of the total wave
function at the origin. (l(O, E~) = (~/2R ) is the value
of the lowest bound-state wave function at the origin
for the corresponding single-channel problem, V= 0.
The parameters used were rn~=m, =l.5 GeV, m2=1.8
GeV, R = 5.736 GeV, and E&0= (r /~ lR ) = 0.2 GeV.

V El
(GeV) (GeV) (GeV')

I A(0 Ei)&ki(0 Et) I'

0
0.1
0.15
0.2
0.25

0,200
0.161
0.124
0.083
0.039

8.32 xlO 3

6.96
6.27
5.80
5.46

1.000
0.836
0.754
0.696
0.656

trum. Stronger coupling also leads to a marked
decrease in

~
g, (0, E,) ~', which is proportional to

the cross section for e'e - "g". These two ef-
fects result physically from leakage of the qq
wave function into the closed (E,&0) "DD" channel.

After seeing the effects of coupling on the hadron
cross section, we were pleasantly surprised to
find that we could derive a duality relation for
the general coupled-channel problem and that this
relation is very accurate for the model just con-
sidered.

III. PROOF OF DUALITY FOR COUPLED CHANNELS
I

15

V=0.15

The duality relation we wish to derive is"
(o (E)) =(o„..(E)), (22)

10

v=0. )0

where () denotes a suitable energy average,
o(E) is the total cross section for e'e - hadrons
from Eqs. (1) and (2),

( )
24''o. 'e.'

m We open
channels

p g 0

0 0.5 1.'0 1.5 2.0 2.5 and
(23)

E (GeV)

FIG. 1. The dependence of (g(O, E)( versus energy on
the magnitude of the coupling V for the two-channel
problem of Sec. II. P~ (O,E) is the quark-antiquark
component of the total wave function at the origin.
[eg(0, E)( is given in Eq. (13). We also note the location
of the bound state for this solution. The cross section
o,+8 h,s„„,is related to ($&(0, E)~2 by Eq. (20). E =0
corresponds to the free qq threshold. The parameters
chosen are m~ = m~ =1.5 GeV, m2 =1.8 GeV, and R
=5.736 GeV ~ corresponding to bound-state energies
E„=(0.2 GeV) n in the single-channel problem. The
singl. e-channel bound-state energies E„areindicated by
dashed lines.

o,„„(E)=(6wa'e, 'm, ' 'E' '/~') ~g (0, E) ~'.

(24)

Here 0„„is the nonrelativistic cross section for
the production of a free qq pair calculated in Born
approximation, e'e -y-qq, and ~)&(O, E) is the
free wave function at the orign. As emphasized
in paper I, gz(O, E) should include the effects of
any short- range nonconfining interaction between
the quarks, e.g. , the color Coulomb interaction.

Of course, production of free qq pairs is not
allowed physically because of color confinement,
but if it were, the qq channel would be the open
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"P=1" channel. The physical picture is that the

qq pair produced at the origin in channel 1 acts
free for a short time, until it encounters the con-
fining potential. We showed in paper I that the
energy average of o„„overa sufficiently broad
energy range picks out this short-time behavior.
Since the quarks are confined, the physical cross
section o describes the production of hadrons
in the open channels 2, 3, . . . . The duality rel-
ation, therefore, states that the short-time be-
havior in all open channels taken together is the
same as that in the closed channel. " This is cer-
tainly plausible for weak coupling of channel '1

to the open channels, since the decay of the qq
system to hadrons will be slow; but we will show
it in general.

Our method is a generalization of that used to
derive duality for single-channel processes in
paper I. We define a multichannel Feynman prop-
agator K,.z(r', r, t) as

We average K over energy by convoluting with
a smooth function f(E' - E) and define

(K„(E))= 'i dE f(E E)K„(O,O, E ). (29)

From the convolution theor'em for Fourier trans-
forms, this becomes.

(K„(E))= dt e' 'K„(0,0, t)f(t) . (3o)

When f(t) is sharply peaked around t = 0,
(K»(E)) depends only on the short-time behavior
of the propagator [this corresponds to a choice
of f(E' —E) which is broad and smooth]. We will
relate the short-time propagator K»(0, 0, t) to
the short-time single-channel propagator K(0, 0, t)
discussed in paper I. The duality relation then
follows from the results of paper I.

We first divide the matrix H into its diagonal
part H" and the off-diagonal coupling matrix V',

Ki&( r', r, t) = g P~, ( r ')e ' ((' (tIf, ( r) . (25) H=H + V' (V') = V'

This is a solution of the matrix Schrodinger equa-
tion

We assume for simplicity that V' is finite at x=0.
The complete set of eigenstates (t(i„for each ele-
ment HJ& of H" satisfies

H( r')K( r', r, t) =i —K( r ', r, t), (26) Hii&i. = Ei.&i. (32)

with H given, e.g. , by Etl. (3), tt=c=1, and with
the boundary condition K,.&

(r', r, 0) = f(,, f(( r' —r).
The cross section can be written in terms of the
Fourier transform of &yy,

K(r', r, t) is given in matrix form by

(33)

iJ(E) = (12m'a' e,'/m, ' W')K„(0,0, E)

where
oo

K„(0,0, E)=
~

dte' 'K„(o,o, t)
4 oo

(27) 6( r' —~)

K(r', r, t)=e '"' 0
~ ~ ~

0 0 0 ~ ~

f(r' —r) 0

(34)

= 2 g p, (E) ~(t„(0,E)
~

'. (28) and can be expressed in terms of H", V', F-,.„,
itii „as

r/ e if( 0

g(, (r')e ' "(,'. (r( 0
tl

=e ' 'j1 ——' t'[H V']+ ~ (tK (r', r, t). (35)

We have introduced the notation K~ for the diagonal matrix of propagators for the single-channel problem
with Hamiltonians H».

The only component of the matrix K which we need for Eq. (29) is K»(0, 0, t), which turns out to be
strikingly simple. To 'order t',

(K„(E))= dt e ' e'f(t) K~„(0,0, t)- —,
' t' g V'„(0)'K„(0,0, t) +

$&1

=(K"„(E))+O(t') . (36)
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Thus Kyy is expressed for small times in terms
of the single-channel qq bound-state propagator
K,'„,hence in terms of the bound-state wave func-
tions

~ Q, (0) ~'. By Eq. (27), we know that (o'(E))
is related directly to (K»(E)) T.he first term in
Eq. (36) is related to the cross section for the
production of the qq bound states in a single-chan-
nel model by

(o,.„„,(Z)& = (12v'n'e, 2/m, 'W')(K'„(E)&

g ~e,„(0)~'f(z,„—E) (37)
e n

We now have that

(o(z)) = (ob,„„d(E)&+ corrections, (38)

where the (calculable) corrections ean be made
small by choosing f (t) to be sharply peaked around
t = 0, that is, by choosing f(z' —E) to be broad
and smooth. If f(E' —E) has a characteristic width
~ which is large compared to the spacing between
levels, the corrections are of the order of
Z, v„.'(0)/~'.

Equation (38) is a new duality relation for the
coupled-channel problem. In paper I we showed
that (ob,„„d(E))for the single-channel case ean
be related by duality to (o„„(E)&,the average
of a free qq cross section which includes the ef-
fects of any short-range interactions between
quarks, e.g. , the color Coulomb interaction, but
not the effects of the long-range confining poten-
tial. The duality relation

&,.„„,(E)& =&„..(E)& (39)

=&K„(E)&„... (41)

where Kb,»d
=—K" and

n "'
(K„(E)&„,.= '

~

dz' f(E' —E)v E'. (42)
7T No

The correction terms for Eq. (41) are given in
Eq. (36) and paper I.

Although our derivation of the multichannel
duality relation was restricted to coupled two-
body channels and nonrelativistic kinematics, the
result is clearly quite general and should hold for
many-particle channels and relativistic inter-
actions. We intend to discuss these extensions in
a future paper.

again includes calculable correction terms. Com-
bining Eqs. (38) and (39), we conclude that

(.(E)& =&.„..(E)&.

Equivalently,

«„(E)&.„„,=«„(E)&,.„.,

IV. APPLICATION AND COMMENTS

We now apply the duality relations to the simple
two-channel model considered in Sec. II. When
the coupling term V is small, the widths of the
resonances I'„and the energy shifts E„aresmall
by Eqs. (16) and (17). The Breit-Wigner factors
in Eq. (19) then act approximately as 5 functions
when integrated with a smooth, broad function
f(E' —E). In this case duality clearly works well,
and (o'(E)) =(ob, q(z)& by inspection.

When the coupling term V is large we must test
duality numerically. We choose the Gaussian

f(zi E) e-(8'-E& / 24 22
(2v~2}&/ 2

for our smearing function, so that

f(t) 4 t /2

(43)

(44)

The cross section o(E) and K»(O, O, E) are related
by Eq. (27). K»(o, o, z) is expressed in terms
of the bound-state wave function

~
$,(0, E,)

~

' of
Table I and ~g, (O, E) ~' of Fig. 1,

K„(O,O, z) =2v~y, (O, E,) ~'5(z-z, )

m '/'
+ '

iy, (o, z) i'v'E, e(z,), (45)

where E2=E —(m2 —m, ). We smear K»(0, 0, E)
to get (K»&,„„usingthe Gaussian of Eqs. (43)
and (44) with &=0.6 GeV, or a full width at half
maximum of 1.4 GeV (slightly larger than the
separation between the first hvo resonances in
Fig. 1 and equal to the separation between the
next two resonances).

In Table II we compare (K»),„„,to the quan-
tities to which it is related by duality. The first
comparison is by Eq. (36) to (K,g„,„„dplus a cor-
r,ection. For t/'= 0.2 and small E, this correction
gets as large as 3%. Otherwise, it is quite small
so we have only displayed the corrected (K»&b,
in the table. The corrected (K»&, is obtained
by converting the sum in Eq. (37) to an integral.
The first term is (K») f„,in Eq. (42) and again
we have not displayed the (very small) correc-
tions. It can be seen from the table that the exact
results oscillate around the smooth free result,
which is a consequence of the somewhat narrow
Gaussian used. for smearing.

The agreement between columns in Table II is
. within 1.5% which we again emphasize is a striking

result, given the complexity of the coupled-chan-
nel cross section. The agreement would be even
better for potentials more realistic than a square
well, e.g. , the linear potential, since the density
of resonance states mould increase mith increasing
energy and eliminate the ripple in (K&, ,&. On the
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TABLE II. Verification of the cow~ected duality (K&&)ex,«—- /&~)bound —@Cga)free for the two-channel model of Sec. II
with three values of the coupling V. The cross section o(E) is related to K&&(E) by Eq. (27). The operation ( ) was
taken to be convolution with the Gaussian smearing function f(E —E) given by Eq. (43) with rh= 0.6 GeV. Kf f epact was
calculated using Eqs. (13) and (20). Ktf born/was calculated from Eqs. (36) and (37), with bound states ) p& (0) ~

2 3
~ ~ oun ~ ~ fn

= (rn /2R ). Kit fusee was calculated from Eq. (37) by converting the sums to integrals. The parameters used were mi
= m = 1.5 GeV, m 2

= 1.8 GeV, and R = 5.736 GeV

(GeV)

Xff)exact (Kf f)oon (K22) coff
bound free

(GeV3~
V= 0.10 GeV

gg)em~ /gg)cor
bound

(GeV')
V= 0.15 GeV

gf f)corr
free

/g g)exact Qgg) corr
bound

(GeV3)
V= 0.20 GeV

A~

(K11)corr
free

0
0.4
0.8
1.2
1.6
2.0
2.4
2.8

0.0943
0.1651
0.2384
0.3116
0.3705
0.3909
0.4239
0.5240

0.0942
0.1649
0.2384
0.3117
0.3698
0.3909
0.4255
0.5239

0.0937
0.1656
0.2408
0.3069
0.3617
0.4081
0.4491
0.4862

0.0954
0.1654
0.2382
0.3111
0.3694
0.3912
0.4254
0.5225

0.0949
0.1649
0.2385
0.3112
0.3679
0.3912
0.4290
0,5223

0.0946
0.1657
0.2404
0.3064
0.3614
0.4079
0.4489
0.4861

0.0968
0.1659
0.2381
0.3102
0.3678
0.3915
0.4273
0.5204

0.0959
0.1649
0.2385
0.3106
0.3652
0.3918
0,4340
0.5200

0.0957
0.1659
0.2398
0.3058
0.3609
0.4076
0.4487
0.4860

other hand, as discussed in paper I, the correc-
tions to naive duality can be large for the more
realistic potentials and must not be ignored.

We conclude from our derivations and illus-
trations in this paper and paper I that corrected
duality gives a very reliable and useful method
for comparing calculated (@CD}cross sections to
experimental data. However, the interpretation
of Eqs. (39)-(41) involves some subtlety. The ob-
served cross section is 0 and the calculated cross
section is:„.To relate (a) to (o„„)by duality,
we introduced relations (a) =(o'1 „„d)and (ab,„„g=(a„).The cross section ob,„„~is to be cal-
culated using the confining potential in the qq
channel only. It is probably adequate for the pur-
pose of calculating corrections to the duality
relation to identify that potential with one of the

single-channel potentials used to fit the qq data. ".
However, the poles in o.„,unddo not correspond
precisely to the resonances or bound states of the
physical cross section, because of the sizable
mass shifts caused by coupling to other channels
(see our Table I, and Sec. IV and Table VII of
the second paper, Ref. 17). These mass shifts
call into question results on qq potentials derived
from single-channel fits to the 4 and Y data, and

those results should be regarded with caution.
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I
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