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For a classical model, which describes a single Regge trajectory, we calculate a relation which exists between the
magnetic moments of the various states on the trajectory. The calculation is analogous to a similar calculation of the
electron g factor.

I. INTR,ODUCTION AND SUMMARY

Recently we introduced~ a classical Lagrangian
model for a spinning relativistic particle. The
states of the quantized form of this model form a
Begge sequence with each value of spin, integer
as well as half integer, occurring once. The mod-
el allows a minimal interaction with the electro-
magnetic field also in its quantized form. In ana-
logy to what happens for the Dirac equation, this
minimal interaction generates magnetic moments
(g factor &0) for the various states of the Regge
trajectory. It is the purpose of the present paper
to calculate these magnetic moments for the clas-
sical version of our model. Our model differs
from somewhat similar models proposed by Han-
son and Regge. One of the differences is that
minimal electromagnetic coupling cannot generate
magnetic moments in the models of Ref. 2.

The basic variables of our classical model are
a four-vector x(s), which describes events along
the worM line of the particle parametrized by s,
and an internal (translation invariant) spinor Q(s)
consisting of a pair of harmonic oscillators. The
Lagrangian, including minimal interaction with
the electromagnetic field &„(x), is

where the dots denote differentiation with respect
to s and where
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and the classical identities
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The Lagrangian (1) is invariant for chronometric
transformations that replace s by a function of it-
self. (More exactly, the action is unchanged. )
This chronometric invariance implies a constraint

y=ll2 a(ll V)=0

0 -1 0 0 ~,q~ p2,

with the Poisson brackets (q, q~}=y z. Symmet-
ric bilinears in Q are defined by

yu &qryoygq yo &(p 2
p 2 2 2)

s""=-'e'y'(y y"- y"y')e.

here the y are a real (Majorana) representation
of the Dirac matrices with y given in (2). The
spinor structure (2), (3) is a classical version of
a quantum-mechanical structure associated with
the Majorana equation and used by Dirac. One
also has the Poisson brackets
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where V is given by (3), II =P„—eA„, and P
=BL/Bx'. The function o' in (6) is uniquely deter-
mined by the arbitrary function f in the Lagrangian
(1). For the free system, the constraint (6) is a
Begge relation as P ' V is proportional to the spin,
whereas -P2 is the square of the mass. For de-
tails see Bef. 1.

For quantization it is important that there is just
one constraint in the theory, which makes it first
class; thus the Dirac brackets are identical with
the Poisson brackets, unlike what happens in the
model of Bef. 2. For the classical model, by im-
posing conditions on the function o' in (6), equiva-
lently on f in (1), one can ensure that both P and
x are timelike.

For the field-free case one can explicitly solve
the equations of motion generated by &f&.

' Both P
and P 'V are conserved. In space-time the gener-
al solution is a helix, P giving the direction of the
screw and the (timelike) world line following its
thread. The total angular momentum is constant,
it consists of the orbital part L,„and the spin S„„
given in (3); neither of these is separately con-
served. Writing M= v -P' and choosing s in a
natural way, we present from Ref. 1 that part of
the solution we need in the following:

x" (s+as)=x"(s)+, +, its —,sin&s-&' g M2]

V" (s) (1 —costs) S„, ,P

Vo (s+b, s) = Vo(s) costs -M~ (1 —costs)Po

P+sin4s S"'(s)~
M '

S "(s+4s) =S "(s)——[P V"(s) PV (os)]-sin4s
M

,[P"S",(s) P"S",(s)]P'(-1 costs) . —

(&s need not be infinitesimal or small. ) Measured
in units of proper time, one finds the frequency of
the helical motion to be MS ' and the radius of the
helix to be M 'S, where S is the average spin in
units of S. One may say that the internal spinor
variables keep the particle away from its average
position and force the helical motion. Such motion
generates a magnetic moment, the calculation of
which is the subject of Sec. III. Although this cal-
culation is completely classical, there is a close
analogy with what happens for the Dirac equation.
To exhibit this, we present in Sec. II a calculation
of the g factor for the electron in a somewhat un-
usual way, the role of the helical motion being
played by the Zitterbewegung. Our result for the

present model is that the g factor is determined
by the function f in (1). Let the Hegge relation
implied by this same f be M =Mjl(S), where S is
again average spin/5, then our final result is

( )
dln[P(S)]

dlnS (6)

Hence if we assume P (S)=S", then g(S) =n, i.e.,
for the usual assumption n =o, g(S) =—', for all
states of the Begge trajectory. This is in striking
contrast to the well-known result g(S) = 1/S ob-
tained from finite-component wave equations de-
scribing one spin value at a time."

II. ALTERNATIVE CALCULATION
OF ELECTRON g-FACTOR

Dirac's original derivation' of the electron g fac-
tor involves squaring the Hamiltonian, and cannot
be adapted to our model. We give here an alterna-
tive approach as preparation for our work in Sec.
DI.

We use the Heisenberg picture and set I=c =1.
In the presence of a homogeneous external mag-
netic field B, the operator equations of motion are
generated by the Hamiltonian

X=Ko +BC~o~, Ro = & ' p +pm,
(9)

X„,=-ee A(x), A(x)= —,B &&x.

The operators +, x, ... appearing here are of
course time dependent. In its present form X„,
does not yet involve terms such as f ' B and
8' 5, where I is the orbital angular momentum
and the spin S is

(1

We shall now show that if one averages over the
oscillatory motion (Zitterbewegung) of the elec-
tron, and takes the low-momentum limit, K„, is
actually of the physically expected form.

Working to lowest order in eB, we may assume
that in

X...= ,'e B ~(t) x-x(t) (11)

the time dependences in 0' and x correspond to free
motion due to X0. Following Schrodinger and
Dirac, ' this motion is explicitly known: p and X0
are constant, while & and x, 'at any two times t,
t+ 4t are connected by
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x(t+t t)=x(t)+ p t t
Xp

(i2)
we write the solution as

X=R,(u, v, w) . (i7)

e2ixp&t y ~ p g
+ 2. c((t) ——

p p ~~

=x(t)+—t t
Xp

p y e-2i p At

'"-K 2Kp-' 2 p

Superposed on the uniform motion is the high-fre-
quency Zitterbewegung. This makes X„,in (ll) a
rapidly fluctuating function of time. We define a
short-term average of o(t) xx(t) as the average
of c((t+ t), t) x x(t+ At) with respect to nt over many
cycles of the Zitterbemegung centered about t: In
this process, terms e'"p~' and 4t e"'p~' are
discarded. The result will of course depend on t,
but the high-frequency terms will have been re-
moved. Denoting this average by angular brackets,
we have after a simple calculation,

&X...)=—&'{o'(t)xx(t))

[).(t)+2—()(t))+ ~(t) )(i) .
2 (Xp 2K/

For a slowly moving electron, the matrix elements
of c((t}between positive-energy states are propor-
tional to p, as is clea.r from

0'8Cp+Kp 0'= 2p . (i4)

In that limit, we may drop the term & &&p as being
quadratic in p, and also replace Xp by m. This
yields

&x...&=- ' i (L+2S),

which shows that the g factor for the Dirac elec-
tron is two, up to the approximation made.

An external' ele ctromagnetic field interacts with
our system via minimal interaction, ' i.e., P- II
= I'-eA, Pp-IIp=Pp-e&p. This changes the
Hamiltonian (17};assuming the external field to be
weak it will suffice to restrict oneself to the first-
order (ln e) correction to the right-hand side of
(17). To find the gyromagnetic factors it will suf-
fice to consider, in analogy to Sec. II, a constant
magnetic field: A=- —,'x&B, A.,=0, i.e., in the
implicit equation (16) only u and v change. Form
dx, = (du —n'dv -X,o. 'dw)(2R, +wo') ', i.e. ,

8Kp
1

ex ].
&v 2Ãp+ so&

(is)

X,.„=,(I.--,'a'x V) B.
2Kp+28 &

The variables here are functions of the parameter
s ~

We next follow the method of Sec. II for handling
the unfamiliar term x x V, and replace it by its
short-term average. As we are only working to
lowest order in e, we may again compute this
average on the basis of the free motion, which is
described by (7). Thus we form the product x(s
+ b, s) x V(s + & s) from (7), and drop all oscillatory
terms such as sink s, cos4 s, sin4 s cos4 s,
bs sinbs, 4s costs, and obtain a result which of
course depends on s:

Hence we have in lowest order in e

X„«-X,(II 'II, II 'V, V,) =X,(u, v, w)+X„, ,
(is)

III. MAGNETIC MOMENT CALCULATION {x(s)x V(s))=-M, x(s) x p-tM, Px[&(s) 'P]

u -x'= c((v+xw); (i6)

The calculation for the model of Sec. I, although
classical and not quantum mechanical, is closely
analogous to the calculation of the g factor for the
electron as given in Sec. II.

As described in Sec. I, for the free system we
have arelationbetween mass and spin: P'= c((P V).
This gives an implicit equation for the clas-
sical Hamiltonian K =P, which is conjugate to the
time x'. Introducing u = P ' P, v = P ' V, w = V„(6)
reduces to the implicit equation

; x [S(s) P].

&Here s =P V and the three-vector [S(s).P] has
components S,„P)'.) The last term here can be
simplified using

) ~„„+Vt, ~„„+~„~)t„=0
from (5). We then drop terms quadratic in P, as
well as terms linear in 8,&

because in the quantized
version in the Majorana representation of S,„, the
8,

&
have vanishing ~j =0 matrix elements. Then
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ere find

(x(s) x v(s)&= —,[L(s) —s(s)], (22)

from (18). For (X~) one finds the result

0 0 0
(as)

i.e., the gyromagnetic factor is given by

Considering the limit P-O, one has

(2Ã, +ma') '~ l+, ~- {2K,+V o. ') '( ], +e'
1

2RO

-(2KO+mu') ~
2
—-(RICO+ Voe') ~

~ge'
~ -. ~'~o

2@0
v, ~x,

=2@,' ay,

(24)

8 lnXO
8 in+' u~m &

(as)

which is just (8).
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