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Nonleptonic hyperon and Q decays are analyzed in the framework of the Weinberg-Salam model of weak
interactions. Various effective weak nonleptonic Hamiltonians are tested with and without quantum-
chromodynamic corrections, including extensive variations of all the parameters in question. The influence of quark
models is also investigated using both the MIT bag model and the harmonic-oscillator model. Various dynamical
assumptions connected with particular selections of current-commutator and pole terms are also considered.
Irrespective of all variations and uncertainties, it seems that orders of magnitude and relative signs for various
amplitudes are always correctly reproduced.

I. INTRODUCTION

Recently, numerous efforts' ' have been made
claiming to lead to a reasonable estimate of hyper-
on and Q nonleptonie decays in the Weinberg
Salam model. An important ingredient in those
attempts was the effective weak Hamiltonian re-
normalized by quantum chromodynamics (QCD).
SU(4)-flavor-symmetry breaking was included in
the calculation of QCD corrections, as suggested
by Ref. 1. This has the effect of increasing the
~= —,

' content of the weak Hamiltonian.
S-wave hyperon-decay amplitudes (A) were

approximated through a commutator term, while
for P-wave decay amplitudes (B), ground-state
pole terms were used. Both amplitudes receive
either separable contributions' or meson-pole
terms. ' The same type of approximation was used
in calculating 0 decay amplitudes. ' In all these
cases, baryon matrix elements of the effective
weak Hamiltonian were determined using the MIT
bag model. '

The aim of this paper is to test some of these
approaches and to investigate the stability of theo-
retical results. The calculational scheme used
is actually the most commonly adopted "textbook"
approach to the problem. We intend, therefore,
to keep it as a basis and consider only some varia-
tions within this general scheme. This means
selecting either separable terms or meson-pole
terms and varying their parameters within the
boundaries given by experimental' and/or theo-
retical uncertainties. It turns out that theoretical
results are not too sensitive to such variations.

Quark models for baryons are still relatively
simple semiempirical devices. It would not be
convincing if the theoretical results were crucially
dependent on the particular model. It is more
satisfactory if it turns out that the decisive role
is played by SU(6) symmetry underlying any quark

II. THE EFFECTIVE WEAK HAMILTONIAN

The effe.ctive weak Hamiltonian which includes
QCD corrections and SU(4)-flavor-symmetry
breaking is of the form

HS"' (os=i) =H2G sinS cosH Qc, O,
k=1

(2. 1)

It contains the following four-quark operators:

0, =:(dz si)(uiui) —(dz, ui)(uzsi): (20", 8, r I = —', ),
0, =:(d~ s~)(u~u~) +(d~u~)(u~ s~) +2(d~ s~)(u~u~)

+2(Chsi)(sist): (84, 8, 8 I = —,'),
0, =:(d~ sz)(u~u~) + (dzuz)(u~ s~) +2(d~ s~)(d~d~)

—3(d~s~)(s~s~): (84, 27, AI = —.', ),
0, =:(d~ s~)(u~u~) + (d~uz)(u~ s~)

—(d~s~)(d~d~): (84, 27, aI =-,'),
0, =:(d~A. s~)(qs'X qs): (15,8, aI=-,'),
0, =:(dl, s~)(qsqs'): (15, 8, rS. I = —,') .

(2.2)

model of hadrons and by the consequent Pati-Woo
theorem. ' Such a conclusion seems to follow from
the comparison between the results' ' based on
the MIT bag model' with those obtained using an
entirely nonrelativistic harmonic-oscillator (HQ)
quark model g, io

The form of the effective weak Hamiltonian can
be varied changing. tke enhancement factors c, ap-
pearing in front of its operators (see Sec. II).
When certain variations were tried, including
also QCD corrections, the straightforward theo-
retical c, values' seemed to lead to satisfactory
results. It might be useful to know that there is
a relatively stable theoretical scheme, capable of
producing reasonable results, "as it will be
demonstrated below.
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eiei =2e'„(I -r }V ~ (2.3)

The coefficients appearing in formula (2. 1) were
derived in Ref. 1. They are functions of the
charmed-quark mass m, [which breaks SU(4)
flavor symmetry], the renormalization mass g,
the intermediate-vector-boson mass m~, and the
running coupling constant g2(p2)/4». Choosing as
an example the values

m~=100 GeV, m, =2 GeV,

g2 2)
p, =0.5 GeV, =1,

4»

one obtains

We indicate the SU(4) and the SU(3) flavor content
of the particular operator. Otherwise the notations
mean

(--l 1 ( aa, o~

az+~

a~oA = (~}"'(-12c,(a+ 5}

+(c, —~c,)[3(a- a') —(9b —b')]], (3.l)

az+& = &[-18c,(a+ b) + (c, —~oc,)(3a —13b)] .

Both A and B amplitudes also receive contributions
from separable terms in which two quark fields
are sandwiched between baryon states, while the
other two quarks are responsible for pion emission:

( (mx ™~)a*'-~)A I,)=(v) G f„s, 2 1/2 ™
mz —mp az+p

~e

= c, —2(c, +c, +c4)

cy 2 358, c, = 0.080, c, = 0.082

c4 =0.411, c, = -0.080, c, = -0.021.
(2.5)

nt 2

(C + IBC~ ' (m, -m„)(m„+m„), '

ar+2 = —c~+2(c2+c2 —2c4)

(3.2)

c~ = —1y c2 =yy1 c3 = ~, c4 = 7, c5 = c6 ==2 =2 (2.6)

The semiempirical coefficients c„c of Ref. 12
can be introduced by the substitution

1 = 2 =2c~ =-c, c2 =pc~, c2 =~c+, c4 =rc+ . (2.7}

The operators 0, and 0, appear because of the
SU(4)-flavor-symmetry breaking. ' All other four-
quark operators appear already in the QCD-unre-
normalized weak Hamiltonian. Such a Hamiltonian
is recovered for the following values of the co-
eff icients:

m 2

+(c + "c~ ' (m, —m»)(2mo)

(~ (D-3g)(m +mA)b~-, l
B I

I= G f(Z,'j 3 '( (8-$')(,+,)I;.,
t

5g A= -Cg+2(C2+Cs+C4)

m 2

(c +loc) 2' (m, +m„)(m4+m„)

br+2 = cg —2(c2 + co —2c4)

(3.3)

By making this choice (2.7), we have suppressed
SU(4)-symmetry breaking. In this way, we were
able to establish a straightforward connection
between the b, s= 1 Hamiltonian (2.1) and the Ls
=b.c =1 Hamiltonian of Ref. 12. With SU(4)-sym-
metry breaking included, operators such as 0„
0, appear only in the b, s =1 case, where there
are closed cc quark loops. "

III. DYNAMICS: HYPERON DECAYS

In our calculation we do not consider closed
hadronic loops, i.e. , those containing baryons
or measons. Such an approximation is fairly
standard' and/or has been discussed in detail
elsewhere. ' 4

Parity-violating hyper on-nonleptonic-decay
amplitudes 4 receive contributions A' from
current-algebra commutator terms. For ex-
ample, "

m 2

+!c + "c 'tr~ ' (m, +m, )(2m, )

Here we have used the current quark masses"

m„=4.2 MeV, m~=7. 5 MeV, and m, =150 MeV.

Alternatively, 8' terms can be replaced' by
K-meson pole terms B as follows:

/-1(":)
2 t~3 (d —3f)a»-„-lB'I, 1=KG. .— . ( (d-f).....

a -„-=([-c,+2(c, +c, +c,}](a-3b)
—(c, + ~c,)(a+5)],

a»o„o =([c,—2(c2+c2 —2c4)](a —3b)

+(c, + ~c,)(a+I }},

(3.4)

2E~tn] =m) —my +m~ .2 2 2

It is easy to see that the weak matrix elements
a», (3.4) have the same SU(4) structure as the bfz



146 DU BRA VKO TADIC AND JOSIP TRAMPETIC

terms in (3.3). The strong baryon-kaon vertex is
parametrized through f and d in the usual way.
Here m, and mz correspond to the initial and final
baryon mass, respectively.

4' terms can also be replaced by K*-pole
terms. The weak vertex in such a term can be
readily estimated in the separable approximation. "
However, the result is then practically equivalent
to (3.2).

The main contributions to the B amplitudes come
from baryon pole terms; for example,

a-„oA f d—
B (= ) =-gGF(m~+m~) ~2= ( )

a-. -z-
v 3 (m —mr)(mr +m~)

(3.5)
m~+m~ 1 fB (Zo)= gGF -' a
mz mp 2m' mz

The constants c, appearing in formulas (3.1)-
(3.5) are defined in Sec. II. The weak-interaction
constants are

Q~ =1.026x10 'm~ '=1.166xl0 ' Geg ',
sinI9~ =0.23,

f,=0.945 m, =0.128 GeV.

(3.6)

F+D =g~ ——1.25, D/g~ =0.65. (3.7)

The baryon coupling parameters f and d are not
too well determined experimentally. ' A possible
choice can be based on the relation

A
~zNw g~ mfa ™N

z
grcarzo 4~ mz ™N

which gives

(3.8)

In any model employing valence quarks only,
the amplitudes az+~, etc. , receive contributions
only from the operators O„O„and 0,. This is a
consequence of the symmetry properties of the
baryori states and operators. ' The quantities
az+~, etc. , can be expressed through combinations
of integrals over quark-model wave functions.
This can be performed with the help of Table I
using the definitions (2.2) of the four-quark opera-
tors. The integrals a, Ipy etc appearing in Table
I will be defined in the next section, where quark
models are discussed. Other quantities are cur-
rent form-factor parameters F and D, and the
hadron coupling parameters f and d. For the
parameters + and D one can se1ect
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f +d = 1, f=0.345 . (3.9)

Q decays

It is well known""'" that the 9 decay probabil-
ity is determined, to a large extent, by the parity-
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conserving P-wave decay amplitude B. They
receive contributions from the pole diagrams

B'U4) =Gz g)(x»-r-
(

"
»)qm „-—nz~'-~

a3 OAg*'" r (m .-m, )

B (0:)=g~o~*-»-G~ mn-- nz3,
(3.10)

B (0()) =g~-u»-„OG),

Here we have used the notations Q~ for the 9- A'K= mode Q for the Q - -'m mode and Q,
for the Q - = m' mode. The matrix elements of
the weak Hamiltonian determine the quantities
azo„(3.1) and a *-„-as follows:

a~»-„- = -8v 3 (c, —~c,)(3a' —b') . (3.11)

=v 3g~o~*-, - =W&g~-~*-,o =13.01 GeV '.
(3.12)

The processed Q and Q0 also receive separable
contributions:

These formulas can be easily found from Table I.
Strong meson coupling constants can be deter-

mined using SU(3) relations'

gag++ » g3l 0 r g3-o-»0 = &2gAX K

Here az, are given by (3.4).
(3.16)

IV. QUARK MODELS FOR HADRONS

The MIT version of the bag model (MIT) has
been extensively used and explained in the litera-
ture. ' ' Therefore it is sufficient here just to
list integrals appearing in Table I. They- are
determined by the bag model wave functions, with
the symbols u, and v, denoting large and small
components, respectively'.

a= d'ru„'ru, r +v„'r v, r
0

able factor (E —mz). In our approach the ampli-
tude C can receive contributions only from pole
diagrams involving negative-par ity —,

' and —,
'

baryon resonances. This means that the sums of
of baryon masses appear in the denominators in-
stead of the differences as in (3.10). These two
small factors (provided that the vertices in both B
and C pole contributions are of the same order of
magnitude) make 0 decay almost parity conserv-
ing.

The separable contributions (3.13}can also be
replaced by K-pole terms as was done in formulas
(3.3) and (3.4). For 0 decay, one finds

))'0:) ( b'„-~o
Bl,I=&sf,G~F ~

-1 b,

&n ~ &x ~~ &n x &z+& ~

(3.13)

b= d'ru„'r v„r v, r +v„'ru„ru, r
0

a = d'ru, 'ru„r +v,'r v„r, 4. 1
0

(='IA" In ) =F u~o(ue")„-. (3.14}

is the integral over the quark-model wave
functions. It is listed explicitly in Sec. IV. The
spirit of the approximation defined by (3.10) and
(3.12) for Qz and (3.13) for 0 and Il(o is close to
the one of Ref. 17. However, our approach in-
volves well-defined quark models and includes
systematically all possible separable and nonsep-
arable contributions (octet-pole and decuplet-pole
diagrams). "

The Q decay probability can be calculated from
the following formula:

I:(&'+~~)IBI'+(&' —~~) Ic I']. (3.15)

The contribution of the parity-violating d-wave
amplitudes Cto (3.15) is multiplied by an unfavor-

The quantity I' is connected with the octet-decuplet
matrix element of the axial vector current as
follows:

gru, rv, rv„r +v, ru, ru„r

V =2V6 f d'r[v, (r)v, (r) ——',v (r)v, (r)]. „
0

Some more details will be given about the har-
monic-oscillator (Ho) quark model in order to
illustrate how the HO model compares with the
MIT model. Both models have an identical spin-
flavor-color structure. The existing dynamical
difference is felt through the radial dependence.
The HO model is usually treated in the configura-
tional space. " However, as both pictures are
essentially equivalent, the HO model can be
easily transformed into the & representation, if
desired. In the configuration representation, the
baryon states are, for example, for the Z' par-
ticle:

(r i, r, r3 I
Z "}=~ G (1,2, 3)(4 P&+X P + 4) z+y ")c .

(4.2)



148 DU BRA VKO TADIC AND JOSIP TRAMPETIC

The spin y~, y and flavor 4~, 4 states are
defined in Hefs. 9 and 10. The spatial part has to
be properly symmetrized as follows":

G(1, 2, 3) =N/g(12, 3) +g(13, 2) +g(23, 1)),
3/2

g(12, 3) = " exp[--,'(n, 'p' + n ) 'X')],

1 1p=~ (r, —r, }, X=~ (r, +r, —2r, ),

3~ 1/2

Q
p =ting(dp = Plg

mg

Q,Q~ '"
g(23, 1) = ' ~ exp[--,'[(n p'+Sn), ')p'+(n q'+Sn ')V

+2&3(n „' —n,')px]},

Qf,Q ),g(13, 2)= ' ~ e px[--'[8( nq' +3 n~')p'+(ng'+Snp')X'

—2v 3 (n„' —np')p7. ]), (4.3)

16Q,'Q ),
'

{a,' + 8a,') (a,* +3a p') )
64Q 'Q ' 3/2

(5n,' + d a,') (d n,' +d a,*) —d (a „' —a,') ')
I

g =g(qqs- qqq), q =u, d,
G =G(qqs- ssq) =NZg(ssq),

g=g(qqs- sss) =g(qqq- sss) =g(ssq- sss) .
The integrals appearing in Table I are

(4.4)

Mass differences force us to distinguish between u,
d, and s quar ks in the spatial part of the wave
function. This is achieved by the following self-
explanatory substitution, which is important when
:- and 0 particles are concerned:

Ip, =g d pd X5~ r]-r,. g 12, 3 G 1,2, 3

3/2

=ddd (-, ~~'di ((~,''~i) "''&4,'+a{') "*),

d pd A. 5 rg —r, G 1&2, 3 G 1,2, 3

3/2

„n)n»(nx [(n) +n ) ) +2(nx +n~ } +2(n~ +n~ } +4(n), +n), ) (4.5)

I, =~ d pd X5~ ~ r&-r,. G 1,2, 3g12, 3
f,f=a

3/2

(n, '+n~') '"+2(n, '+n&') '"
7r

F = dddf d' d dig(123) ('1,{2, ), 3

(f' j),

The parameters are connected with quark mass
ratio x (=m„/m, ) and the harmonic oscillator
shape parameters n~ (for baryons} and P (for
mesons) by simple relations

1/2 1/2
2= 2 I2 2

Qp ~ Qy =g 1+3 Qp2x+1 2x+1

Qy = Qp q Qy =g 1+3 Qp

() ~ n () 7 P ~3 () t P
1

P

The harmonic-os cillator quark-model integral

2~6 N(2n, 'n &)'"{[n,'(n p'+ n &')) '"+4[(n, '+ n'p')(n p'+n'x') —4(n), ' —n, ')') "')

I„(4.5) has the value comparable with the MIT-
bag integrals for mesons. "

Wave functions analogous to (4.2) correspond to
pure ground-state configurations. All admixtures
of excited-state configurations" have been omitted.
This corresponds exactly to the approach based
on the MIT model. Numerical values of the inte-
grals (4.1) and (4.5} depend strongly on the model
parameters. It seems natural to use parameters

(4 6} which correspond to the ground-state baryons. In
the literature, one can find two sets of ground-
state parameters for the MIT bag model. The set
of Ref. 5 is the only one that leads to a satisfactory
prediction on nonleptonic decay amplitudes. It
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R„=R,=R =4.96 GeV ',
m(u) =m(d) =0, m(s) =0.279 GeV,

,(u) =2.0428, &u, ,(s) =2.8448,

g=1.5475x10 ' GeV',

a =1.9107x10 ' GeV',

b =0.5936x10 ', GeV',

b' =0.4995x10 ' GeV',

= 2W6x 0.7091 .

(4.7a)

(4.7b)

mesons:

R„=R,=R =3.26 GeV ',
m(u) =m(d}=0, m(s) =0.279 GeV,

,(u) =2.0428, v, ,(s) =2.5407,

g=5.3436x10 ' GeV',

g =2.1762 x10 ' GeV'.

(4.8a}

(4.8b)

HO quark model:

mesons and baryons:

m(u) =m(d. ) =0.33 GeV, m(s) =0.55 GeV,

x=0.6, ~,=0.32 Gev,

I p1 2 8069 x 10 GeV

Ip1 2. 1168 x 10 ' GeV'

I12 =2.5188 x10 ' GeV',

I23 2.9801 x10 ' GeV',

(4.9a)

(4.9b)

F = 2W6x 0.8022 .
Alternative sets of the HO-model parameters, '
more appropriate for the excited states of baryons,
lead to unsatisfactory magnitudes of the integrals
(4.5).

V. RESULTS AND DISCUSSION

In the present investigation, we have tried to test
systematically various inputs entering the calcu-

predicts the charge radius of the proton to be
{r~'),„' '=0.73 fm, which is somewhat smaller
than the experimental value {r~')"',„,=0.88 fm."
The other set of ground-state MIT parameters24
predicts the charge radius to be {r~')'",„=1.03 fm,
which is too large. The HO model parameters
corresponding to the ground-state baryons" also
predict the charge radius of the proton to be
(r~'),„'I' =0.63 fm, which is too small. Therefore,
there is some consistency between the parameters
used for the two models. Their respective values
are the following.

NIT bag model:

baryons:

lation of nonleptonic hyperon and 9 decays. The
points tested are the following.

(1) The effective weak nonleptonic Hamiltonian.
This includes variations of parameters such as p. ,
m, current quark masses, etc. , which determine
QCD renormalization (or enhancement) coefficients.
The Hamiltonian without QCD renormalization
was also considered, as well as the Hamiltonian con-
taining empirically determined enhancement co-
eff icients.

(2) Quark models of hadrons. Calculations were
made using both the MIT bag model and the har-
monic-oscillator (fsgur-Karl) quark model.
Various sets of model parameters, such as quark
masses, bag radii, harmonic-oscillator strengths,
are discussed.

(3) Dynamical assumptions underlying calcula-
tions, for example, which current commutator,
pole terms, and/or separable terms to take and
which semiempirical and/or calculated parameters
to use to determine strong vertices or weak-
current form factors.

Permutations and combinations of possible selec-
tions listed under 1, 2, and 3 are numerous. %e
have tried to make some selections which would
give some feeling of this complex situation.

First, we have used QCD enhancement factors
as listed in (2.5}, and calculated nonleptonic
hyperon amplitudes through the current commuta-
tor terms (3.1), the baryon pole terms (3.5), and
the separab)e terms (3.2) and (3.3). This seems
to be the combination suggested in the original
paper. ' Calculations were carried out for both the
MIT bag model and the harmonic-oscillator model
with parameters as defined by (4.7a), (4.8a), and
(4.9a). Numerical results are presented in full
detail in Table II. It is immediately obvious that
there is not much to choose between the two models
and that it is fair to say that the results for hyper-
on nonleptonic decays are truly quark-model in-

dependentt.

Secondly, for the QCD enhancement factors c&,
we have used analytical expressions as given by
Ref. 1. The masses appearing in c; were varied
in the range 60&m (GeV)& 120, 1& m, (GeV)& 2,
0.3& p(GeV)&0. 7. Calculations were also per-
formed for the following spread of the vertex
parameters:

0.3&f&0.375, 0.4& P&0.5.
They were carried out for both MIT and HO quark
models using the dynamical scheme defined by
formulas (3.1), (3.2), (3.3), and (3.5). The com-
puter output was studied for numerous combina-
tions of parameters, with the conclusion that the
values are fairly stable, extreme changes in ab-
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TABLE II. Hyperon nonleptonic decay amplitudes. Experimental values are from Ref. 25. The values of the param-
eters are. mg =100 GeV, m, =2 GeV, p, =0.5 GeV, f=0.315, E =0.5.

Amplitude

10'Z(A')

MIT
Nonseparable

o5, 6

bag model
Separable

oi 3 04 05 8

019 -001 -005 -001 009

Total

0.21

HO quark model
Nonseparable Separable
0( g Oge 0gg 04

0.19 -0.01 —0.05 -0.01 0.09 0.21 0.32

0 5, 6 Total Expt.

106~(g+)

10'A(Z )

-0.38 0.01

-0.33 0.00

0.06 —0.02 -0.10 -0.43 —0.45 0.00 0.06 -0.02 -0.01 —0.42 -0.44

0.04 —0.02 —0.07 —0.38 -0.32

0.47 -0.00 —0.06 -0.02 0.10 0.49 0.46 0.01 -0.06 -0.02 0.10 0.49 0.42

0.04 -0.02 -0.07 —0.38 —0.33 -0.00

10'X(Z++) 0 0.01

10 B(& )

10 B(R )

10'B(Z+, )

10'B(Z-)

0.65 -0.10 0.42 0.12 0.72

1.56 -0.12 -0.17 -0.05 -0.28 0.94

1.83 -0.01 0.08 -0.04 0.14 2.00

069 -014 042 012 072
/

1.84 —0.16 -0.17 -0.05 -0.28

1.73 0.02 0.08 -0.04 0.14

1.81 2.16

1.18 1.45

1.93 2.60

0.07 -0.12 —0.03 -0.20 -0.29 -0.14-0.10 0.04 -0.12 -0.03 -0.20 —0.41 -0.01

2.50 0.03 0 0 2.53 2.44 0.10 2 ..54 4.13

solute values differing by about 80% at most. As
an example, the extreme values of = amplitudes
in the two models are the following.

MIT bag model:

—0.48& A(- ) x10'& -0.36,

0.33& B(= )x10'&1.54,

HQ quark model:

-0.56& A(~ }x 10 & -0.44,

0.47& B(= ) x 10'& 1.84.

In all these parametric variations, the relative
signs of the hyperon-decay amplitudes were always
reproduced correctly. This also holds for the
relative magnitudes of the various amplitudes;
a few interesting examples shown in Fig. 1.

A completely analogous approach, using the
same effective weak Hamiltonian (2.1)-(2.5) and
an analogous mixture of pole and separable terms
(3.10) and (3.13) was then used to calculate B
amplitudes for Q decays. Numerical values are
summarized in Table III. It seems that the results
based on the MIT bag model, which have already
been published, 4 agree with experimental values
somewhat better than the results based on the HO
model. However, this advantage is very slight
and probably not significant at all. Both quark
models reproduce one experimental amplitude al-
most exactly. For the MIT model, it is B(Q~),
while for the HO model, it is B(Q:}.

It is necessary to point out that all the above
results follow for a.particular choice of param-
eters, either as in Ref. 5 or as in Ref. 10. An
alternative set of MIT parameters'4 leads to much

poorer predictions of the decay amplitudes. The
results based on the HQ model also depend on the
selection of the parameter up. If we had used the
parameter az of Ref. 9, we would have obtained

2

Q

A'

FIG. 1. Hyperon-nonleptonic-decay amplitudes. Full
circles correspond to the experimental points. ~ Theo-
retical values are joined by continuous curves in order
to facilitate visual display. Curve 1 corresponds to the
values given in Table II. Curve 2 was found by using the
same dynamics, but changing the parameters to m += 60
GeV, m =1 GeV, p, =0.7 GeV, f=0.375, and 5'=0.5.
Curves a and c correspond to the columns in Table IU
labeled by the same letters.
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TABLE III. 0 decay amplitudes in GeV-&. Experimental values are from Ref. 26. The values of the parameters
are the same as in Table II.

Amplitude

MIT bag model
Nonsepar able Separable
Og 4 05, 6 Og 3 04

HO quark model
Nonseparable Separable

O56 Total Og 4 0~6 04 Total

10'B(Q )

106B(O:)

3.21

10 B(~0) 0

0.80 0

'-0.70 0.78

4.01 3.78

0.23 1.29 1.'60 0

-0.49 0.55 -0.32 0.90 0.64 0

1.46 0

-119 085 025 136 127
-0.84 0.63 -0.36 1.01 0.44

4.03

1.32

0.78

I„=6.6x10 ' instead of the value quoted in (4.9b).
In some earlier papers"" in which nonleptonic
decays were treated within the context of the HO

model, one can also find large values for I„. In
those papers, I„was determined by fitting some
other experimental quantity —electromagnetic and

strong hyperfine splittings, for example. " The
result based on Bef. 9, where the spectrum and

mixing angles of negative-parity baryons were
discussed, is close to the I,y values of Befs. 27
and 28. The HO-model parameters" which we

have selected are those which are determined in

a way consistent with the determination of the MIT-
model parameters. '

Keeping to an identical dynamical scheme, i.e. ,
based on (2.1), (3.1), (3.3), (3.5), (3.10), and

(3.13), we look at what happens if there are no

important QCD-renormalization effects. This is
performed by using the values (2.6) for the coef-
ficients c&. Such a possibility has been suggested
and discussed recently. " As shown in Tables IV

and V, the agreement with experiment, especially
where B amplitudes are concerned, is poorer than
with QCD corrections included. This disagreement
is not strong because orders of magnitude and
signs still come out correctly. It is possible that
alternative dynamical assumptions concerning both
the dominant Feynman diagrams and the quark
models could lead to noticable improvement.

A recent study of D-meson decay has shown that
enhancement coefficients should be actually much
larger than found in the usual QCD calculations. '
This corresponds to the choice (2.7). Calculations
carried out for the dynamical scheme as outlined
above are summarized in Tables IV and V. Taking
into account certain freedom one has in selecting
dynamical parameters (see above and Ref. 3), one

can claim no clear-cut preference for either (2.5)
or (2.7).

It is interesting that very good results can be
obtained by weakening artifically the A, I =-, piece
of the weak Hamiltonian (2.1). This can be achieved

TABLE IV. Hyperon nonleptonic decay amplitudes calculated for various effective weak
Hamiltonians and for various pole diagrams.

Amplitude

10 A(A )

10'w(=:}

106&(x'0)

10'~(~:)
1o6&(x,')

Total '
without

@CD

0.03

-0.15

-0.85

0.12

0.21

-0.44

-0.38

0.49

0.20

-0.39

-0.33

0.47

0.12/0. 25

-0.31/-0.44

-0.33

0.37

Total including Ã pole
c5 =-0.08 c& =+0.1 c5 =-/+0. 5

Total' for
c =5

c+ = 0.45

0.28

-0.68

-0.62

0.78

Expt.

0.32

-0.44

-0.32

0.42

0.01

1p6B(AO )

1o'B(=:)

10'B(~')

10Bg )

10 B(Z )

0.70

0.44

0.70

-0.16

0.99

0.62

1.43

1.75

-0.14

2.53

1.39

1.63

2.04

-0.80

2.46

-1.17/3.1O

0.95/2. 09

1.06/2. 70

1.42/-2. 29

2.71/2. 29

2.30

2.36

-0.21

4.81

2.16

1.45

-0.14

4.13

' (B pole)+(separable).
(B pole}+(~ pole).' (B pole)+(separable).
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-TABLE V. 0 decay amplitudes in GeV ' calculated for the same variations as dispjayed
in Table IV.

Amplitude

Total
without

QCD
Total including K pole

c& =-0.08 c& = O. l c& =-/+0. 5

Total for
c=5

c+ =0.45 Expt.

IO'IB(~l r) I

Io'IB(0 ) I

IO'IBP )I

1.27

0.82

0.19

4.01

0.84

0,31

2.03

0.34

0.07

8.00/2. 40

1.50/l. 53

1.40/1. 50

6,33

1.61

0.79

4.03

1.32

0.78

' (B pole)+(separable).
b (B pole)+(~ po].e).' (B pole)+(separable).

making the replacement
1

C4 3C4

in the theoretical set of values for c, (2.5). Such
a replacement does not affect nonleptonic hyperon-
amplitudes very much. However, it leads to a
marked improvement in Q decay. Agreement be-
tween theory and experiment is almost ideal, i.e. ,
better than 10%.

Reference 3 used a slightly different dynamical
scheme. Its main point is in replacing separable
terms (contributing to the B amplitudes) by E-
meson pole terms. For hyperon nonleptonic decays,
such a choice has a theoretical foundation. " We
have also introduced K-meson pole terms in the
0 -decay calculations. In this scheme, nonlepton-
ic hyperon-decay amplitudes A retain the separ-
able terms (3.7). In Ref. 3, they were deduced
from the current-algebra commutator term.

The contribution of the E-pole term is numerical-
ly smaller than the corresponding separable terms,
which contain small current-quark masses in the
denomiantor. Thus, the values obtained using the
theoretical enhancement coefficients (columns for
c, = -0.08 in Tables IVand V) contain some ampli-
tudes which are too small. However, the c, and

c, coefficients are products of SU(4) symmetry
breaking, and cannot be estimated theoretically
with great accuracy. "

It is thus permissible to vary them within cer-
tain limits. We used c, =0.1, +0.5, leaving the
theoretical value (2.5) for c,." .

All these combinations work badly for the B(Z )
and B(Qr) amplitudes. Again, this cannot be re-
garded as an argument against E-pole dominance.
The calculation of the g-pole term depends actual-
ly much more on the quark-model dynamics than
the estimate of the separable terms. It is pos-
sible that the dynamics, as depicted by the simple
quark models we have been using, is not sophis-
ticated enough for an accurate esti:mate of E-pole
terms. It might be that K-pole contributions are
dominated by separable terms (which are one of

the contributions') for which the semiempirical
estimates (1.2) work well.

As shown in Secs. III and IV, the estimate of the
&-pole term based on the Ho correponds roughly
to the estimate based on the MIT bag model. "

With the dynamical scheme we have been employ-
ing, some QCD enhancement seems to be absolute-
ly necessary. However, our approach includes
many other dynamical assumptions which have not
yet been well understood. The quark models we
were using introduce model quark masses for their
valence quarks, which should be understood as
suitable parameters used in fitting certain experi-
mental data, such as masses, magnetic moments,
charge distributions, etc. The MIT bag model
employs very light valence quarks and the rela-
tivistic dynamics inside the bag, while the HG
quark-model valence quarks are heavy and their
dynamics are strictly nonrelativistic. However,
hadron states in both models are classified ac-
cording to the same spin-flavor symmetry. The
fact that both models lead to similar results
means that the spin-flavor structure of the hadron
states is decisive for correct treatment of the

dynamics.
From one point of view it might still be surpris-

ing that both models lead to similar results. What
one is actually calculating is a product of the QCD
enhancement factor c, and the matrix element of
the four -quar k operator 0,. between the quark-
model states (i,f):

The operators O~ (Sec. II) are made out of current
quarks. Without any transformation they are used
to act as operators in the space of valence quarks
constituting baryon or meson states ~i). It is not
at all obvious that such matching should be equally
good (or bad) for any quark model. Furthermore,
the product c~(f ~O& ji) should b'e independent of the
renormalization mass p. ." This can come about
only if the renormalization mass is selected in
such a way that the matrix element (f ~O& ~i) car-
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ries a proper concealed p. dependence. Again,
this can easily depend on the particular quark
model for hadrons.

Naturally, this last statement loses its meaning
if QCD corrections turn out to be unimportant and
if everything depends on the modification of hadron
states. ""

Furthermore, in our approach we have not con-
sidered the m' —q mixing effect which could
change the implication of the EI = —,

' selection rule
for A amplitudes. "

Irrespective of all these open questions, and
possible shortcomings, it seems that the general

dynamical scheme, outlined in Secs. II, III, and
IV satisfactorily works. Obviously, we have not
controlled all details, neither minor dynamical
ones, nor really important ones such as QCD cor-
rections. However, it seems that with the Wein-
berg-Salam model of weak interactions applied
in the framework of a relatively simple dynamics,
we might be on the right track.
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