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Schrodinger's equation with linear combinations of elementary potentials
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Suppose e = F(v) is the energy of the lowest bound eigenstate of the Hamiltonian h = —5 + vf(x), where f(x) is
an attractive central potential. The A transform is defined by F = A(f) and the curve {v,F(u)) is called the "energy
trajectory" of the problem. In this article it is shown that the energy trajectory of the linear combination

f= X,",af, , a, & 0, is bounded by curves of the form v = (X,",a [8 (s)] ') ', e = vX,",a F (8 (s)) [8 {s)] ', where

the curve parameter s & 0, and each function 6],. {s)is defined by an equation Ff {0,) —H,.F,(0,. )
= s, which is solvable

when f, is "elementary. " Por the lower bound, F, =A{f,. ), . for the upper bound, F, (v) =F,.. {u) is the upper

trajectory obtained by applying a trial function to the one-component problem —6 + vf,. (x) and minimizing (h)
with respect to a scale variable. Detailed recipes are given for the trajectory bounds corresponding to potentials
which are arbitrary linear combinations of powers, logarithm, Hulthen, and sech in one or three dimensions. For
the anharmonic oscillator f(x) =x'+ A,x' in one dimension, for example, e(il ) is determined by the expression
iL = ( I —4[e —(e' —3/4)'"]')/3 [e —(E' —3/4)'"]', where A = 22.608 for the lower bound and 3 = 24 for the

upper bound derived from a Gaussian trial function; this formula determines e for a given 2, with error less than 1%
for all A, & 0. The lower bounds and Gaussian upper bounds at the same time determine the lowest energies of the

corresponding N-boson systems for all N & 2.

I. INTRODUCTION

and obeying nonrelativistic quantum mechanics.
In terms of the dimensionless variables

v = 2P.Vcas/h's,

& = 2 p,Eas/h's (1.2)

x= (r, -r, )/a,

In this article we continue the study of the Schro-
dinger eigenvalue problem by geometrical methods
which we began in Ref. 1. The new results are ap-
plicable to the N-body problem, as we show in
Sec. VI, but the main emphasis of the present
work is the case N=2. We consider a bound sys-
tem of two particles with masses nz, and m, inter-
acting by the two-parameter attractive central
pair potential

a =E(v),

E=AJfj,
(1.4)

where A is the name we give to the nonlinear
transform which takes us from the potential to its
trajectory. There will be a trajectory for each
eigenvalue of h but we are currently concerned
mainly with the lowest trajectory. Thus for the
hydrogen atom we have (using the convenient abuse
of notation common in the application of Fourier
and Laplace transforms) A(-x 'j = -v'/4 and for
the harmonic oscillator A{xsj= 3v" '.

We shall now state our main result and present
two illustrations. Suppose f is a sum of n poten-
tials f; each of whose trajectories E; is known ex-
actly; that is

f(x)= Qa(x), fa,.» ,. (& 5)
t=1

Then the parametric equations for a lower bound
to the trajectory F =A(fj are as follows:

where p, =m,ms/(rit, + ms) is the reduced mass and
E is the energy, Schr'odinger's equation may be
written

v '= n,. g,. s
t=g

&v'= nF; 8;s 8;s
[-A-+ vf(x) j4'(x) = M'(x) = a@(x). (1 3)

We are using a different sign convention from Ref.
1: In the present paper the potential shaPe f now

always has the same sign as the potential, and c
has the same sign as the energy E. We define the
energy trajectory F as the function which tells us
how c depends on g, thus

where s& 0 is a parameter and the n functions (8,j
are defined by the n equations

F;(8;(s))—8;(s)E,'(8, (s))=s, i=1,2, . . . ,n

Moreover, suppose a, trial function with shape Q
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is used to estimate E; and the expectation of the
one-component Hamiltonian -A+ vf;(x) is mini-
mized with respect to scale separately, for each
i = 1,2, . . . ,n, giving the upper bounds F,"(v), then
the best upper bound to I which can be obtained
by using @ ls given by substituting the functions
Fe and the corresponding 8; in Eq. (1.6). For ex-
ample, iff is given by

f(x)= nx -'+Px',

then the bounds (1.6) to F=A(f] become in this
case

(1.8}

v '= nAt+ pBt', (1.9)

+ ~,x'- n, sech'x+ o.,x'+ ~,x'+ n, x',
(1.10)

which certainly represents a rich variety of prob-
lems; potentials for which Eq. (1.7) can be solved
for 8(s) we call elementary potentiaLs. Whenever
there is only one term in f, the lower bound gives
the exact answer; otherwise the bound is a kind of
optimal mean in the trajectory picture.

For the popular anharmonic-oscillator pxob-
lem~ ~ f(x) =x'+ A,x' {in one spatial dimension) we
are able to show (Sec. VII) that

cv '= -nAt '+ 2pBt',

where the parameter t= s & 0 and for the lower
bound (A, B)= (a,z') and for the upper bound (A, B)
=((2/3v)'/', ~~) with Gaussian Q and (A, B)= (—,', 3)
with exponential Q.

The formula (1.6}corresponds to the more gen-
eral formula Eq. (4.12}of Ref. 1 but the new theory
yields far better results because it has been de-
veloped specifically for the special ease of poten-
tial sums (1.5). The most novel feature of the
present work is the new variational lower bound
which depends heavily on the trajectory idea and
is derived in Sec. III; the fact that the variational
upper bound can also be put in the same form is
also interesting and very useful in practice. One
might expect that solving Eq. (1.7) for the 8,-(s)
could pose difficulties but we shall give explicit
recipes for general mixtures of the form

f(x) = -n,x ' —n, (e' —1) '+ n, inx+ n, x

& d&&~ on the mean trajectory, with A= (A~+Ae)/2,
the error in t for a given & is less than l%%ua in both
cases. Because we have used a Gaussian trial
function for the upper bound, Eq. (1.11) actually
represents a solution to the N-boson problem to
the same accuracy for all N~ 2 (see Sec. VI).

Equations (1.9) and (1.11) indicate very well the
nature of our present contribution to the eigen-
value problem: 'The bounds exhibit the dependence
of the eigenvalue on the potential parameters in a
form which allows for further analysis; the sepa-
ration of the bounds is typically of the order of
a few percent. HiQ' has recently solved the an-
harmonic-oscillator problem to 21 significant
figures, but even so, for many purposes, explicit
bounds like (1.11)will still be of considerable va-
lue.

From the analytical point of view it is of interest
to note that although the A transform is clearly
not linear, the general bound formula (1.6}does
preserve some aspects of the linear dependence
of f on the coefficients (n,.]. It is also geometrical-
ly interesting that if F;"(v)&0 for each i = 1,2, . . . ,n
[as is the case for each of the terms in Eq. (1.10)],
then Eq. (1.6) implies the following geometrical
properties on each of the trajectory bounds of
F = A[+,.n,.f,]'

d(« '}
d(v ')

(1.12)

d'(« '), 0
d(v ')'

Qn the upper-bound curve the parameter s is ac-
tually equal to the mean kinetic energy.

It may eventually become necessary to study the
A transform in an abstract and general fashion but
the present article is chiefly concerned with pre-
senting concrete results which will be of use in
applications where the potential under considera-
tion is a sum of elementary potentials.

II. ELEMENTARY POTENTIALS

Elementary potentials are defined to be those
potentials f whose trajectories F=A[fj are known
exactly and for which the equation

F(8(s)) —8(s)F (8(s))= s (2.1)

where A. =A = 22.608 for the lower bound and
A =A~= 24 for the upper bound derived from a
Gaussian trial function. Consequently we see that
~ is determined with error strictly less than
100(A"-A )/(A +A )& 3%%uo for all X~ 0; a similar
formula for the problem in three spatial dimen-
sions gives A, with error less than +. Since A. dh/

can be solved explicitly for the function 8(s).
Some potentials like the example'

f(x)= -2x '+ 4hz+ 4A.2xm, A. ~ 0

F(1)= 6A. - 1

have known exact solutions only for certain iso-
lated values of v so that although these potentials
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provide useful tests, they cannot be employed im-
mediately as "building blocks" in our geometrical
theory . The re are many elementary potentials,
however, and we now discuss a few of them.

A. Power-law potentials

8(s) = 2s . (2.8)
I

C. The Hulthen and sech2x potentials

functions are 8.4579 and 8.6057, respectively.
Meanwhile the 8(s) function in this case has the
simple form

For potentials of the form

f(x) = sgn(p)x~, p ~ -1, p4 0 (2.3)

I

The Hulthen potential" in three dimensions has
the shape

we have '

F(v) = sgn(p)E~v' '~"' (2.4)
f(x)= -(e"—1}'

and

(2.9)

where the F~ are positive constants. If a trial
function tP is applied to estimate & and we mini-
mize (h) with respect to a scale variable (as in
Ref. 1 and more generally in Sec. IV below), then
the uppe r trajectory has the same foem as Eq, .
(2.4) but E~ must be replaced by the appropriate
F~~ . 'These F numbers are shown in Table I for
both one and three d ime ns ions ~ In one dimension
we consider symmetric potentials f(~x

~

) and re-
strict p) 0 so that simple Gaussian and exponen-
tial trial functions are applicable .

For power-law potentials the 8(s) functions de-
fined by Eq. (2.1) become

F(v)=-(v.-1)'/4, v) 1.
Consequently we have from Eg. (2.1)

8(s) = (1+ 4s)' ', s ~ 0.
The potential with shape

f(x) = -sech'x

has in three dimensions (see Ref. 11)

E(v)= -v+ 3(v+-,'}'/'- —'„v ~ 2

8(s}=-',[(s+-',)+ (s'+ 5s+4)'/']'--, ', s~ 0

and in one dimension

(2.10)

(2.11)

(2 ~ 12)

(2.13)

8,( )=[ (P+2)/iPiE, ]"'"'.
B. The logarithmic potential

(2.5)
E(v ) = -v + (v+ -,' )'/' --,', v ~ 0

8(s)= [(s+2)+ (s'+ s)' ']'--,', s- 0.
(2.14)

For the potential

f(x) = lnx

in three dimensions we have shown' that

E(v) = -&v In(v/Gz, ), v? 0

(2.6)

(2.7)

where G~ is a positive constant. 'The "exact" nu-
merical solution of Quigg and Rosner' gives Gl,
= 7.63 and the corresponding values for variational
upper bounds w ith Gaus s ian and exponential trial

It is interesting that the 8 function is defined for
all s & 0 in all the cases we have studied, so that
we do not have to pay special attention to the
range of this variable (as we should with v) when
we consider arbitrary linear combinations of po-
tentials .

For the Hulthen and sech'x potentials we are
not able to find exP/icit formulas for F"(v) corres-
ponding to Gaussian and exponential trial func-
tions. However, in Sec. IV we show [Egs. (4.6)

TABLE I. Trajectory coefficients for pure power-law potentials. The lowest eigenvalue of
I = -Q + vf (x) forf {x)= sgn(p)x~is givenby e= sgn(p)E&" e (2 &', where d = 1 or 3 is the num-
ber of spatial dimensions of the problem. For p =4, 6, and 8, the F& numbers are taken
from Refs. 4 and 5. The letters G or E indicate upper bounds derived by the use respectively
of Gaussian and exponential trial functions.

1.018793

2.338 107

1.060 362

3.799 673

1.144 802

4.338 60

1.225 820

4.755 8

S' "'e= (p + S)[I'((p + 1)/2)/ r(1/2)} '/(~+') /Sp~ «~+»

Fu)E -(p + S)[l'(p + 1))2/{0+2)/2(Sp)p /o'+2) p

F,'"'=(P +»[I'«3+P)/si/I'(3/2))" &""(3/IP I)"""'/2 P.--1
F~ &s=(p+ 2)[r(P+ 3))'/'~+ &/4~p

~

~/&&+! P ~ -1
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and (4.7)] that in the general case of a potential

f, , and an (appropriate) trial function Q, expres-
sions can be given for the terms 8; 'E(8, )an. d 8,. '
to be substituted in the general sum (1.6) so that
it yields the best upper bound to AfQ,. u, f, tavail-
able via Q. Thus we see that the general bounds
(1.6) only require that the component potentials

f, be "elementary" with respect to the lower
bound.

of the corresponding trajectory functions F;. It
is certainly possible to use direct methods to find
a good lower bound (for example, by letting the
w; be functions of a parameter), or even Monte
Carlo methods (the vector w of the u, is a prob-
ability vector) H. owever, for elementary poten-
tials for which Eq. (1.7) can be solved explicitly,
we can actually find a prescription for the best
weights. The necessary conditions are simply

III. VARIATIONAL LONER BOUNDS

We consider a collection of n attractive poten-
tials f, each of whose energy trajectories E, =A(f, j. .
is known exactly. 'The potential we wish to study
is the linear combination

(3.1)

where the coefficients o', are positive and fixed.
'The new variational lower bound is based on the
idea that the Hamiltonian

Ah=-&+vf

can be written as a convex sum of n solvable
Hamiltonians

(3.2)

i!= Qw;h;, w;& 0, (3.3)

where

and

A, vn&
h =-4+ f!

$0i

(3.4)

sv =1 ~

(+,4)=E(v) = u,.(@,t!,.@).
~}

But each term (4', h, '4!) is an upper bound to the
lowest eigenvalue of h, We therefore have our
fundamental lower-bound inequality

(3.5)

Suppose 4' is the normalized exact (unknown) low-
est eigenstate of h for a fixed value of p, and let
us assume that 4 may be applied as a trial function
to each of the h;, then we have from Eq. (3.3)

E; ' (- -' E! ~=s, i=1,2, . . . ,n, (3.7)
w!P w! ~ w!p

where s is a Lagrange multiplier. Hence, by the
definition Eq. (1.7) of the functions 8;(s), we have

w; =vo.;[8,(s)] '

and consequently our best lower-bound trajectory
for linear combinations of e1ementary potentials
becomes in parametric form

v 'E(v)- Q&,E;(8;(s))[8;(s)]',

v'= &- 8;s
&=}

(3.9)

In all the cases which we have studied, the ques-
tion of the various domains of definition of the
trajectory functions E;(v) poses no difficulty be-
cause the range of the parameter s is conveniently
the same, namely the half line s& 0. In the sim-
ilar formula which we find for upper bounds (Sec.
IV) s is equal to the mean kinetic energy. If all
but one of the &,. are set equal to zero, the lower
bound (3.9) yields the exact answer; in the gen-
eral case the bound is an optimal mean of the
component trajectories, optimized for each choice
of (c!,] and v.

IV. VARIATIONAL UPPER BOUNDS

We shall show that variational upper bounds
obtained by the minimization of the energy expec-
tation with respect to a scale variable o lead to
upper trajectories which have the same form as
our lower trajectories Suppos. e Q(x) is a trial
function and we define the normalization and kin-
etic energy integrals respectively as

&™1
w;=1, w;&0.

E(v)~ gw;E;
s=} (3.6)

P'(x)dr (x) =I

g(x)f-&'tg(x)dr(x) =K.

(4.1)

(4.2)
The positive weights se; may now be chosen to max-
imize the right-hand side of Eq. (3.6) subject to
the constraints that (a) they have sum one, and (b)
for the values of a,. and g under consideration the
products (vo. , /w, ) do not fall outside the domains

This notation allows us to treat the one-dimension-
al and three-dimensional problems at the same
time. An upper bound to the lowest eigenvalue of
it= -0+vf is given by using the trial function
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Q(x/(r) and this leads to the expression

&((r}=,I + I 0'(h)f(oh)«(() . (4.3)

F; (8, (s )) —9, (s ).E, '(8, (s ))= s, i = 1,2, . . . ,n,
(4.11)

and the parameter
If c(o) is now minimized with respect to (r we ob-
tain the upper-bound trajectory E (v) in para-
metric form in terms of o'.

v 'Eo(v)=tv '

=(&) '
4 '($)[2f(ot)+ ((rt)f'((r$)]«(t),

~ '=(~) '~'f ('(()(o()r (~()d&'((), (4 4)

where f(x)=Z,",o(,f, (x). By differentiating E(I.
(4.4) with respect to (r we see that

d 4 ')"'(~))=(I,,) „—(~ ')

and therefore

(4.5)

E"(v) vF (v-) =I (4.6)

Now the expressions for ev ' and v ' are both lin-
ear homogeneous in the (o'. ,], and therefore for
i = 1,2, . . . ,n we have

-(2I)-~ l Q ($)[2f,(o))+ ((r$)f,'(o$ ]}d r($ },

4.7)-1} t'

=(2t~) 'o' 4 '(h)((r$)f;(oh)d7 (5) .

By defining the single-component upper trajec-
tories Eo to be given by E in E(I. (4.4) when o(,.
= 1 and o(», = 0, and by comparing (4.4) with (4.7),
we see that (4.7}may be written in the form

( ) 8 jFU(8 )
(4.8}

&(v ')
i

and consequently, by the same argument which
led to Eoi. (4.6), we have

E, (8;)- 9;E; (8, )=, , i = 1,2, . . . ,n. (4.9)

Thus we conclude that the best upper-bound traj-
ectory for the potential f(x)=Q, o(,f, (x) which can.
be obtained by using the trial function (II)(x/(r) and
minimizing (h) with respect to the scale (r is given
in parametric form by

(4.12)

is the mean kinetic energy [see E(I. (4.3)]. We do
not require the solvability of Eq. (4.11}for the up-
per bound: In cases where Eq. (4.11) is difficult
to solve, the corresponding terms 9, 'E, (8;) and

8; of Eq. (4.10) are given as explicit functions by
E(ls. (4.7), (4.8), and (4.12).

f(x) = g o(~ sgn(p)x'+ (x Inx,

P» —1, P+0, (x, » 0, (x0.»(5.1)

'Then the trajectory bounds are given from Eq.
(1.6) by

tPIE '~"'j (5.2)
n s """+o(/(2s),p+2

where the E~ numbers and G~ are given in Table
I and Sec. II 8 both for lower bounds, and upper
bounds corresponding to Gaussian and exponential
trial functions. It is clearly convenient for mix-
tures of type (5.1) to define the G~ numbers and
the parameter t as follows:

I* ~E (0+2)/2
Q — ~ t s 1/2go

p+2 (5.3)

V. MIXTURES OF POPPERS AND THE LOG
POTENTIAL

We have established the general formula (1.6)
which provides upper and lower bounds to the en-
ergy trajectory AfQ; n; f;} of a sum of potentials.
Terms can be added or subtracted from this sum
but the variational bounds always remain optimal.
'This formulation is so very convenient for sums
of powers and the log potential that we sha11 now
treat these special components in their own terms.
In one dimension we assume f to be a function of
~x

~

and we omit the singular terms x~ for p& 0,
and inn; otherwise our general arguments and for-
mulas are the same for both cases.

We suppose f to be given by

Ev'= O'E; es es
&=1

v-'= n; 8

where the n functions 8;(s) are defined by

(4.10)

The power-law and log bounds then have the simple
form

cv = +p Qpt + —ln Glt 2
(2+p q o(

(5.4)

= Q&~Gqt ' + rxt p» —1 p4 0
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-where the G numbers are presented in 'Table II;
for the upper bound we have from Eg. (4.12)

t = a(1/IC P" (5.5)

The rounding of decimals has been chosen in 'Table
II so that the G numbers yield strict bounds via
Eq. (5.4).

VI. THE N-BOSON PROBLEM

Consider N identical bosons each of mass rn in-
teracting via a central pair potential of the form
(1.1). The Hamiitonian for this system may be
written'

(pa -ps) + $g ~2m' (6.1)

In terms of a set {p„p„.. . , p~} of Jacobi ortho-
gonal relative coordinates with p, = (r, —r, )/M2
we have for expectations of H with respect to boson
functions of these variables

cv '= (E„/V,) (6.6)

are identical. It then follows (see Ref. 1) that

Z(v)- e- E'(v), (6.5)

where E(v) is the lowest eigenvalue of h and Fa(v)
is the minimum of (h& with respect to normalized
Gaussian functions of x; the upper and lower
bounds in (6.5) coincide if and only if"f(x) =x'
i.e. , the harmonic-oscillator potential.

Although the present article is principally con-
cerned with the two-body problem, the search for
upper and lower trajectories, I'~ and I, in the
same form has been motivated strongly by the re-
lation (6.5) which immediately extends our results
to the N-boson problem for all ¹ 2. For the /-
boson problem the variable &v ', which appears
in our parametric equations for the energy tra-
jectories, becomes

(&&= &&& ~

where

A2
R=(N-I) — n», +-V,f(v 2p, /a) .

la

We now define the dimensionless variables

v =NVoa'm/2h ',
e = mE„am/(N —1)IK ',
h = -kg+ vf(x),

(6.2}

(6.3)

(6.4)

VII. SOME ILLUSTRATIONS

The following problems are of some interest in
themselves and at the same time they give an in-
dication of the quality of the results we should ex-
pect when we apply the general formulas for tra-
jectory bounds to specific problems.

A. An exactly soluble test problem

We mentioned in Sec. III the exactly solubleprob-
lem' in three dimensions:

x= v2p, /a,

where E~ is the lowest eigenvalue of the N-boson
problem, and we note that these definitions are
consistent with Eq. (1.2) in the case N = 2 and m,
= m, = p/2, and the operators h in (1.3) and (6.4)

f(x}= -2x '+ 4Am+ 4A.'x', A. & 0

Z(1)= (e.—1) .
This example is covered by our formula (5.4) for
general power-law and log mixtures, with p = -1,

TABLK II. G numbers for combinations of powers and the log potential. The G + numbers
are required in Eq. (5.4) which gives upper and lower energy trajectories for arbitrary linear
combinations of power-law potentials and the log potential. The number of spatial dimensions
is indicated by d, the letters G and & indicate upper bounds derived by the use, respectively,
of Gaussian and exponential trial functions, and I- indicates the log potential. Decimal ap-
proximations have been rounded so as to preserve the validity of the energy bounds.

G(i3

G(33 7.63

0.197900

0.688 041

i
4
9
4

0.353 255

16.254 17

0.543 458

112.109

0.906 950

797.20

G&~
3@ = -exp(4 -2y) = 8.605672

2

G"&a=p[F((P+1)/2)/r(1/S)]S-&~+"~' P&O

GO3E —p I (p + 1)2-(p+i3 p p 0

Ga =IP I
3~/ [1'((P+ s)/z)/I'(3/s)]2 ++ ~ P ~-1

G"' =IPII(P+s)s- '" P--1
exp(3-y) = 8.457912

4
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1, and 2. Thus we have

~v-'= -26 t-'+12XC t+ 8X'C t'

v i = 26 it+ 4AG t + 4X 6 t~
(7-2)

where t& 0 and the G~ for upper and lower bounds
are given in 'Table II. Since it is not possible to
find E(v) for v 4 1 from (V.l) by scaling arguments,
we take the special case v = 1 and exhibit in Table
III some values of the positive ratio

R (A.) = [c(A.)+ l]/6X, (V.3)

which has the value 1 if a is exact; the fractional
error in 6 itself is given by (R —1)6K~6K —1~ '.
For the lower bound and the exponential upper
bound we find from (V.2) that

R(0+)=—UmR(X) = 4G, /3 . (V.4)

B. The anharmonic oscillator

For the anharmonic oscillator

f(x)=x'+ u'
the energy bounds via Eq. (5.4) become

sv '=2G, t + 3A.G, t /2,
6 t4+ yg t6

(7.5)

(V.6)

Since by scaling arguments we find

s(v A)=v'~ss(l Av 'ta) (V.V)

we need only consider the case v=1 for which we
use the notation e(A). If we set v = 1 in Eq. (V.6)
we can eliminate the parameter t and obtain the
formula

Consequently R(0+)=1 for the exponential upper
bound, and R(0+)= 0.91V for the lower bound; this
implies that R~(X) is discontinuous in X. However,
the corresponding errors in a~ and 6~ do both
vanish with &; for &=0.01 these errors are, re-
spectively, +0.03% and -0.51%.

TABLE III. Quality of the bounds for a test problem.
The lowest eigenvalue of S= -n —2x +4kx+ 4X x is
exactly {Ref.7) eP) = (6X-1). The table shows values
ofRP,)= (a+ 1)/6X, for e= e~, e= ~~ (Gaussian trial
function), and c = H (exponential trial function). R P.)
= 1 when c is exact; the fractional error in e for a
given A. is 6A(H—1) ( 6A, —1 (

R gower) R {Gaussian) R {exponential)

0.01
0,1
0.2
0.3
0.5
1.0
2.0
5.0

10.0
100.0

0.91964
0.93316
0.941 60
0.947 19
0.954 46
0.963 98
0.972 37
0.98120
0.986 21
0.995 36

3.51956
1.251 96
1.12598
1.083 99
1.050 39
1.025 20
1.012 60
1.005 04
1.002 52
1.000 25

1.004 72
1.032 15
1.048 63
1.059 31
1.072 98
1.090 55
1.10579
1.12161
1.13049
1.146 60

Moreover, on the curves (7.8) we have (indepen-
dently of G,)

Xdg (1-G2t I

sd& I 3+G, t'j~ (7.10}

Thus by using G", in Eq. (7.8) we determine s for
a given A, with error less than 1% (usually much
less) for all &~ 0, in one or three dimensions.

With this definite analytical information about
the quality of the bounds given by Eq. (7.8) we do
not need to exhibit many numerical values of this
simple formula which is consistent with earlier
data to be found in the extensive literature' on
the problem (the three-dimensional case corres-
ponds to the first odd excited state of the one-di-
mensional system). We have for example with
&= 1 the following values for one and three di-
mensions respectively: (lower, exact, ' upper)
= (1.388, 1.392, 1.404) and (4.6398,4.6590, 4.6783).
Since Gaussian trial functions have been used for
the upper bounds, we know by Sec. VI and the scal-
ing law (7.7} that the corresponding N-boson prob-
lem has also been solved to the same accuracy for
all N» 2.

Provided we use a Gaussian trial function for the
upper bound, we have G2= G2 in one or three di-
mensions. Consequently by taking the mean of
the upper and lower ~ values we have an error in
X which for aE/ a is strictly bounded by the follow-
ing inequality:

U G(error in X) ~ 100~ —„&Go+ G4

Hence by using the G4 numbers in Table II and the
mean value G4 =~a(G, + G,) in formula (7.8) we have
the strict inequalities: (error in X)& 3% in one di-
mension and (error in A.}&@g in three dimensions.

C. A possible quark-quark potential

For phenomenological quark-quark potentials of
the form f(x)= -ux '+P lnx+yx which we considered
in Ref. 1 we may easily apply our new formula
(5.4) to obtain expressions for the trajectory
bounds. The results are similar in quality to those
of the example in Sec. VGA and much better than
given by the more general potential-envelope
method. '

Instead of using the log function to bridge between
the Coulombic and linear regions of the potentia, l,
we might also consider a combination of Hulthen
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and linear potentials given by

f(x ) = -u (e" —1) i+ Px . (7.11)

For small x this potential is like -&x ' and we can
control the "rate" at which the linear component
Px is approached as x increases by adjusting the
range parameter a (which was redundant for the
power-law combinations considered earlier). The
actual potential has the following form from Eq.
(1.1) in which, for analytical convenience, we re-
tain all four parameters:

V(r) = V,[-u(e"t' —1) '+ Px/a] . (7.12)

By applying the formulas given in Secs. II-V in
the general formula (1.6) we find, in terms of
q& 0, the lower bound

av '=E /V

u[(I/q2)&t2 1)]2/4(1+q2P~2+ 6PG q
&

v ' = (m + m2)tt '/2m, m2Voa' = u (1+q') ' '+ 8PG,q
'

(7.13)

and the upper bound (exponential trial function).v ~=E'/V, = qu'[y -(I2q+) q+y'(I q+)]/4 6+PG', q',
v '= (m, + m2)@'/2m, m2Vo&2 (7.14)

= -uq[3y'(1+ q)+ qy'(1+ q)]+ 8PG", q ',
where (from Table II) G, = 0.688042 and G~ = ~,
the polygamma functions" are defined by

x"e ~
(-1)""y"(z)=

ll „dx(I -e ")

I"= Qw, .i'*', Pw, =1.
i

(8.1)

VIII. CONCLUSION

We have shown that the nonlinear A transform
A(f]=F of a, sum f=Z,. u; f; of attractive potentials
has variational upper and lower bounds that can
be specified by writing g ' and ag ' as functions of
a trajectory parameter s& 0; these functions de-
pend linearly on the coefficients (u,.] of the poten-
tial. In the case of elementary potentials the A

transforms F, =A(f.;}of the individual components
are sufficiently simple that the general formula
(1.6) for the trajectory bounds provides a conven-
ient recipe to which terms may be added or sub-
tracted with ease and which determines the eigen-
values, very often to within a few percent. When-
ever it is more important to know how the eigen-
value depends on the potential parameters (and
particle number for N-boson systems) than it is
to have accuracy better than one or two percent,
the methods presented in this article will be very
useful. In cases where high accuracy is neces-
sary, these methods can be considered as explor-
atory tools.

The approach we have followed is very general
for it deals with operators h which can be written
as the convex sum

~+ u -'""'
4=0

(7.16)

and the positive trajectory parameter q is related
to earlier parameters by q=o '=2s'~'=2t ' [I=K '
= 2 for the exponential trial function P(x) = e "; see
Eqs. (4.1) and (4.2)]. 'The upper and lower energy
trajectories for the case =P = 1 are shown in Fig.
Fig. 1. For large values of n both bounds ap-
proach the pure Coulombic trajectory c = -(uv)'/4;
for small g, a better upper bound is provided by
a Gaussian trial function which is known to be ex-
cellent for linear potentials (Ref. 1 and Sec. Ill).

For many purposes the lower trajectory (7.13)
gives with adequate accuracy the essential depen-
dence of E on all the potential parameters in a
form which is amenable both to further analysis
and to computation on a hand calculator. From
Eq. (1.12) we know that on either trajectory bound
we have

«2

«3 0

«4

«5 e

3 4

d(cv ')/d(v ') = s= q'/4; (7.16)

on the upper trajectory this quantity is the mean
kinetic energy.

FIG. 1. The trajectories are upper and lower bounds
to the lowest eigenvalue &=F (v) of the Hamiltonian
h =—4+ v f(x), where f is the &mear combination f(x)
= —(g"—1) + z of Hulthen and linear potentials.
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Such situations may arise, for example, in the
classical theory of oscillatory systems and for
finite matrices. How'ever, since this paper is con-
cerned with quantum mechanics we shall mention
two specific areas in this context where natural
generalizations can be made.

where

f(x}=f n(s)h'"(x)ds,
0

k'*'= -~+ k"'(x)vn(s)
w(s)

(8.4)

(8.5)

h=
V

p

u)(s)k"'ds,
4p

m(s)ds = 1, (8.3)

A. Projected excited states

In the illustration of Sec. VII B we were able to
deal with two eigenvalues of the anharmonic-os-
cillator problem because the first excited state
can be defined by a projector onto the subspace of
Hilbert space spanned by odd functions. In a sim-
ilar fashion in three dimensions we can project
the whole problem into the subspace of eigenfunc-
tions of L' with a given eigenvalue l(l+ 1). The
dimensionless operator h now becomes

k = -D'+ l(l + 1)x '+ vf(x) (8.2)

and the theory will yield bounds on the lowest ei-
eigenvalues of h for each value of E.

B. Integral transforms of elementary potentials

In Ref. 1 we discussed potentials which could
be written as envelopes of a family of simple po-
tentials. An envelope is a type of derivative of
the class of curves which generate the envelope.
In the present article we are working with sums
of potentials and it is natural therefore to general-
ize Eq. (8.1) to integrals of the form

E(v) ~ au(s)& ' ds .(q) v (s)
p W S

(8.6)

The best lower bound can now be found by maxi-
mizing the right-hand side of Eq. (8.6) with the
aid of the calculus of variations. Instead of
searching for an optimal probability vector w we
now look for an optimal probability density m(s).
The class of problems reached by the integral
transform (8.4) is very interesting. For example,
if k"'(x)=e, then f(x)=$(o'.(s)}, the Laplace
transform of a(s). However, we shall have to
leave the detailed analysis of this idea to a later
article.
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and k"'(x) is an elementary potential depending on
the parameter s. H A/k"'j=E"', and Af f]=E,
then by a similar argument to that of Sec. IG we
have
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